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We show that in a model of a metal photoexcited by a transient pump pulse resonant with
a phonon mode, the absolute dc conductivity may become negative, depending on the interplay
between the electronic structure, the phonon frequency and the pump intensity. The analysis in-
cludes the effects of inelastic scattering and thermal relaxation. Results for the time evolution of
the negative conductivity state are presented; the associated non-equilibrium physics may persist
for long times after the pulse. Our findings provide a theoretical justification for previously pro-
posed phenomenology and indicate new routes to the generation and exploration of intrinsically
non-equilibrium states.

The dc electrical conductivity σ (ratio of current j to
applied field E) is a fundamental property of materials.
In thermal equilibrium the linear response conductivity
is non negative because an applied electric field creates
entropy via Joule heating σE2 and the entropy produc-
tion rate must be non-negative. Beyond the linear re-
sponse regime new effects may occur. For example neg-
ative differential conductivity σdiff ≡ dj/dE|E 6=0 < 0 has
been extensively studied [1–3] and is typically related to
runaway heating at current driven metal-insulator tran-
sitions. This paper is concerned with the less com-
monly realized situation of negative absolute conductivity
(NAC), σ ≡ j/E < 0. A negative absolute conductiv-
ity state is possible away from thermal equilibrium be-
cause the entropy decrease implied by the σE2 term can
be compensated by other sources of entropy production,
and would lead to remarkable phenomenological conse-
quences including novel response properties [4–6] spon-
taneously generated internal electric fields [7], and new
collective modes [8] that might be relevant to recent ex-
perimental studies of the transient optical properties in
photoexcited K3C60 [9]. It is therefore important to un-
derstand the circumstances under which a negative ab-
solute conductivity can occur.

Insight into the origin of the NAC state may be ob-
tained from the expression σ =

∫
dεσ̃(ε)(−∂εf), with

σ̃(ε) = e2〈v2(ε)〉D(ε)τtr(ε), where e is the electron
charge, 〈v2〉 is a suitably averaged electron velocity, D
is the density of states, τtr is the transport scattering
time and f is the electron distribution function. σ̃ is al-
ways positive and in equilibrium −∂εf > 0. However,
out of equilibrium −∂εf may become negative in some
energy regions; we refer to this situation as a local (in en-
ergy) population inversion. If the energy regions where
−∂εf < 0 coincide with maxima of σ̃, then the total
conductivity may become negative. Regions of −∂εf < 0
were shown to occur and to lead to negative absolute con-
ductivity in the two dimensional electron gas subject to
a perpendicular magnetic field and to a steady state mi-
crowave radiation [10–12], and more recently in a steadily
photoexcited correlated insulator [13]; for example, in the
first system the peaked energy structure in σ̃ was caused

by Landau level quantization and the regions of local in-
version were produced by the drive at a frequency that
matched the Landau level spacing.

In this paper we show that a local population inversion
can occur in a system of electrons coupled to strongly
pumped phonons, and that this inversion can lead to a
NAC state, even when the pumping is not continuous;
indeed, the effect can be induced by transiently pumped
phonons and can persist for long times after the pump is
removed. We show how the NAC state depends on the
intensity of the driving pump and that the effect is max-
imized if the phonon frequency is approximately com-
mensurate with the distance from Fermi energy to the
band edges; we provide information on which forms of
the electron and phonon density of states create the most
likely conditions for the effect to occur. We estimate the
coupling constant from the phenomenological theory of
Ref. [8] and explicate the effects of internal electric fields
and energy relaxation mechanisms.

The model - We study a metallic system, initially in
equilibrium at temperature T , characterized by a disper-
sionless phonon mode with energy ωp; a weak dispersion
is important, as discussed below. We assume (as in the
usual theory of electron-phonon coupling) that the elec-
trons and phonons can be described in a quasiparticle

picture. Introducing the operators ck, c†k and aq, a†q for
electron and phonons respectively, the Hamiltonian can
be written as

H =
∑
k

εkc
†
kck +

∑
q

ωpa
†
qaq +Hel-ph; (1)

where Hel-ph =
∑

k,qMq(a†−q + aq)c†kck−q, with Mq the
electron-phonon interaction matrix element, and εk is the
electron energy dispersion.

We assume that the system is photoexcited by ra-
diation that induces a highly non-equilibrium state of
the phonons and we assume that the phonon coherence
and momentum relax very quickly, so we may char-
acterize the non-equilibrium phonon population by a
diagonal, momentum independent distribution function
〈a†qaq〉 = ζ + b, which is the sum of the thermal distri-

bution b = (eωp/T − 1)−1 and a non equilibrium compo-
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nent ζ. Because of the momentum independence of ζ we
can average all the relevant electronic properties over k
and characterize the system by ζ, the electron distribu-
tion f(ε), the density of states D(ε), the average velocity
squared v2(ε) and the transport scattering time τtr [14].

We study the non-equilibrium dynamics of the system
using the Keldysh formalism within Migdal-Eliashberg
theory; the supplemental material provides a detailed
treatment. We find as in equilibrium that the electron
density of states (retarded part of the Green function)
and the phonon frequency are only slightly renormalized
by the non-equilibrium drive [15]. We therefore focus
on the electron distribution function f and on the non-
equilibrium part of the phonon population ζ, which are
the solution of two coupled kinetic equations:

∂tf + StE{f} = Stin{f}+ Stel{f, ζ}; (2)

∂tζ = Stph{f, ζ}+ Ip(t)− ζ/τph, (3)

where StE is the effect of the dc electric field E, Stin is the
inelastic scattering term, Stel and Stph are the contribu-
tions of the electron-phonon interaction to the collision
integrals of f and of ζ respectively, Ip(t) a phonon source
term arising from the pump and the initial decoherence
processes, and τph is the decay time for ζ, due to inelas-
tic scattering with other phonons [15]. Notice that in
general the pump pulse also affects the electrons, but it
has essentially the same effects a phonons, since it drives
the same electronic transitions; for simplicity we neglect
this effect, since it would not affect the steady state elec-
tronoc distribution and would just accelerate the initial
evolution of the electrons in the transient regime.

Neglecting for simplicity the q dependence of Mq, we
evaluate the collision integral for electrons and phonons

Stel =
Γeph

D0

(
Dε−ωp

[(ζ + b)(fε−ωp
− fε)− fε(1− fε−ωp

)]+

+Dε+ωp
[(ζ + b)(fε+ωp

− fε) + fε+ωp
(1− fε)]

)
(4)

Stph =
Γeph

D0

∫
D(ε)D(ε+ ωp)

[
f(ε+ ωp)(1− f(ε))+

+ (ζ + b)
(
f(ε+ ωp)− f(ε)

)]
dε, (5)

where Γeph ≡ 2π|M |2D0 is the electron-phonon scatter-
ing rate and D0 is the average electron density of states.
Equation (4) has an evident periodicity in energy, which
at ζ � 1 induces a periodic distribution f(ε) with period
ωp; for such distribution, both Stel and Stph approxi-
mately vanish.

We model the inelastic scattering as arising from the
coupling to a thermal bath at temperature T ; if the en-
ergy is exchanged in small amounts, the scattering is an
energy diffusion process with effective rate Γin:

Stin =
Γin

DF

1

D(ε)
∂ε

[
D2(ε)[T∂εf + f(1− f)]

]
, (6)

Stin makes the electrons relax to a Fermi-Dirac distribu-
tion with temperature T .

It will also be important to consider an applied dc elec-
tric field. As shown in the supplemental material, this
causes a diffusion in energy space

StE = −E
2

3

1

D(ε)
∂ε[σ̃(ε)∂εf(ε)], (7)

where σ̃(ε) = e2v2(ε)D(ε)τtr. We see from Eq. (7) that
the electric field smooths out the steepest regions in f ,
creating a pseudo-thermal distribution [16, 17] with ef-
fective temperature Teff ∼ T + e2E2v2

F τtr/Γin, where vF
is the Fermi velocity.

Equations (2)-(7) are a complete system that can be
solved for f(ε, t) and ζ(t) given a source term Ip(t). We
consider two limiting cases: i) a steady state drive; ii)
a short pump pulse occurring over a time τpulse much
smaller than the relaxation time of the transient state.

Population inversion for steady state drive - In equi-
librium (ζ = 0, E = 0) Eq. (2) is solved by the thermal
Fermi-Dirac distribution fT (ε). To gain a first under-
standing of the non-equilibrium physics, we neglect in-
elastic scattering of electrons (Stin → 0), electric field
and phonon dynamics; we assume the system to be in
equilibrium at temperature T for t < 0 and that at t = 0
the phonon distribution is instantaneously switched to a
state with ζ > 0. We then solve Eq. (2) for fixed ζ and
consider the long time limit.

The dispersionless phonon approximation means that
an electronic state at energy ε is coupled to the dis-
crete set of states at energy ε + jωp, with j an inte-
ger such that ε + jωp is within the band of allowed
states. Since the scattering conserves particles number,∑

j D(ε + jωp)f(ε + jωp) is time independent and thus

equal to the initial value
∑

j D(ε+jωp)fT (ε+jωp). In the

large ζ limit, f(ε) must be periodic in ε so that Stel = 0,
i.e. f(ε+ ωp) = f(ε), implying

f(ε) =

∑
j D(ε+ jωp)fT (ε+ jωp)∑

j D(ε+ jωp)
(8)

The particular shape of f(ε) depends on the DoS and
on ωp. In the T → 0 limit, the ε structure of f is con-
trolled by the energy dependence of D in the range be-
tween the chemical potential µ and the lower band edge,
except for down steps at ε+jωp = µ or steps of either sign
when ε+jωp matches a singularity in the DoS. Since f is
periodic, the down steps must be matched by an average
increase of f .

Results of a numerical solution of Eq. (2) are shown
in Fig. 1 for a trial density of states. Here D is an in-
creasing function of ε between the lower band edge and µ
and we see that f is characterized by regions of smooth
increase separated by downward jumps at ε = µ − jωp;
the distribution arising from an alternative DoS (with
singularities at the band edges) is shown in the supple-
ment. Panels (a) and (b) of Fig.1 show the Stin → 0
limit at different doping levels. Panels (c) and (d) show
the effects of including the inelastic scattering (c) and a
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FIG. 1. Non-equilibrium steady state electron distribution f
(blue solid lines), obtained from solution of Eq. (2) for a steady
state phonon population ζ = 20, trial DoS D(ε) (cyan dashed-
dotted lines) normalized to the Fermi DoS DF , initial distribu-
tion given by a Fermi-Dirac fT (red dashed) at chemical po-
tential µ and temperature T/W = 0.003 (a), (b), (d), (e) and
T/W = 0.02 (c). The phonon frequency is ωp/W = 0.5 (a) and
ωp/W = 0.36 (b)-(e). Panel (c) includes a stronger inelastic scat-
tering Stin/Stel ∼ 0.05; in panel (d) we use the parameters of
(b) but with field eEvF

√
τtr/Γinωp = 0.4; in panel (e) we use

the parameters of (b) and a dispersive phonon with typical width
δω/ωp = 0.01, 0.03.

dc electric field (d); both these terms lead to diffusion in
energy space, smoothing out f similarly to raising T .

We also analyze the consequences of a dispersive
phonon frequency with typical width δω. This leads
to an additional diffusion-like term in Stel [15], which
renormalizes the temperature T → Teff = T + ζδω and
smooths the local population inversion when Teff ≈ ωp,
i.e. δω/ωp & 1/ζ (Fig. 1e). In the rest of the paper, we
neglect the effects of a dispersive band, but allow for a
small inelastic scattering and for non zero dc fields.

Steady state conductivity - An analysis of the Keldysh
equations yields for the conductivity [15]

σ =

∫
σ̃(ε) (−∂f/∂ε) dε. (9)

The sign of σ depends on how regions with large and
small values of σ̃(ε) are matched to the regions of nor-
mal and inverted population. An expression for σ can
be derived by approximating −∂εf as the sum of delta
functions at ε = µ+ jωp and smooth terms; for the DoS
of Fig. 1, −∂εf ∼ −1/ωp and we obtain

σ ∼
∑
j

σ̃(µ+ jωp)− 1

ωp

∫
dεσ̃(ε) (10)

From Eq. (10) we see that when ωp is such that µ+ jωp

corresponds to a band edge (where σ̃(ε) is small) for some

FIG. 2. (a)-(b) Plot of normalized conductivity σ/σ0 (where σ0 ≡
v2F τtrDF ) as function of ωp for three values of ζ at T/W = 0.003,
E = 0 for the DoS of Fig.1; the filling is 1/2 (µ = 0) in (a) and
1/3 (µ ≈ −W/6) in (b); the arrows indicate the values of ωp corre-
sponding to the commensurability criteria, i.e. ωp/W = 1/4, 1/2
in (a) and ωp/W = 1/3, 2/3 in (b). (c) Plot of σ/σ0 for a different
DoS (modeling p-like electrons in cubic symmetry) as function of
ωp at T/W = 0.003 and half filling; the inset shows the correspond-
ing DoS D and distribution f for the frequency ωp marked with a
dot on the graph. (d)-(e) Plot of σ/σ0 at half filling as function of
ωp at ζ = 20 and E = 0 for three different temperatures (d) and
as function of the normalized electric field E at ωp/W = 0.53 and
T/W = 0.003 (e). Calculations were performed for Γin � Γeph
assuming constant v2τtr and the system was evolved for a time
10Γ−1

eph.

j, the positive term in σ may be outweighed by the neg-
ative contribution of the integral. This is most likely to
happen when ωp is commensurate with the distance of
either of the band edge energies from the chemical po-
tential, as confirmed by numerical calculations of σ(ωp)
performed in the limit of constant v2τtr [18], see Fig. 2;
indeed the effect is enhanced when the chemical potential
is such that ωp is commensurate with both band edges
energies at the same time, see Fig. 1a and 2a (1/2-filling).
A similar criterion holds for more complicated density of
states, such as a double peaked structure modeling p-like
electrons in a cubic lattice; in this case σ(ωp) < 0 also
when ωp is commensurate with the distance from Fermi
level to the minimum of D(ε) (Fig. 2c).

Figure 2 shows that when plotted as function of the
phonon frequency, the conductivity minima generally oc-
cur at frequencies slightly bigger than the values of ωp

satisfying the commensurability criteria. The depen-
dence on ζ (pump strength) saturates rapidly as ζ is
increased above 1.
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From these results we conclude that a system can ex-
hibit a negative conductivity when: (i) the DoS is on
average an increasing function of ε in the region of equi-
librium occupied states. (ii) The pump is strong enough
to induce a sizeable population inversion of the electrons.
(iii) The phonon frequency ωp is roughly commensurate
with a relevant energy scale in the density of states, e.g.
the distance from the Fermi level to the edges of the band
or to a minimum of σ̃.

In Fig. 2d and 2e we report the dependence of σ(ωp) on
temperature and dc field, for the trial DoS of Fig. 1. We
find that the negative conductivity is suppressed at high
temperatures (Fig. 2d) and by an electric field (Fig. 2e).
In particular, Joule heating dominates the entropy pro-
duction at high fields, so σ(E) must become positive as E
increases: thus if σ(E = 0) < 0, there exists a field E? for
which the conductivity vanishes, σ(E?) = 0. The value

of E? is set by the scattering length vF
√
τtr/Γin and de-

pends on the details of the system. Roughly, σ > 0 when
either Stin or StE are large enough to smooth out the local
population inversion, i.e. when the effective temperature
gets of the order of ωp, or E? ∼

√
ωpΓin/τtr/evF . This

rough estimate agrees with Fig. 2e.
Short photoexcitation pulse - We now consider a short

pump pulse and study the subsequent evolution of f and
ζ. We show that the system may develop a transient
NAC state that persists after the drive is switched off. We
describe the pump pulse with a characteristic strength
ζ0 [19] and a duration τpulse; we consider a pulse much
shorter than the relaxation time, so that the time scales
involved are well separated. We also assume that the
inelastic scattering is small Stel � Stin (or Γin � Γeph).

We solve numerically Eqs. (2)-(7) for the trial DoS
of Fig. 1 and plot the behavior of σ and ζ as function
of time for Γephτph = 5 in Fig. 3a. After the pump
is switched on, ζ(t) grows rapidly (t ∼ τpulse) and the

system develops a negative σ (t ∼ Γ−1
eph); ζ then relaxes

back to equilibrium (t ∼ τph) and σ returns positive.
The NAC state occurs if it can develop before the system
relaxes, i.e. if Γ−1

eph � τph; its lifetime is ∼ τph � τpulse,
showing the persistence of the NAC state long after the
driving pulse is removed, and exhibits a slight decrease
at higher T or lower ζ0, as expected.

We can see from Eq. (3) why the relaxation timescale
is ∼ τph and not Γ−1

eph. This occurs because, after an
initial energy transfer from the phonon mode to the elec-
trons, the system attains an approximate steady state in
which there is no further energy transfer between elec-
trons and phonon, because f is ωp-periodic leading to
Stel ≈ 0 and Stph ≈ 0. In this situation the phonon
mode can relax either through the other phonons (scale
∼ τph) or indirectly because of the inelastic scattering of

the electrons (scale ∼ Γ−1
in ); in our framework, both these

timescales are longer than Γ−1
eph, leading to a rather long

lived non-equilibrium state.
The results in Fig. 3a neglect the instability associated

to a negative conductivity: for σ < 0 any charge fluc-
tuation grows exponentially with a characteristic time

FIG. 3. (a) Plot of σ/σ0 (blue) and ζ/ζ0 (red) as function of time
Γepht at 1/3-filling, ζ0 = 10, ωp/W = 2/3 eV, T/W = 0.003 (solid)
and T/W = 0.08 (dashed) for Γephτpulse = 0.3 and Γephτph = 5.
(b) Upper panel: plot as function of time Γepht of σ/σ0 (blue) for
the two scenarios with (solid) and without (dashed) considering the
σ < 0 instability; bottom panel: plot as function of time of E?(t),
for the same parameters as (a); the inset shows the parameter ωE(t)
normalized to σ0. (c) Plot of D(ε) and of the distribution f at
Γepht = 5; the red dashed curve refers to the scenario with no σ < 0
instability (E? = 0), while the solid blue curve takes the instability
into account. We used the trial DoS from Fig. 1 and modeled the
pulse as a decaying exponential Ip(t) = ζ0τ

−1
pulsee

−t/τpulse for t > 0.

τ−1
M = 4π|σ| [7, 8]; for a typical metal τM . 1 fs. This

time is much smaller than the typical values of τpulse, so
we can assume that the system instantaneously tunes it-

self to a state with a spontaneous polarization | ~E| = E?

such that σ(E?) = 0. We take into account the instability
by including the contribution of Eq. (7) to the collision
integral, with E?(t) chosen so that if the solution of Eq.
(2) predicts σ(t) < 0, σ(t, E?(t)) = 0.

In Fig. 3b we plot σ(t) and E?(t); the value of the
field is comparable with the steady state values found
previously in Fig. 2e. The field grows very rapidly in
a short time ∼ τM and then decays following the relax-
ation of ζ(t); notice that E?(t) goes to zero in a finite
time and with a non zero derivative, because the con-
ductivity turns back positive when ζ(t) decays below a
certain threshold. This internal field does no affect the
decay of ζ, but smooths out the regions of inverted pop-
ulation in f , as observed in Fig. 3c: the non-equilibrium
distributions at equal times are compared for the cases
E? = 0 and E? 6= 0 finding a weakening of the local
population inversions. This leads to a faster relaxation
towards equilibrium, so that the zero conductivity state
has a shorter lifetime than the NAC state (Fig. 3b).

Finally to make a connection to the phenomenological
analysis of Ref. [8], we estimate the parameter ωE , i.e.
the sensitivity of entropy production to perturbations of
the total energy. Notice that in Ref. [8] the total energy
of the system is conserved after the pulse, while in this
paper we allow for energy relaxation through Stin and
τph. Therefore, although the connection would be techni-
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cally imprecise, we can still estimate ωE as the derivative
of the Joule heating contribution to entropy production
with respect to fluctuations of the electric field energy:
ωE ∼ ∂σ/∂E2|E?(E?)2; ωE(t) depends on time and goes
to zero as E?(t)→ 0, see inset in Fig. 3b.

Conclusions - We have studied a minimal microscopic
model for the transient conductivity of a photoexcited
metal, in which the pump drives a strong non-equilibrium
phonon distribution, that may induce an inverted elec-
tron population.

We found the conditions for the occurrence of the pop-
ulation inversion and studied the dynamics of this tran-
sient state, considering the relaxation of phonons and
electrons. We found that for certain pump energies (de-
pendent on the band structure and the doping level), the
photoexcited system develops an absolute negative con-
ductivity state. Ideal systems that may exhibit such state

have electron-phonon coupling strong enough so that the
related scattering time is faster than the relaxation time
of the system; they also have a commensurate ratio be-
tween phonon frequency and bandwidth, which is easily
achieved in the case of narrow bandwidth and/or high
frequency phonons. The negative conductivity state is
unstable and evolves into a state with zero conductiv-
ity and a spontaneous electric polarization. We showed
that this transient state persists even after the pump has
been removed and that the spontaneous electric field does
not destroy immediately the zero conductivity state, but
rather reduces its lifetime.
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[16] G. Chiriacò and A. J. Millis, Phys. Rev. B 98, 205152

(2018).
[17] J. E. Han, J. Li, C. Aron, and G. Kotliar, Phys. Rev. B

98, 035145 (2018).
[18] Alternative choices for transport are possible: for ex-

ample τtr(ε) ∝ 1/D(ε) as for impurity scattering, or
v(ε)τtr(ε) ∼ const as for hard sphere scattering. The re-
sults are qualitatively equivalent, with only slight quan-
titative differences.

[19] ζ0 takes into account all the details about the pump flu-
ence, polarization and coupling to the phonon mode. We
use reasonable values of ζ0, which are roughly estimated
by assuming that all the energy of the pump is absorbed
by the phonon mode at energy ωp; this results in ζ0 ∼ 10
for fluences ∼ 1 mJ/cm2 and pump penetration lengths
∼ 100 nm.


