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We present a method of extracting information about the topological order from the ground state
of a strongly correlated two-dimensional system computed with the infinite projected entangled
pair state (iPEPS). For topologically ordered systems, the iPEPS wrapped on a torus becomes
a superposition of degenerate, locally indistinguishable ground states. Projectors in the form of
infinite matrix product operators (iMPO) onto states with well-defined anyon flux are used to
compute topological S and T matrices (encoding mutual- and self-statistics of emergent anyons). The
algorithm is shown to be robust against a perturbation driving string-net toric code across a phase
transition to a ferromagnetic phase. Our approach provides accurate results near quantum phase
transition, where the correlation length is prohibitively large for other numerical methods. Moreover,
we used numerically optimized iPEPS describing the ground state of the Kitaev honeycomb model in
the toric code phase and obtained topological data in excellent agreement with theoretical prediction.

Topologically ordered phases [1] have in recent years
attracted significant attention, mostly due to the fact
that they support anyonic excitations — exotic quasipar-
ticles that obey fractional statistics. They are of interest
not only from a fundamental perspective but also because
of the possibility of realizing fault-tolerant quantum com-
putation [2] based on the braiding of non-Abelian anyons.
An important challenge is to identify microscopic lat-
tice Hamiltonians that can realize such exotic phases of
matter. Apart from a number of exactly solvable mod-
els [2–4], verifying whether a given microscopic Hamilto-
nian realizes a topologically ordered phase and accessing
its properties has traditionally been regarded as an ex-
tremely hard task.

A leading computational approach is to use Density
Matrix Renormalization Group (DMRG) [5, 6] on a long
cylinder [7–20]. In the limit of infinitely long cylin-
ders, DMRG naturally produces ground states with well-
defined anyonic flux, from which one can obtain full char-
acterization of a topological order, via so-called topologi-
cal S and T matrices [21]. Since the proposal of Ref. [21],
the study of topological order by computing the ground
states of an infinite cylinder with DMRG has become a
common practice [22–39].

The cost of a DMRG simulation grows exponentially
with the width of cylinder, effectively restricting this ap-
proach to thin cylinders. Instead, (infinite) Projected
Entangled Pair States (iPEPS) allow for much larger sys-
tems [40–42]. However, (variationally optimized) iPEPS
naturally describe ground states with a superposition of
anyonic fluxes. Here we show, starting with one such
PEPS, how to produce a PEPS-like tensor network for
each ground state with well-defined flux. Such tensor
networks are suitable for extracting topological S and T
matrices by computing overlaps between ground states.
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FIG. 1. A set of states |Ψv〉, |Ψh〉, |Ψhv〉 is constructed from
a single PEPS |Ψ〉 by inserting various MPOs in its bond
indices. For a topologically ordered phase (toric code on a
honeycomb lattice in this example), a proper combination of
four states |Ψ〉, |Ψv〉, |Ψh〉 and |Ψhv〉 is used to construct a
basis of states with well-defined anyonic flux in a given direc-
tion. Physical indices are not drawn for simplicity. See text
for details.

Our approach does not assume a clean realization of
certain symmetries on the bond indices, in contrast to
[43–46]. It also has much lower cost than methods based
on the Tensor Renormalization Group [47].

In this Letter we employ variational method to mini-
mize the energy of the iPEPS [48]. The optimized state
is then wrapped on a torus and the boundary conditions
(with respect to the symmetry acting on the bond in-
dices of PEPS) are suitably modified to recover all any-
onic sectors. Figure 1 presents an overview of our ap-
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proach. Computations are performed in the limit of an
infinitely large torus allowing for accurate description of
a topologically ordered phase even for models displaying
a large correlation length. For clarity, we specialize the
construction to PEPS describing the toric code realized
by a string-net model on a honeycomb lattice [49]. The
method can be applied to other Abelian anyon models, as
discussed below, and extended to non-Abelian ones [50].

In the toric code, the entanglement spectrum along
the topologically nontrivial cut of a torus is supported
on a vector space, which is a direct sum of four sectors,
corresponding to the identity I, bosonic e and m and
fermionic ε fluxes:

VTC = VI ⊕ Ve ⊕ Vm ⊕ Vε . (1)

We proceed by constructing projectors on ground
states with definite anyon flux. The projectors are op-
timized and represented by matrix product operators
(MPO). When inserted into PEPS and wrapped on the
torus, the optimal MPO projects onto the desired ground
state. Topological S and T matrices are extracted [51, 52]
by calculating overlaps between states with well-defined
flux on tori related by modular transformations.
Transfer matrices and their eigenvectors. — PEPS for

a toric code on a honeycomb lattice may be character-
ized by two tensors A and B with elements Aiabc and
Biabc respectively. Here, i is a physical index and a, b, c
are bond indices. Let A and B denote double tensors
A =

∑
iA

i ⊗ (Ai)∗ and B =
∑
iB

i ⊗ (Bi)∗ with dou-
ble bond indices α = (a, a′), etc., see Fig. 2(A). PEPS
transfer matrix (TM) Ω is defined by a line of tensors A
and B contracted via some of their indices, as shown in
Fig. 2(B).

For a toric code PEPS we observe that Ω contains a di-
rect sum of n = 2 topological sectors. Thus, the reduced
density matrix on the virtual indices (which is directly
related to the physical reduced density matrix [53]) at
a topologically nontrivial cut is a direct sum of two con-
tributions

Vcut = VI ⊕ Ve ⇒ ρcut = ρI ⊕ ρe . (2)

(recall that the ground state degeneracy of a toric code
on a torus is n2 = 4). The use of a pure MPS [54] as
an ansatz for the dominant eigenvectors v1, v2 of Ω se-
lects a specific linear combination of sectors. We note
that only the method based on boundary MPS (pre-
sented here) is capable of breaking the degeneracy of the
dominant eigenvectors into minimally entangled states.
Methods based on corner transfer matrix treat vertical
and horizontal directions on the same footing and there-
fore will not select a minimally entangled state in a given
direction. Numerically, eigenvectors vi may be obtained
using power method or by more advanced approaches
such as VUMPS algorithm [55], see Appendix A of Sup-
plemental Material [56] for details. In the diagonal basis,
they take the following form

v1 = ρI ⊕ ρe , v2 = ρI ⊕−ρe , (3)

FIG. 2. (A) Graphical representation of double tensors A
and B. (B) Left eigenvector vi of vertical TM Ω takes an
MPO form. Vector vi is constructed with a single tensor Mi

with bond dimension χ, for i = 1, 2 and is obtained using
boundary MPS method described in detail in Appendix A of
Supplemental Material [56].

where we regard vector vi as an operator represented by
an MPO constructed with a single tensor Mi as shown
in Fig. 2(B). Here, ρI and ρe are boundary density ma-
trices in identity and bosonic sectors, respectively. For
clarity, we omitted the fact that vectors vi may contain
zero component, that is v1 = ρI ⊕ ρe ⊕ 0 and similarly
for v2. This leads to numerical instabilities and other
complications that we discuss in detail in Appendix A of
Supplemental Material [56].

Matrix product description of v1 and v2 allows us to
find an operator Zv in the form of an MPO that maps v1
into v2 and back by demanding that

v1Zv = v2 , Zvv2 = v1 . (4)

In the diagonal basis of Eq. (3), Zv = I⊕−I. We stress
that we are able to obtain the generator of the global
Z2 “spin-flip” symmetry that acts on the bond indices of
PEPS, even though the symmetry is not realized on-site.
In other words, PEPS tensors A and B do not have to be
symmetric, as required in [43–46], for our construction to
work.

Similarly, we define horizontal TM Ωh and obtain its
n = 2 degenerate leading eigenvectors h1 and h2. Again,
we are able to find an operator Zh such that

h1Zh = h2 , Zhh2 = h1 . (5)

Finally, we build vertical “impurity” TM Ω̃v by insert-
ing Zh operator on a horizontal cut of PEPS, as shown
in Fig. 3(A). Zh implements anti-periodic boundary con-
ditions with respect to Z2 “spin-flip” symmetry acting in
the PEPS bond indices. Note that, even if the Z2 symme-
try is not realized on site, we still know that Zh changes
the boundary conditions from periodic to anti-periodic.
Thus, inserting Zh allows us to access two remaining sec-
tors

Ṽcut = Vm ⊕ Vε ⇒ ρ̃cut = ρm ⊕ ρε . (6)

As expected, we find n = 2 leading eigenvectors of Ω̃v

that in some basis take the form

v3 = ρm ⊕ ρε , v4 = ρm ⊕−ρε . (7)
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FIG. 3. (A) Two eigenvectors v3 and v4 are obtained as pure
MPOs from v1 and v2 by introducing additional tensors X1

and X2, which are obtained variationally. Tensors Xi are cho-
sen such that v3 and v4 are leading eigenvectors of “impu-
rity” TM Ω̃v. Double lines are dropped to improve clarity.
(B) Graphical illustration of one of the conditions for Z̃v in
Eq. (8).

Eigenvectors v3 and v4 are obtained as pure MPOs [54]
from v1 and v2 by allowing for additional tensors Xi, as
depicted in Fig. 3(A). Note that tensors Xi are obtained
variationally. In the limit of vanishing correlation length
ξ in the toric code PEPS studied here, the above ansatz
for v3 and v4 becomes exact. In other models, bond di-
mension χ of all vi is increased to account for potentially
large ξ. Our ansatz is validated by the results presented
below. There, the correlation length ξ ≈ 25 does not sig-
nificantly impact the quality of the final result, see Fig. 5
and the discussion below it.

Z2 symmetry acting on the anti-periodic sectors is re-
alized by an operator Z̃v satisfying

v3Z̃v = v4 , Z̃vv4 = v3 . (8)

The construction of Z̃v mirrors the one of v3 and v4. Z̃v

is obtained from Zv by allowing for additional variational
tensor F. Fig. 3(B) shows one condition from Eq. (8) that
is used to compute F. F is one of the generators of C∗-
algebra, from which central idempotents can be found
[44].

Appendix A of Supplemental Material [56] details some
numerical issues associated with finding vectors vi, i =
1, . . . , 4 as well as solving Eqs. (4) and (8).
Projectors onto definite anyon fluxes. — Symmetry

group generators Zv and Z̃v can be used to construct
ground states with well-defined flux in the horizontal di-
rection. Recall that Zv realizes Z2 symmetry in the peri-
odic sector VI⊕Ve. Operators P± = (I±Zv)/2 are thus
projectors on definite anyonic sectors and states

|ΨI〉 ∼ |Ψ〉+ |Ψv〉 , |Ψe〉 ∼ |Ψ〉 − |Ψv〉 (9)

have well-defined identity and electric flux in the hori-
zontal direction, respectively. Note that projectors P±
do not act on the physical Hilbert space. Instead, they
are defined on the bond indices of PEPS. The above con-
struction is summarized in Fig. 1. Here, |Ψ〉 denotes ini-
tial PEPS state and |Ψv〉 is the state obtained by insert-
ing Zv into bond indices of PEPS that defines |Ψ〉. We

FIG. 4. Three tori A, B and C on a honeycomb lattice con-
sidered in our method. Torus A is defined by a pair of vectors
(w1, w2). Each torus is obtained by st modular transforma-
tion from another torus. Transformation st corresponds to
120◦ rotation, (st)3 = I. The described approach requires
120◦ rotation symmetry of the lattice. Generalization to other
symmetries is straightforward. Physical indices are not drawn
for simplicity.

remark that projectors P± play the same role as projec-
tor MPO’s in construction of MPO-injective PEPS [44].

Similarly, Z̃v generates Z2 symmetry group in the anti-
periodic sector Vm ⊕ Vε. It defines projectors P̃± =

(I± Z̃v)/2. States with well-defined magnetic |Ψm〉 and
fermionic |Ψε〉 flux are obtained by first changing the
boundary conditions on the bond indices with Zh and
then projecting onto the proper subspace. That is,

|Ψm〉 ∼ |Ψh〉+ |Ψhv〉 , |Ψε〉 ∼ |Ψh〉 − |Ψhv〉 , (10)

where |Ψh〉 stands for |Ψ〉 with Zh inserted and |Ψhv〉
denotes |Ψh〉 that has Z̃v embedded in together with the
tensor F. Figure 1 summarizes the construction of |Ψh〉
and |Ψhv〉.
Topological S and T matrices. — States |Ψi〉 with well-

defined flux i = I, e,m, ε are used to calculate topological
S and T matrices. T matrix is diagonal and stands for
self-statistics, while S matrix encodes mutual statistics.
Together they form a representation of a modular group
SL(2,Z), by which they are related to the modular trans-
formations of a torus generated by s and t transforma-
tions [57]. It follows that overlaps between |Ψi〉 trans-
formed by a combination of modular transformations s
and t constitute entries of a corresponding combination
of topological S and T matrices.

Throughout this paper, for concreteness, we work with
the transformations on a lattice with 120◦ rotational sym-
metry. The construction is however general and applica-
ble to lattices with other symmetries as well. We start
by defining torus A in Fig. 4 with unit vectors w1, w2

and corresponding transfer matrices: vertical (w1, Nvw2)
and horizontal (Nhw1, w2), see Fig. 2(B) for comparison.
Similarly, we consider tori B and C together with their
corresponding transfer matrices as shown in Fig. 4.
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FIG. 5. Correlation length ξ as a function of perturba-
tion strength λ and a bond dimension χ of the TM eigenvec-
tors vi. Increasing χ reveals a quantum phase transition at
λ = 0.137...0.138. It separates toric code and ferromagnetic
phases.

Our method requires finding three complete sets of
ground states{

|Ψi
A〉
}
,
{
|Ψi
B〉
}
,
{
|Ψi
C〉
}
, i = I, e,m, ε (11)

with well-defined anyon fluxes corresponding to three dif-
ferent tori: A, B, C. Each torus is related to the previ-
ous one by a modular transformation st, which generates
120◦ counterclockwise rotation, see Fig. 4. Topological S
and T matrices are extracted from all possible overlaps
between states in (11). This computation is presented in
[52] and described in Appendix B of Supplemental Ma-
terial [56]. We stress that presented method does not
require any rotational invariance of the iPEPS tensors.
Toric code versus double semion and quantum double

of Z3. — PEPS tensors that represent ground states of
string-net models on a honeycomb lattice with zero corre-
lation length can be found analytically [4, 58]. As a proof
of principle, we numerically obtain topological S and T
matrices for the toric code and the double semion model.
Moreover, the described method gave exact S and T ma-
trices for the quantum double of Z3 model defined on
a square lattice [59]. In this Letter we restrict the de-
scription to the toric code phase realized in (i) perturbed
string-net model and (ii) Kitaev honeycomb model for
which we analyze iPEPS ground state obtained by nu-
merical energy optimization.
Perturbed string-net model. — In order to drive the

iPEPS away from the fixed point with zero correlation
length, we apply a perturbation e−λV towards a ferro-
magnetic phase similarly as in [60–62] but with a two-
site interaction V = −

∑
〈i,j〉 σ

x
i σ

x
j , see Appendix C of

Supplemental Material [56].
Our method allows us to obtain accurate results even

close to the critical point, in the regime of very long cor-
relation lengths ξ, see Fig. 5. Indeed, for λ = 0.136,
where ξ ≈ 25, we obtain S = Stc + εS , T = Ttc + εT ,

FIG. 6. Correlation length ξ as a function of Jx = Jy in the
Kitaev honeycomb model. Results for several values of bond
dimension χ of TM eigenvectors vi are shown. Inset: graphi-
cal illustration of Hamiltonian defined in Eq. (13) displaying
three different types of coupling: x, y and z.

where:

Stc =
1

2

(
1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

)
, Ttc =

(
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

)
. (12)

The maximal element of |εS | and |εT | is of the order of
10−3 and 10−8, respectively.

In the ferromagnetic phase we find two eigenvectors of
TM Ω, v1 = ρ1⊕0 and v2 = 0⊕ρ2. However, in contrast
to topologically ordered phase described by Eq. (4), there
is no operator that maps v1 to v2. Numerically, this situ-
ation is detected by monitoring the distance (per lattice
site) between v1Zv and v2. In topologically trivial phase
the distance converges to a finite value with growing bond
dimension of vi.
Kitaev honeycomb model. — The model is defined by

the following Hamiltonian

H = −
∑

α=x,y,z

Jα
∑
α links

σαi σ
α
j (13)

on a honeycomb lattice. Here, σαi , α = x, y, z are Pauli
matrices acting on site i. We set Jz = 1 and study the
model along the line Jx = Jy ∈ (0, 0.5), see Fig. 6. The
iPEPS ground state is obtained using variational opti-
mization. We find that the bond dimension χ = 4 of
boundary MPO’s vi suffices to faithfully capture the en-
tanglement properties of the phase.

We obtain correct topological S and T matrices within
very small error. We are able to uniquely determine
the anyon model for a range of parameters Jx = Jy ∈
[0.2, 0.48]. Most notably for Jx = Jy = 0.44, which is
close to the critical point at Jx = Jy = 0.5, we compute
topological matrices S = Stc + εS , T = Ttc + εT , where
the maximal element of |εS | (|εT |) is 1.3·10−3 (2.2·10−3).
The errors |εS |, |εT | grow with increasing J , however stay
below 4% in the interval Jx = Jy ∈ [0.2, 0.48]. This ac-
curacy is sufficient to unambiguously determine the type
of topological order.
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Conclusions. — We presented a method of identifying
topological order from microscopic lattice Hamiltonian
that does not have explicit limitations on the size of the
system. The method is based on extracting topological
S and T matrices from a single iPEPS. Our techniques
allow us to analyze systems with much bigger correlation
length than the state-of-the-art 2D DMRG. Finally, we
analyzed numerically optimized iPEPS describing ground
state of Kitaev honeycomb model in the toric code phase.
This computation shows that our approach does not re-
quire an artificially implemented realization of topologi-
cal symmetries. Instead, it is applicable to generic, vari-
ationally obtained iPEPS.
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