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Topological crystalline insulators (TCIs) are usually described with topological protection imposed
by the crystalline symmetry. In general, however, the existence of TCI states does not necessitate the
periodicity of crystals as long as an essential lattice symmetry can be identified. Here we demonstrate
the compatibility of TCIs with aperiodic systems, as exemplified by an octagonal quasicrystal. The
aperiodic TCIs we proposed are attributed to a band inversion mechanism, which inverts states
with the same parity but opposite eigenvalues of a specific symmetry (such as mirror reflection).
The nontrivial topology is characterized by a nonzero integer “mirror Bott index”. Moreover, we
demonstrate that the topological edge states and quantized conductance of the aperiodic TCI,
which are robust against disorder, can be effectively manipulated by external electric fields. Our
findings not only provide a better understanding of electronic topology in relation to symmetry but
also extend the experimental realization of topological states to much broader material categories
beyond crystals.

Topological crystalline insulators (TCIs) [1] represent
the states of matter in which the topological order of
electronic structures arises from generic crystalline sym-
metries instead of time-reversal symmetries as for topo-
logical insulators (TIs) [2–4]. There are many proposed
TCI phases depending on different crystalline symmetries
[5–13]. Recently, a theory of symmetry-based indicator
[14] has been established to diagnose underlying band
topology of a large amount of crystalline materials.[15–
17] Yet those relying on mirror symmetry [18, 19] are
of particular interest, as they have been experimentally
observed [20–24] or theoretically predicted [25–31] in var-
ious three-dimensional (3D) as well as 2D materials [32–
38]. So far, almost all the existing TCIs are based on
crystalline solids. In general, however, the existence of
TCIs does not necessarily require the periodicity of crys-
tals as long as an essential lattice symmetry can be iden-
tified. Here, we propose the realization of TCIs in ape-
riodic structures [39–41], such as quasicrystals, by con-
sidering a band inversion mechanism which invert states
with the same party but opposite eigenvalues of the iden-
tified symmetries.

Beyond the classical crystallographic restriction of pe-
riodicity, we introduce for the first time the concept of
aperiodic TCIs, as exemplified by an octagonal quasicrys-
tal. We show that the aperiodic TCI can be realized
by considering a band inversion between states with op-
posite mirror eigenvalues for a specific reflection opera-
tion. We characterize its nontrivial topology by deriving
a newly defined topological invariant, the mirror Bott
index, in addition to the conventional signatures of ro-
bust edge states and quantized transport as in crystals.
Moveover, we found that the topological edge states of
the aperiodic TCI can be gapped by applying a perpen-
dicular electric field and the system can even become a

quantum spin Hall (QSH) insulator by further increasing
the electric field strength. Our work opens a new direc-
tion in the theoretical studies of aperiodic matters with
different topological classes and in the experimental real-
ization of topological quantum matters beyond common
crystalline materials.

We first illustrate the general band inversion to pro-
vide an alternative view of TCI in terms of symmetries
of states that underlines the band inversion, which will
be especially useful to a priori design/search TCIs based
on simple orbital analysis. The band inversion provides
an intuitive physical picture to understand topological
states which was actually discovered long before the con-
cept of topological insulators [42–44]. Generally, the non-
trivial electronic topology involves party-invoked band
inversions (PBIs) which invert band-edge states with op-
posite parities [2–4]. Typically, an odd number of PBIs
give rise to TIs (e.g., HgTe quantum wells) [45, 46], an
even number of ones lead to TCIs (e.g., SnTe bulk and
films) [18, 32, 47]. In contrast, a band inversion between
states with the same parity but different other symme-
try eigenvalues can also give rise to symmetry-protected
topological states, i.e., the TCIs. Specifically, we focus
on the in-plane mirror symmetry of 2D systems. For
example, although all three p orbitals have odd parities,
band-edge states composed of pz orbital are antisymmet-
ric (odd) but those composed of px and py orbitals are
symmetric (even) about the x-y mirror plane. As such,
the pz-px,y band inversion will give rise to TCI states,
as elaborated below. This band inversion mechanism for
TCIs is general, applicable to other orbtials (such as d),
and both periodic and aperiodic systems.

We demonstrate the realization of aperiodic TCIs using
a generic atomic-basis model on 2D quasicrystals, such
as the octagonal Ammann-Beenker tiling [48–50] shown
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FIG. 1. (a) Octagonal quasicrystal lattice based on the
Ammann-Beenker tiling containing 264 vertices. Three
atomic p orbitals with different mirror symmetries are placed
on vertices. r0, r1 and r2 denotes the first three nearest-
neighbor distances. (b) Energy eigenvalues En versus the
state index n from the calculation of a quasicrystal sample
with 1393 atoms (3 orbitals and 2 spins on each atom). The
parameters used here are ǫpz = −0.86, ǫpx,y

= −1.86, Vppσ =
0.49, Vppπ = −0.15 and λ = 1.25 eV (see Supplemental
Material [53]). The inset shows the orbital-resolved spec-
trum of the quasicrystal with a PBC. (c) The wavefunction

|ψ(r)〉 = χ(r)eiφ(r) of the mid-gap state [marked as the green
star in (a)] is located on the edge. The size and the color of
the blob indicates the amplitude |χ(r)|2 and phase φ(r) of the
wavefunction, respectively.

in Fig. 1(a). There are three orbitals (px, py and pz)
per site having opposite eigenvalues with respect to the
mirror operation M̂z. The Hamiltonian is given by

H =
∑

iαµ

ǫαc
†
iαµciαµ +

∑

〈iα,jβ〉,µ

tiα,jβc
†
iαµcjβµ

+ iλ
∑

i,µν

(c†iµ × ciν) · sµν , (1)

where c†iαµ are electron creation operators on the α(=
px, py, pz) orbital with spin µ(=↑, ↓) at the i-th site. ǫα
is the on-site energy of the α orbital. tiα,jβ = tαβ(rij)
is the Slater-Koster hopping integral which depends on
orbital types and the intersite vector rij from sites i to
j [51, 52]. λ is the spin-orbit coupling (SOC) strength,

c
†
iµ = (c†ipx

, c†ipy
, c†ipz

)µ, and s = (σx, σy, σz) are the Pauli
matrices. Since only the band inversion between px,y and
pz states of different mirror eigenvalues is important for
the realization of TCIs, we focus mainly on 2/3 filling
of electron states hereafter (see Supplemental Material
[53]).

We numerically studied the octagonal quasicrystal
with an artificial periodic boundary condition (PBC) and
an open boundary condition (OBC), respectively. As
shown in Fig. 1(b), the PBC system shows an energy gap,
while a set of energy eigenvalues appear in the gap region
for the OBC system. Interestingly, the wavefunction of a
typical midgap state distributes on the boundary of the
finite quasicrystal sample, implying that it is an “edge
state”, as displayed in Fig. 1(c). Further studies indi-
cate that these edge states are robustly localized on the
boundaries regardless of the edge geometries of the finite
samples [53]. The existence of bulk energy gap and ro-
bust midgap edge states, which are known manifestations
of the QSH state [54–56], suggest a nontrivial electronic
topology. In order to examine the Z2 topology of the
quasicrystal, we first calculated the spin Bott index Bs,
a newly defined topological invariant for the QSH states
in noncrystalline systems [55]. However, the calculated
spin Bott index is Bs = 0, indicating that it is not a QSH
insulator!

Remarkably, the orbital-resolved PBC spectrum ex-
hibits signatures of a band inversion between pz and
px,y orbitals [see inset of Fig. 1(b)], implying a nontriv-
ial “crystalline” electronic topology in the aperiodic sys-
tem. As a planar 2D structure, the quasicrystal naturally
possesses an in-plane mirror symmetry. After further
inspection, it turns out that the above edge states are
topologically protected by the in-plane mirror symmetry.
Therefore, this “aperiodic” system is actually a mirror-
protected TCI instead of a time-reversal-protected QSH
insulator, as elaborated below.

It is well known that for a crystal with mirror symme-
try, the mirror operator M̂z commutes with the Hamil-
tonian: [H, M̂z] = 0. One can divide the wavefunctions
in the mirror-invariant plane of the BZ into two sepa-
rate sets according to their eigenvalues (±i) and calculate
their respective Chern numbers C±i. The mirror Chern
number, which is defined as Cm = (C+i − C−i)/2, gives
a Z-classification for the band topology of the crystalline
systems [57]. Following the similar idea and based on
the significant development of real-space formulations of
topological invariants [58–68] here we straightforwardly
derive an alternative topological invariant, the mirror
Bott index, to determine the mirror-protected TCI state
in aperiodic systems.

To do so, we first construct the projected mirror oper-
ator,

Pm = PM̂zP, (2)

where P =
∑Nocc

j |ψj〉〈ψj | is the projector operator to

the occupied states and M̂z = −iσz ⊗mz with the Pauli
matrix σz and mz = diag(1, 1,−1) being the mirror ma-
trices in the spin and orbital spaces, respectively. By
solving the eigenvalue problem of Pm and constructing



3

new projector operators P±i:

Pm|φ±j 〉 = ±i|φ±j 〉, (3)

P±i =

Nocc/2∑

j

|φ±j 〉〈φ
±
j |, (4)

one can make a smooth decomposition P = P+i ⊕ P−i

for two sectors with opposite mirror eigenvalues.
Next, we calculate the projected position operators

U±i = P±ie
i2πXP±i + (I − P±i), (5)

V±i = P±ie
i2πY P±i + (I − P±i), (6)

where X and Y are the rescaled coordinates defined in
the interval [0, 1). The Bott index, which measures the
commutativity of the projected position operators [58,
59, 64], are given by [69]

B±i =
1

2π
Im{tr[log(V±iU±iV

†
±iU

†
±i)]}, (7)

for the two mirror sectors, respectively. Finally, we define
the mirror Bott index as the half difference between the
Bott indices for the two mirror sectors

Bm =
1

2
(B+i −B−i). (8)

We checked the above definition for both crystalline
and disordered systems with respect to mirror symmetry
and confirm the mirror Bott index is equivalent to the
mirror Chern number for crystals [53]. This proves that
the mirror Bott index is a well-defined topological invari-
ant, signifying the mirror-protected TCIs. As such, we
provide a concrete and quantitative recipe to determine
the electronic topology of systems with mirror but with-
out translational symmetry. Interestingly, a previously
proposed aperiodic QSH state [54, 55], which is based on
(s, px and py) orbitals in a Penrose-type quasicrystal, is
also characterized by Bm = 1 in addition to the spin Bott
index Bs = 1. Such a dual topological characteristics [70]
is due to the essential equivalence of the mirror operator
and the spin operator in such special systems.
For the quasicrystal in Fig. 1(b), we found that Bm =

2, indicating that it is indeed a TCI. According to the
bulk-edge correspondence, it is not surprising that the
nonzero mirror Bott index is consistent with the above-
mentioned robust edge states. Moreover, Bm = 2 dic-
tates that there exist two pairs of counter-propagating
edge states within the energy gap. They move in the
same (opposite) direction with identical (opposite) mir-
ror eigenvalues. Different from periodic systems where
the number of edge states can be easily counted from a
ribbon calculation with two open boundaries, it is diffi-
cult to determine the number of midgap edge states from
the spectrum of aperiodic systems with OBC. However,
their edge states still lead to a quantized conductance of
2e2/h per edge in the ballistic limit.

FIG. 2. (a) Two-terminal conductance G as a function of the
Fermi energy E for quasicrystals with different perpendicular
electric fields. (b) Local density of state ρi(E) at E = 0 eV
[marked as green star in (a)] for the central quasicrystal in
the transport simulation without perpendicular electric fields
(ξ = 0 eV). The size of blue dot represents the relative value of
local density of state. (c) Schematic illustration of the effect
of a perpendicular electric field. ξ indicates the field induced
coupling between px,y and pz orbitals. (d) Topological phase
transition induced by the perpendicular electric field.

To verify the quantized conductance of the edge states
in the aperiodic TCI, we further studied its transport
properties by coupling it to two semi-infinite periodic
leads with two open side boundaries, which host the edge
states. In Fig. 2(a), we plot the two-terminal conduc-
tances which are calculated using the non-equilibrium
Green’s function method [71–73]. Remarkably, there is
an obvious plateau of conductance at the quantized value
G = 4e2/h for the two-terminal device, consistent with
the calculated mirror Bott index. As shown in Fig. 2(b),
the local density of state of the central quasicrystal at
E = 0 eV [the blue star marked in Fig. 2(a)] mainly
distributes on two edges of the quasicrystal, confirming
that the conductive channels are mostly contributed by
the topological edge states.

Unlike helical edge states in QSH insulators, the edge
states in aperiodic TCIs are protected solely by the mir-
ror symmetry Mz : z → −z, but not time reversal. This
leads to a remarkable consequence: applying a perpendic-
ular electric field E, which breaks the mirror symmetry,
will open an energy gap in the edge states. To illustrate
this effect and estimate its magnitude, we simulated the
quasicrystal under a uniform perpendicular electric field
with Hz

el = Ez [74]. Because the electric field distorts the
orbitals (especially the pz orbital) along the z axis [see
Fig. 2(c)], extra sp-like intersite hoppings are induced
between pz and px,y orbitals [75]. The effective hop-
ping strength is estimated as ξ = 〈px|Ez|pz, ex〉, which
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represents the relative strength of the electric field (for
a detailed discussion, see Supplemental Material [53]).
We found that the midgap edge states, which are gap-
less in the OBC spectrum originally, are gaped in the
presence of a weak perpendicular electric field, as shown
in Fig. 2(d). Correspondingly, the transport calculation
shows a gapped region with zero conductance under an
electric field of ξ = 3.75 × 10−2 eV [see Fig. 2(a)], in-
dicating that the edge modes are destroyed by the field-
induced mirror symmetry breaking. In contrast, a mag-
netic field or internal magnetism is required to gap helical
edge states of QSH insulators, which can be difficult to
achieve. Thus, the tunability of the edge states in the
aperiodic TCI provides a possible realization of topolog-
ical transistors with high ON/OFF ratio [32].

Interestingly, by further increasing the perpendicular
electric field, the bulk energy gap decreases to zero and
reopens; meanwhile the OBC spectrum becomes nearly
gapless simultaneously, as shown in Fig. 2(d). This actu-
ally implies a possible topological phase transition. We
calculated the spin Bott index of the system with the
reopened gap and found Bs = 1, indicating that the qua-
sicrystal is indeed driven to a QSH state. Correspond-
ingly, the OBC system under a strong electric field shows
midgap edge states which are located on the boundary
of the finite sample, confirming also its nontrivial topol-
ogy. Furthermore, the transport simulation shows a clear
plateau of G = 2e2/h for the quasicrystal in the QSH
phase (ξ = 3.75 × 10−1 eV), as displayed in Fig. 2(a).
Thus, applying an electric field can not only destroy the
topological edge states of the aperiodic TCI to turn off
the conductivity, but also drive the system into a new
topological state with a different quantized conductance
[76].

Such a topological phase transition from a TCI to a
QSH insulator can be intuitively explained as follows:
with the increasing electric field, the distorted pz orbital
becomes more and more asymmetric, and then the dis-
torted pz-px,y band inversion resembles an s-px,y PBI
gradually. Consequently, the system is driven from a
TCI to a QSH state. An alternative view is that the pz-
px,y band inversion can be considered as two copies of s-
px,y PBI with opposite phases. The interaction between
them is strictly forbidden by the mirror symmetry which
guarantees the gapless topological edge states. Applying
a perpendicular electric field, which breaks the mirror
symmetry, hybridizes edge states steming from the two
PBIs and induces a gap in the OBC spectrum. Owing
to the strong distortion of pz orbital with the increas-
ing electric field [see Fig. 2(c)], one copy of the PBI is
diminished and re-inverted back to the normal band or-
der, while the other is enhanced and dominates the band
topology of the system, inducing the topological phase
transition. Physically, a Rashba SOC arises due to the
perpendicular electric field. Different from the intrinsic
SOC that remains a constant strength, the increasing

FIG. 3. (a) Energy gap Eg (top) and participation ratio
Pn(E) (bottom) as a function of disorder strength W for the
quasicrystal. (b) Distribution of participation ratio Pn(E) for
a disordered quasicrystal with W = 0.4 eV. (c) Two-terminal
conductance G as a function of the Fermi energy E for the
quasicrystal witout and with disorder. d, The local density
of state ρi(E) at E = −0.01 eV [marked as red star in (c)]
for the disordered quasicrystal studied in the transport sim-
ulation. The size of red and blue dot represents the random
on-site disorder and the relative value of local density of state
ρi(E), respectively.

Rashba SOC splits the bands, closes the energy gap and
eventually induces an extra PBI [77, 78], which leads to
a topological phase transition. Similar behaviors of the
Rashba effect are also observed in crystalline counter-
parts of the aperiodic TCI [53].
Additionally, in order to test the robustness of the

aperiodic TCI state and study its localization proper-
ties, we investigate the disorder effect on the Hamilto-
nian by adding an extra term, W

∑
iα ζic

†
iαciα, where ζi

draws randomly for each site from the uniform distribu-
tion [−1, 1] andW is the strength of disorder (see Supple-
mental Material [53]). As shown in top panel of Fig. 3(a),
with the increasing W , the nontrivial energy gap of the
aperiodic TCI decreases and disappears eventually. Due
to Anderson localization, the disorder-induced gapless
phase is not necessarily a metallic state as seen from band
theory, but may turn out to be insulating. We checked
the localization of each state by calculating its participa-
tion ratio [79],

Pn(E) =
(
∑N

i=1 |〈i|ψn〉|
2)2

N
∑N

i=1 |〈i|ψn〉|4
δ(E − En), (9)

where |ψn〉 is the n-th wavefunction with the correspond-
ing eigenenergy En, and {|i〉} are the local orbital base.
By tracing the evolution of average participation ratio
〈Pn〉 over the whole spectrum and Pn(EF ) around the
Fermi level [see bottom panel of Fig. 3(a)], we found
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that a mobility gap opens to separate the relatively ex-
tended states in the disorder-induced gapless phase [80],
as shown in Fig. 3(b). Hence, the disordered quasicrys-
tal is still insulating and the aperiodic TCI phase is ex-
pected to persist. As shown in Fig. 3(c), the conductance
of the disordered quasicrystal (W = 0.4 eV), which are
mainly contributed by the robust topological edge states
[see Fig. 3(d)], exhibits nearly quantized values within
the energy window of the mobility gap. Therefore, the
aperiodic TCI is robust against the effect of disorder per-
sistent within the mobility gap induced by Anderson lo-
calization.

In conclusion, we have proposed the concept and the
first example of the aperiodic TCI phase in an octag-
onal quasicrystal. The nontrivial electronic topology is
attributed to a mirror band inversion and characterized
by a nonzero mirror Bott index, in addition to conven-
tional evidences such as metallic edge states and quan-
tized conductances. Although our work is based on a spe-
cific tiling, symmetry class and orbital types, the notion
of aperiodic TCI phases is generally applicable provid-
ing interesting future directions for research. Beyond the
mirror protected TCI phases, searching for new topolog-
ical phases in quasicrystals is still ongoing; whether qua-
sicrystals can host novel states with properties not found
in crystals is an open question. For instance, due to
the lack of classic crystallographic restriction, quasicrys-
tals exhibit rotational symmetries that are forbidden in
crystals, which raises the question of whether these sym-
metries can lead to new types of TCI phases. If so, the
resulting TCI phases would only be feasible in aperiodic
quasicrystals.

Note added. After submission of this work, we become
aware of another work [81] studying topological phases
in an octagonal quasicrystal.

This work was supported by DOE-BES (Grant No.
DE-FG02-04ER46148). The calculations were done on
the CHPC at the University of Utah and the National
Energy Research Scientific Computing Center (NERSC)
at the Office of Science in the U.S. Department of Energy.
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S. Blügel, and Y. Mokrousov, Nano Lett. 15, 6071
(2015).

[37] C. Niu, P. M. Buhl, G. Bihlmayer, D. Wort-

http://dx.doi.org/10.1103/PhysRevLett.106.106802
http://dx.doi.org/10.1103/RevModPhys.82.3045
http://dx.doi.org/10.1103/RevModPhys.83.1057
http://dx.doi.org/ 10.1103/RevModPhys.88.021004
http://dx.doi.org/10.1103/PhysRevB.86.115112
http://dx.doi.org/10.1103/PhysRevB.87.035119
http://dx.doi.org/ 10.1103/PhysRevB.88.075142
http://dx.doi.org/10.1103/PhysRevB.88.125129
http://dx.doi.org/10.1103/PhysRevLett.113.116403
http://dx.doi.org/10.1103/PhysRevB.90.165114
http://dx.doi.org/ 10.1103/PhysRevX.7.011020
http://dx.doi.org/10.1103/PhysRevB.96.205106
http://dx.doi.org/ 10.1126/science.1239451
http://dx.doi.org/10.1103/PhysRevB.88.235126
http://dx.doi.org/10.1103/PhysRevLett.110.156403
http://dx.doi.org/10.1103/PhysRevLett.114.226802
http://dx.doi.org/ 10.1103/PhysRevLett.112.016403
http://dx.doi.org/ 10.1103/PhysRevB.90.081112
http://dx.doi.org/ 10.1103/PhysRevX.8.041026
http://dx.doi.org/10.1103/PhysRevLett.115.086802
http://dx.doi.org/ 10.1103/PhysRevB.90.045309


6
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Akhmerov, D. I. Pikulin, and I. C. Fulga,
Phys. Rev. Lett. 123, 196401 (2019).

[82] W. A. Harrison, Phys. Rev. B 24, 5835 (1981).
[83] M. van Schilfgaarde and W. A. Harrison,

Phys. Rev. B 33, 2653 (1986).
[84] M. Kitamura and W. A. Harrison,

Phys. Rev. B 44, 7941 (1991).
[85] G. Grosso and C. Piermarocchi,

Phys. Rev. B 51, 16772 (1995).
[86] L. Shi and D. A. Papaconstantopoulos,

Phys. Rev. B 70, 205101 (2004).
[87] M. P. López Sancho, J. M. López Sancho, and J. Rubio,
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