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We exploit the high-symmetry persistent spin helix state obtained for similar Rashba and linear
Dresselhaus interactions in a quantum well to revisit the weak localization problem within a per-
turbative approach in a Landau level formulation. We define the small parameter of the theory as
the deviation from the symmetry state introduced by the mismatch of the linear terms and by the
strength of the cubic Dresselhaus term. In the vicinity of the helix state, the SO field becomes uniax-
ial, offering a natural direction of spin quantization, thus defining the z-axis within the 2D plane. In
contrast to previous theories, this reveals a full decoupling of the Cooperon triplet scattering modes
as well as decoupled Landau levels, to lowest order in the small parameter. This makes it possible
to derive a closed-form expression for the weak localization magnetoconductivity, thus providing a
new paradigm of localization in the weakly-broken spin symmetry regime. We perform quantum
transport experiments in GaAs quantum wells, finding very good agreement with the new theory.
We present a reliable two-step method to extract the SO and transport parameters from fits of the
new expression, obtaining excellent agreement with recent experiments. This is an important step
towards engineering and controlling the spin-orbit interaction as a powerful resource in emerging
quantum technologies.

I. INTRODUCTION

The spin-orbit (SO) interaction is of profound impor-
tance for a broad range of phenomena in modern con-
densed matter physics, such as spin textures [1, 2], spin
Hall effects [3, 4], topological insulators [5–8] and Majo-
rana fermions [9, 10], as well as for application in spin-
tronics [11, 12] and quantum computation [13–15]. Semi-
conductors such as GaAs, InAs, or InSb offer various
strengths of SO coupling combined with a high level of
electrical control [16–23] over the SO parameters e.g. in
quantum wells and are thus suitable for a broad range of
experiments. The two dominant contributions to SO cou-
pling in semiconductor quantum wells arise from break-
ing of structural and bulk inversion symmetry, quantified
by the Rashba coefficient α and the Dresselhaus coef-
ficient γ, respectively. While the Rashba effect [24] is
linear in electron momentum, the bulk Dresselhaus [25]
term is cubic. When projected into a quantized 2D sys-
tem as in a 2D electron gas (2DEG), it retains a cubic
component with coefficient β3 but also acquires a linear
component of strength β.

A particularly interesting situation arises when α = β:
a persistent spin helix (PSH) can be formed [26, 27],
which is robust against D’yakonov Perel scattering,
strongly suppressing spin relaxation [28]. In this state,
spins do not precess at all when traveling ballistically
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along one particular direction in the 2D plane, while pre-
cessing quickly when proceeding along the orthogonal di-
rection in the 2D plane. Effectively, spin symmetry is
restored by a complete cancellation of the Rashba and
linear Dresselhaus terms along one direction and the cre-
ation of a uniaxial internal SO field – a new unique in-
plane spin quantization axis – broken only by the cubic
Dresselhaus term and by a deviation from α = β.

With optical methods, the SO parameters can be read-
ily extracted from experiments [28–36] by monitoring a
spin component directly e.g. with Kerr rotation meth-
ods. This is much more difficult to achieve from elec-
tronic transport measurements where the spin informa-
tion is not usually directly accessible. In materials with
strong SO coupling, the beating patterns of the Shub-
nikov de-Haas oscillations can sometimes be used to ex-
tract the Rashba parameter [16–19, 37]. Even if SO cou-
pling is weak, quantum interference effects depend very
sensitively on the spin of the electron, giving weak an-
tilocalization (WAL) as the paradigmatic signature of
SO coupling in quantum transport experiments. To ex-
tract the SO parameters from such highly-sensitive mag-
netoconductance measurements, one needs to rely on a
model containing the relevant SO terms. For some spe-
cial cases, it was possible to derive closed-form expres-
sions already early-on: with cubic terms only [38, 39],
without SO terms altogether [38, 40], or for precisely the
spin helix point β = ±α and β3 = 0, in which case weak
localization (WL) was recovered [41] as if there were no
SO coupling at all.

Here, we investigate WL and WAL corrections to the

1



2

conductivity both theoretically and experimentally in a
GaAs 2DEG around the spin helix state. This regime –
predicted [26, 27] and realized recently [28] and in further
experiments [21, 42] – affords a new opportunity for cal-
culating the magnetoconductance by offering a high sym-
metry point (α = β) around which a new small parameter
may be introduced: the deviation from the perfect spin
symmetry, via imperfectly matched linear terms ∝ α−β
or through the cubic term ∝ β3. In both cases of broken
spin symmetry, the effective SO field remains small, i.e.
the WAL minima occur at small magnetic field, thus re-
maining in the spin diffusive regime. We note that α+β
is assumed to be large compared to α− β, i.e. both lin-
ear terms may individually be large, such that e.g. pro-
nounced antilocalization would result in absence of the
other term, even for β3 = 0. This is substantially differ-
ent from the case when Rashba and linear Dresselhaus
are both equal to zero, i.e. without linear SO coupling.
There appear also terms which are proportional to the
sum α+β, and these are large and retained here and give
a shift of the polarized triplets in momentum space.

With the choice of the emergent axis of spin quantiza-
tion in the spin helix regime as the new z-axis, a decou-
pling of the Cooperon triplet scattering modes to low-
est order in the new small parameter becomes apparent,
shown in Fig. 1(a), as well as a decoupling of the Landau
levels into which the scattering modes are expanded in
presence of a perpendicular magnetic field. Given these
important simplifications around the symmetry point, it
is now possible to derive a new closed-form expression
including simultaneously both linear SO terms as well as
the cubic term in the vicinity of the PSH point. This
provides a new paradigm of localization for the weakly
broken spin symmetry regime.

Next, we put the new theory to test against experiment
in the same regime, and find very good agreement. Fur-
ther, we develop a reliable method to extract all relevant
SO parameters from quantum transport data using the
new expression. This method exploits the cancellation of
the linear terms to extract, in a first step, independently
the cubic term and phase coherence in the high carrier
density regime where the cubic term already breaks spin
symmetry and restores WAL. Then, in a second step,
we tune slightly away from α = β and can now also ex-
tract the linear SO parameters, again from fits to the new
theory. This two step procedure delivers all SO parame-
ters, and finds very good agreement with recent transport
studies [23, 43] as well as optical experiments [34, 44, 45].
In particular, we extract a Dresselhaus material param-
eter γ = 11.5 ± 1 eVÅ3 in good agreement with recent
experiments.

II. QUANTUM CORRECTIONS TO
CONDUCTIVITY

There is a large body of literature addressing the sub-
ject of quantum corrections over the past decades: al-

ready the very early work of Hikami, Larkin and Nagaoka
[38] includes SO effects in the form of generic impurity
scattering (skew scattering) in the diffusive regime and
is the only work to date to provide a closed-form expres-
sion in presence of SO interaction and a magnetic field.
The effect of an in-plane magnetic field was also discussed
soon after [46]. For the case of III-V semiconductors, the
Dyakonov-Perel mechanism [47] is prevalent in the diffu-
sive regime. Iordanskii et al. Ref. [48] consider the lin-
ear and cubic Dresselhaus terms in absence of the Rashba
term, but in presence of a magnetic field in the Landau
quantized formulation, providing an analytical but not
closed-form expression. The standard Cooperon struc-
ture with coupled triplet modes and mixing between ad-
jacent Landau levels was established [41, 48, 49]. Pikus
and Pikus, Ref. [41] as well as Knap et al. [49] gener-
alized this formalism to include also the Rashba term,
together with the cubic Dresselhaus term, but not both
Rashba and linear Dresselhaus terms at the same time.
A similar expression as in [48] is obtained when only the
Rashba term is retained [50]. The same formalism was
also applied to include in-plane magnetic fields [51]. To
date, a closed-form in the fully Landau quantized formu-
lation could not be found for the generic case with both
Rashba and linear as well as cubic Dresselhaus terms due
to the coupled Cooperon and Landau level struc-
ture, only numerical solutions were available [41, 49].

Beyond the diffusive regime, only skew scattering was
considered [52, 53] and had to be solved numerically.
Both Rashba and Dresselhaus terms could be treated
but only numerically and without fully taking into ac-
count coherent interference effects between the terms
[54]. More complete numerical models exist for either
only Rashba or only linear Dresselhaus terms [55] or
also for all three terms [56–58]. Antilocalization was
also considered in quantum wires [59], and the PSH was
studied for various crystal orientations [60] and in two-
subband wells [61] in which crossed PSHs lead to topo-
logical skyrmionic spin textures in ordinary GaAs wells
[62].

Only recently, a closed form expression valid for ar-
bitrary values of all three SO coupling parameters was
derived in a semi-classical formalism in momentum for-
mulation [63]. In contrast, here we present a completely
Landau quantized treatment of the localization problem
that exploits the PSH high spin-symmetry point.

A. The PSH high symmetry point

Here, we consider a 2D electron gas in the x̂− ẑ plane
with the ŷ-axis denoting perpendicular direction. This
particular choice of coordinates takes into account the
new in-plane spin quantization axis as the ẑ-direction at
the symmetry point α = β. The single particle Hamilto-
nian corresponding to an electron of effective mass m∗,
momentum p = {px, py, pz} and spin σ = {σx, σy, σz}
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with Rasbha and Dresselhaus SO coupling reads

Hp =
p2
x + p2

z

2m∗
+ α(σzpx − σxpz) + β1(σzpz − σxpx)

− γ(σzpzp
2
x − σxpxp2

z) ,

(1)

where β1 is the bare linear Dresselhaus coefficient. This
choice of coordinates highlights the existence of a ẑ in-
plane axis, obtained through a π/4 in-plane rotation to
be parallel to [11̄0] (x̂ ‖ [110]), that becomes the quan-
tization axis for the electron spin. At α = β the spin
projection on this axis is a good quantum number of
the system, a property not immediately apparent if one
chooses the standard designation of ẑ perpendicular on
the plane.

Since the conduction in the degenerate Fermi system
is realized only by states at the Fermi surface of wave
vector kF , px and pz are expressed as a function of the
polar angle ϕp between the momentum p and the [110]
axis. In this case the Dresselhaus Hamiltonian obtains
two distinct angular symmetries, effectively renormaliz-
ing the linear Dresselhaus strength to β [23, 41, 48]. We
can now write the single particle Hamiltonian in terms
of symmetric (+) and antisymmetric (-) combinations of
the linear SO couplings, as

Hp =
p2

2m∗
+ h̄(Ωp × σ) · ŷ. (2)

The SO coupling is expressed via Ωp, which is defined as

h̄Ωxp = kF [(α+ β) cosϕp − β3 cos 3ϕp] , (3)

h̄Ωzp = kF [(α− β) sinϕp − β3 sin 3ϕp] , (4)

where β = β1−β3 is the renormalized linear Dresselhaus
coefficient. We follow the standard formalism to calculate
the quantum corrections to the conductivity [40, 41, 48,
64] for the single particle Hamiltonian in Eq. (2).

The quantum corrections to the conductivity result
from the renormalization of the scattering matrix ele-
ment through the coherent superposition of the incident
and scattered states. Although the bare impurity scatter-
ing is considered to be spin-independent, in the presence
of spin-orbit coupling, an additional spin component is
involved in the calculated effective value of the matrix
element. This is a result of the slight change in the en-
ergy of the electrons when the backscattered momentum
is not perfectly anti-parallel, but rather deviates by a
small vector q. The ensuing variation in energy ∆E(q),
considered small when compared with the energy uncer-
tainty in the collision process h̄/τ0, depends simultane-
ously on the two spin states of the electrons before and
after the collision, which are considered uncorrelated. In
a perturbative approach that involves a power expansion
in ∆E(q)τ0/h̄, the renormalization is done through the
eigenvalues of an operator, called the Cooperon, acting
in the 4-dimensional space associated with the two spin
1/2 particles. The eigenvalues of this operator then yield
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FIG. 1. Cooperon terms around the PSH symmetry α = β,
with singlet (S) and triplet (T0, T±) states all in the same,
generic Landau level |n〉. (a) Energy of the Cooperon eigen-
states as functions of kx, the Cooperon momentum along x̂
which fixes the center of the orbit. The S and T0 states are
located at kx and become degenerate at α = β and β3 = 0.
T+ and T− are degenerate, but since the orbits are separated
by 2Q+ there is no coupling between them, giving WL. Note
there is no coupling to other Landau levels. (b) Energies of
the eigenstates in one Landau level as a function of the ratio
of α/β. The full curves correspond to the case where the cu-
bic term is zero and all states are degenerate at α = β and
WL is observed. The dashed lines correspond to the states,
when the cubic term is strong, then S and T0 state are not
degenerate at α = β giving WAL even at α = β.

the corrections to the conductivity when summed over
all the changes q and spin channels.

The possible total-spin states formed correspond either
to total angular momentum J = 0, the singlet S, or to the
total angular momentum J = 1, the triplet states T0 and
T±, labeled after the values of Jz = 0,±1. The associated
four eigenvalues make up the quantum corrections in a
system with SO coupling. The singlet is antisymmetric
under the exchange of the incident and scattered spins,
leading to an additional minus sign, thereby making the
singlet contribution positive and, thus, responsible for
the antilocalization contribution to the conductivity. The
triplet states, on the other hand, are all symmetric and
contribute negatively to the conductivity upon backscat-
tering, thus making up the localization contribution to
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the conductivity.

If a magnetic field is applied, the electron energy is
quantized in Landau levels (LL) of index n. In this case,
the magnetoconductivity corrections are evaluated from
a properly normalized sum that incorporates all the spin
channels in all LL. The interplay between the Landau
level quantization and the action of the SO coupling in
determining the WL contribution in the α = β regime is
illustrated in Fig. 1(a). For any given Landau level |n〉,
we plot the energy of the orbit with respect to the singlet
state and indicate the values of the Cooperon wave vector
kx along x̂, which fixes the center of the orbit.

The coupling between the triplet modes decreases so
much when α ' β that it can be considered independent
in a first order approximation, as we show in the Ap-
pendix Eq. (24). This is a consequence of the electron
spins becoming polarized along the ẑ direction under the
action of an effective magnetic field ∼ (α+ β), an orien-
tation that is left unchanged by the scattering process.
In the vicinity of this high spin-symmetry point, the or-
bits of the triplet states are all separated in momentum
space with T+ located at kx − Q+, T0 at kx and T−
located at kx + Q+, where Q+ = 2m∗

h̄2 (α + β). The en-
ergy of the orbits with the T± states is proportional to
((α− β)2 + 3β2

3)/2, while that of the state T0 is propor-
tional to (α − β)2 + β2

3 , as shown in Fig. 1(a). The four
associated eigenstates are written in the tensor product
space between the LL representation and the total angu-
lar momentum representation as |n〉

⊗
|J, Jz〉. The cor-

responding Cooperon wave vector kx is introduced in the
position representation of |n〉.

Although the energies of the parallel spin modes T±
are equal, the misalignment along kx with the center or-
bits separated by exactly 2Q+ precludes any coupling
between these modes. This situation corresponds to the
separation in the momentum space of the two Fermi pop-
ulations of up and down spin electrons by Q+, that be-
come spin polarized by an effective magnetic field pro-
portional to (α+ β) [27]. (The Cooperon is composed of
two electrons, so the single particle states are separated
in the momentum space by Q+.) The remaining modes
with Jz = 0, whose orbits are located at kx, generate op-
posite sign contributions to WL. Exactly at α = β and
β3 = 0 they cancel, leading to the disappearance of the
WAL. In Fig. 1(b) we illustrate how the states in the same
Landau level evolve as a function of α/β for zero cubic
term (full curves) and finite cubic term (dashed curves),
which highlights the role played by the cubic Dresselhaus
term, lifting the degeneracy at α = β such that the T0

and S state no longer fully cancel, giving WAL even at
α = β.

In the Appendix, we outline the major steps for the
calculation (with further details in the SM) Here, we
give only the result of the closed-form expression for the
conductivity correction ∆σ(B⊥) in a magnetic field B⊥,

expressed in terms of the digamma function Ψ,

∆σ(B⊥) =− e2

4π2h̄

[
Ψ

(
1

2
+
Bϕ
B⊥

)
+ 2 ln

Btr

B⊥

− 2Ψ

(
1

2
+
Bϕ
B⊥

+
BSO− + 3BSO3

2B⊥

)
−Ψ

(
1

2
+
Bϕ
B⊥

+
BSO− +BSO3

B⊥

)]
.

(5)

The coherence time τϕ and transport time τtr define two
characteristic fields, the dephasing fieldBϕ and the trans-
port field Btr, which are given by

Bϕ =
h̄

4eDτϕ
, (6a)

Btr =
h̄

4eDτtr
, (6b)

with D the diffusion constant in 2D.
The form of Eq. (5) is very similar to the one from

Hikami, Larkin and Nagaoka [38], but now the arguments
in the digamma functions contain the linear Rashba and
Dresselhaus terms as well as the cubic Dresselhaus term,
via the effective magnetic fields BSO− and BSO3. These
are defined as

BSO± =
h̄

4e

(
2m∗

h̄2 (α± β)

)2

, (7a)

BSO3 =
h̄

4e

(
2m∗

h̄2 β3

√
τ3
τ1

)2

, (7b)

where h̄ the reduced Planck constant and e the elemen-
tary charge. The contribution of the cubic Dresselhaus
term β3 is represented in Equation (7b), multiplied by
the square root of the ratio of the backscattering time τ1
and its third harmonic τ3 which arises due to the higher
angular harmonics of the Dresselhaus term in the SO
Hamiltonian [41, 48] (see Eq. (S4) in SM). We note that
Eq. 5 is valid for BSO+ � BSO−, and thus is not valid for
α = 0 or β = 0, where the result of Refs. [41, 48, 49] ap-
plies, e.g. Eg. (37) in Ref. [49]. Further, when α = β = 0,
Eq. (39) in Ref. [49] results, with similar mathematical
structure to Eq.(5) here, but Eq. (5) is not valid in this
case.

In modulation doped structures, the doping layer is set
back from the 2D electron gas. Compared to doping in-
corporated inside the quantum well, this creates a softer,
longer range scattering potential for the electrons with
more prevalent small angle scattering [65, 66]. For the
ratio of scattering times, the range of possible values is
1/9 ≤ τ3/τ1 ≤ 1, where 1/9 corresponds to dominant
small angle scattering [49] and 1 indicates short range
scattering (isotropic). Equation (5) is valid in the diffu-
sive regime, where B⊥ � Btr and naturally requires weak
SO coupling. This is assuming that the spins are precess-
ing only by a small angle in a time τtr, corresponding to
the condition BSO± � Btr.
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FIG. 2. Magnetoconductance curves in the regime close to
the spin helix symmetry as given by Eq. (5). The black traces
correspond to α = β. Left panel: Spin orbit coupling causes a
quench of the WL (dip less deep) before WAL appears (dashed
red traces). Right panel: For a strong cubic term, WAL ap-
pears even at α = β and is defined by the WAL trace with
the WAL minima closest to B⊥ = 0

In Fig. 2 we plot the magnetoconductance according to
Eq. (5) with and without the cubic Dresselhaus term. As
we vary the Rashba strength α while keeping the renor-
malized Dresselhaus term β constant, the conductivity
traces transition from WAL (red traces) to WL (black
trace), where α = β. We note that the absence of WAL
alone (red dashed and black traces, left panel) does not
uniquely identify the PSH symmetry point. Rather, the
most pronounced WL curve (black trace) with the deep-
est and sharpest dip indicates realization of the PSH
point. Some small amount of SO coupling (cubic and/or
linear terms) away from the symmetry point quenches
WL, reducing the depth and sharpness of the WL dip
without the appearance of WAL, i.e. a maximum of con-
ductivity at zero field. A lower coherence time has a
similar effect, also reducing the depth of the WL dip,
and can be difficult to separate from the effects of weak
SO coupling [67–69]. If a sufficiently strong cubic term
is present, WL is suppressed and WAL appears even at
α = β (black trace), where the position of the WAL min-
ima (indicated by the dashed blue curve) are closest to
B⊥ = 0.

III. EXPERIMENT

A. Control of Spin Orbit Parameters

We will now discuss the different constituents of
Eq. (7a) and Eq. (7b) and how they relate to experimen-

tal adjustable parameters. Electric fields, doping and the
interface of the heterojunction result in a confining po-
tential, which causes structure inversion asymmetry and
is the origin of the Rashba effect [24]. Its strength α can
be tuned as a function of the electric field [16, 17] and is
parameterized in our QW as follows

α = α0 + α1δEz, (8)

where α0 is a sample specific offset and α1 accounts for
the effect of the induced electric field detuning δEz com-
ing from the voltages applied to the top and back gates
(see Eq. (30) in the Appendix). The Dresselhaus SO in-
teraction [25] is characterized by the renormalized linear
Dresselhaus strength β, which reads

β = β1 − β3 = γ

(
〈k2
z〉 −

k2
F

4

)
, (9)

where β1 = γ〈k2
z〉 and β3 = 1

4γk
2
F is the cubic Dressel-

haus term, with γ being the bulk Dresselhaus material co-
efficient. As the Fermi momentum k2

F = 2πn depends on
the density n, the renormalized Dresselhaus strength be-
comes controllable via gate voltages, which has recently
been demonstrated [23]. Over the range of the applied
gate voltages 〈k2

z〉 is effectively constant.

B. Evaluation procedure

In the experiment, we first extract the cubic term and
phase coherence where the linear terms cancel but the cu-
bic term already breaks spin symmetry. Then, we detune
the linear terms away from equal size and can extract
their strength as well, again from fits to the new theory.
We control the strength of the SO parameters α and β
with the top gate voltage VT and the back gate voltage
VB . As described in the previous paragraphs, these pa-
rameters depend on density n and the detuning δEz. To
obtain a more useful parameter space, we measure the
density as a function of VT and VB and obtain a density
map, shown in Fig. 3, with contours of constant density,
along which the detuning δEz changes. We note that for
sufficiently negative back gate and positive top gate volt-
ages, the contours of constant density become non-linear,
which limits the usable range of δEz and n. The range of
the density is further limited by the requirement that the
cubic Dresselhaus term β3, which depends on density, be
large enough, such that BSO3 causes WAL even at the
PSH symmetry.

The PSH symmetry points are indicated by the purple
markers in Fig. 3 and their position is estimated from the
conductivity traces with the least pronounced WAL fea-
ture. This can be done, since along contours of constant
density only BSO− changes as a function of δEz and BSO3

remains constant, as scattering potentials are thought to
not change τ3/τ1 significantly for constant density. The
gate configurations where conductivity traces were mea-
sured are indicated by the gray circles in Fig. 3. At the
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FIG. 3. Density map with symmetry points (purple trian-
gles) as a function of top VT and back gate VB voltage for
data set #2 (see supplementary [70] for details). Along con-
tours of constant density (labeled in units of 1015m−2), BSO−
is changing as a function of detuning δEz, while BSO3 is con-
stant. The gray circles indicate the measured gate configura-
tions. The triangles correspond to the approximate position
where α = β and the purple line corresponds to a plot of the
calculated PSH condition from the extracted SO parameters.
Eq. (5) is valid everywhere between the red dashed lines.

gate configurations around the symmetry point, BSO−
is very small and is set to zero when fitting Eq. (5) to
the data, where only Bϕ and BSO3 are the fit param-
eters (see Appendix Sec. D and supplemental material
[70] Sec. III.A). The transport field Btr is known from
independent Hall measurements of density n and mobil-
ity µ. Since the symmetry point is not precisely known,
we determine BSO3 very similarly at the surrounding gate
configurations and take the average value, thus obtaining
a more robust value for BSO3.

In Fig. 4(a), we show typical fits (red) to the measured
(black) conductivity traces around the symmetry point.
The agreement between fit and theory is very good for
B⊥ � Btr, where Btr is indicated by the dashed gray
curve. The extracted fit parameters BSO3 (red trian-
gles) and Bϕ (blue triangles) are shown as a function of
density in the upper panel of Fig. 4(b). A quadratic fit
(see Eq. (7b)) to the BSO3 data finds good agreement,
see red dashed line. At low temperatures, Nyquist de-
phasing dominates [71] and τ−1

ϕ ∝ TλF /le, with T be-
ing the electron temperature, λF the Fermi wavelength
and le the mean free path. Here, the electron tempera-
ture is ∼100 mK estimated independently [72, 73]. Since
Bϕ ∝ τ−1

ϕ , we can express Bϕ in terms of density and
mobility via the above expression for τϕ. This is shown
with the blue curve, reproducing the trend of the ex-
tracted Bϕ quite well. For n < 7×1015cm−2, indicated
by the dashed black line in Fig. 4 b), we observe that the
conductivity traces in Fig. 4 a) no longer show a WAL
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FIG. 4. (a) Measured conductivity traces (black) around the
symmetry point and fits (red) using Eq. (5) with the respec-
tive density labeled at each trace in units of 1015m−2. The
measured traces have been symmetrized in B⊥ for fitting.
The gray dashed curves correspond to the fit range obeying
B⊥ � Btr. (b) Upper panel : extracted BSO3 values versus
density. The red dashed curve is a quadratic fit to BSO3. The
blue markers and curve correspond to the extracted and cal-
culated Bϕ (see main text). Middle panel : extracted τ3/τ1
using the later to be determined γ for each individual value
of BSO3 from the upper panel. The red dashed line is the
average of τ3/τ1. Lower panel : coherence time from the ex-
tracted Bϕ for the respective density and mobility. The red
dashed curve is a fit to the data assuming Nyquist dephasing.
For the two lowest densities 6.0 and 6.5 (left of the dashed
vertical line), the extracted values of BSO3 and Bϕ are only
bounds, see text.

feature and that BSO3 ≤ Bϕ. Thus for densities to the
left of the black dashed line, the extraction of a mean-
ingful value for BSO3 and Bϕ is no longer possible and
only an upper bound can be determined.

Using the value of Bϕ, we can also determine the coher-
ence time τϕ for each density, which is shown in the lower
panel of Fig. 4(b). The coherence time is of the order of
1 ns, which is a value expected in GaAs 2D electron gases
at mK temperatures [54, 74, 75]. The red dashed curve
shows the dependence of τϕ on density, calculated also
for Nyquist dephasing, in qualitative agreement with the
data. This allows us to keep τϕ constant along contours
of constant density as the mobility change of ∼10 % is
smaller than the error on τϕ.

We now proceed with the evaluation away from the
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FIG. 5. Measured traces away from α ≈ β. (a) Fits (green)
to the conductivity traces (black) for constant density n =
9.25× 1015m−2 in Fig. 3. The gray dashed lines indicate the
range for the diffusive approximation. Each curve is labeled
with its detuning value δEz. (b) Extracted values of BSO−
versus the detuning δEz for all densities (arranged vertically
and labeled in units of 1015m−2 for each BSO− curve). The
error bars correspond to the error on the fit parameter (i.e.
one standard deviation). The data in the gray shaded area is
included in the fit.

PSH symmetry by keeping BSO3 and τϕ fixed for each
density, thus facilitating the extraction ofBSO− as a func-
tion of the detuning δEz. In Fig. 5(a) we show the fits
(green) to the conductivity traces along constant density,
finding good agreement of the fit with the data. We re-
peat this for all densities with the respective values of τϕ
and BSO3 as previously determined. This delivers a full
data set of BSO− as a function of the density n and the
detuning δEz. Rewriting Eq. (7a) with the expressions of
α and β (see Eq. (8) and Eq. (9)) we obtain

BSO− ∝
(
A+ α1δEz +

1

2
πγn

)2

, (10)

with the fit parameters α1 and γ and A = α0 − γ〈k2
z〉.

Thus, the extracted values of BSO− are expected to follow
a parabolic shape, which is also seen in Fig. 5(b). Some
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<α0>~1.2        Ref. [23]

<γ>=11.5±1 here
<γ>=11.6±1 Ref. [23]

 Experiment
 Ref. [23]

a b

dc

FIG. 6. SO parameters from 5 measurements obtained on 2
samples. Measurements 1 and 3 correspond to Hall bar no. I
and measurements 2,4 and 5 correspond to Hall bar no. II,
where measurement 5 is from another cool down, details in
supplementary [70] Sect. II. The blue lines correspond to the
values obtained in a previous work [23], the red lines corre-
spond to their average and the red dashed lines correspond
to the standard deviation of the mean. (a) Dresselhaus co-
efficient γ (b) offset α0 of the Rashba parameter, (c) α1 of
the Rashba parameter and (d) average scattering time ratio
τ3/τ1.

deviations from a parabola are apparent, which are due to
the non-linear dependence of the density on gate voltages
(see Fig. 3). We exclude such data from the fit. The gray
shaded area indicates the data points included in the fit –
the fit mask – considering the validity of the theory and
using only the linear region of gate voltage parameter
space, see Fig. 3 and Appendix Sec. E. The non linear
behavior can be seen for larger detunings as the effect of
δEz weakens and the BSO− parabolas become stretched.

The resulting fit to the data is shown in Fig. 5(b) (blue
curve), in good agreement with the data within the fit
mask and directly yields A, α1 and γ. Self consistent
simulations give a value for 〈k2

z〉 [23], allowing us to de-
termine the Rashba offset parameter α0 from A.

C. Determination of the SO parameters

In Fig. 6 we show the results from 5 independent mea-
surements obtained from 2 Hall bar samples on the same
quantum well material (see supplementary [70] Sect. II).
Panels (a) through (c) show the fitted values for γ, α0

and α1, with their average (red lines) and standard de-
viation of the mean (red dashed lines). Data sets vary in
exact position and especially in number of points mea-
sured per density, resulting in varying fit values and as-
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sociated error bars. To work from the largest possible
set of data available we simply include all these inde-
pendent measurements in the analysis. The complete
data sets can be seen on display in the supplementary
[70]. The blue lines correspond to the respective values
obtained recently from the same wafer material in a pre-
vious study [23] with a different method.

We note that the reported values of γ in quantum
transport over the last 30 years ranged from ∼ 4-28
eVÅ3 [54, 76]. The values of γ = 28 eVÅ3 are close to
the literature value, which is obtained from k · p calcu-
lations. However, electronic bandstructure calculations
in k · p approximation or with density functional the-
ory tend to give inaccurate SO parameters because these
calculations neglect either the many body interactions or
contain too many parameters which have to be assumed.
In recent years, self consistent numerical calculations in-
cluding the cubic Dresselhaus term were combined with
experiments [23, 43], giving values γ ∼ 9-11.5 eVÅ3.
These results are confirmed by state of the art single
particle GW approximations, calculating the self-energy
of a many body system of electrons [77] or density func-
tional theory with density dependent exchange potentials
[78]. These results agree very well with our average of
11.5± 1 eVÅ3 and also recent works using optical spin
excitation [34, 42, 44].

The offset parameter α0 accounts for SO coupling from
the electric fields of the charges in the doping layer and
the potential of the Hartee term and is a sample specific
parameter. It can be calculated via self-consistent meth-
ods [23, 61, 79], which is identical with the average of
the extracted value. Finally, the Rashba field parameter
α1 has an average value of around 9.4 eVÅ2 which can
also be calculated purely from band structure parame-
ters in a quantum well [79] giving 9.2 eVÅ2, very close to
previously extracted values [23] and ours.

With the previously determined values of BSO3, we
can now extract the value of τ3/τ1 using Eq. (7b) and
the now known value of γ. Assuming τ3/τ1 being con-
stant over the range of measured densities, allows us to
extract τ3/τ1 from the quadratic fit to the BSO3 data,
shown in the upper panel of Fig. 4(b). The fit parameter
is proportional to γτ3/τ1 and turns out to be almost the
same for all measurements and yields the values shown
in Fig. 6(d) by supplying the respective value of γ from
each measurement. Since τ3/τ1 ∝ 1/γ2, smaller values
of γ yield a larger τ3/τ1, see data points #3 and #4 in
Fig. 6(d). From the BSO3(n) data we can also determine
τ3/τ1 as a function of density n, using the extracted γ,
which is shown in the middle panel of Fig. 4(b). The
values barely change over the range of measured densi-
ties and its average value of ∼ 0.2 agrees with the one
extracted from the fit to BSO3. Overall, the extracted
values of τ3/τ1 are around 0.3, much smaller than 1, in-
dicating that small angle scattering dominates [49], as
expected for a modulation doped structure.

IV. CONCLUSION

By introducing a new in-plane spin quantization axis at
the PSH symmetry point, we notice the full decoupling
of the Landau Levels and, to lowest order, the triplets
of the Cooperon modes also become fully independent.
This elegantly simplifies the calculation and provides a
simple, closed-form expression for the quantum correc-
tions in the vicinity of the PSH symmetry α = β, which
includes the Rashba and linear Dresselhaus terms, as well
as the cubic Dresselhaus term. The calculation fully ac-
counts for Landau level quantization and provides a new
paradigm of localization in the weakly broken spin sym-
metry regime. We test the new expression against ex-
periment and find excellent agreement. Further, we have
studied how breaking of the PSH symmetry by a slight
mismatch of the linear terms or by the cubic term allows
to quantify the various SO parameters in a GaAs QW.
We directly obtain fundamental SO parameters such as
the Dresselhaus coefficient γ and the Rashba parameter
α1, which are in good agreement with recent calculations
and experiments.

The good agreement of the extracted SO parameters
based on this theory with results obtained in Ref. 23 is
an excellent indicator that the new model accurately de-
scribes the quantum corrections in the vicinity of the PSH
symmetry and can be used as a tool in future studies,
whenever Rashba and Dresselhaus SO strengths are com-
parable. Moreover, when the SO parameters extracted
here are employed in the general solution given in Ref. 63,
experimental data obtained for α/β ∈ [0, 0.5] is matched
with remarkable accuracy. The capability to extract all
relevant SO parameters from quantum transport exper-
iments – obtained from fits to closed-form expressions
– opens the door to engineer and control the SO inter-
action as a useful resource in novel quantum materials
such as tailored spin textures, Majorana fermions and
parafermions. Further, it can be used to coherently ma-
nipulate spins in emerging quantum technologies such as
spintronics and quantum computation. This technique is
also applicable in other materials where the symmetry-
broken PSH regime is accessible.
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VI. APPENDIX: MATERIALS AND METHODS

A. Formalism to calculate quantum corrections

Here, we highlight the most relevant results from the
formalism to calculate the quantum corrections. The full
procedure to calculate the Cooperon and its eigenvalues
is shown in detail in the supplementary materials (SM)
[70]. Our starting point is the general expression con-
necting the quantum corrections to the conductivity ∆σ
and the Cooperon eigenvalues Ci(q),

∆σ = −2e2Dτ2
0 ν0

h̄2

∑
q,i

Ci(q) . (11)

To determine the relevant singlet and triplet Cooperon
modes (i = 0, 1, 2, 3), we start with the impurity medi-
ated equation for the Cooperon amplitude Cp,p′(q)

Cp,p′(q) = |Vp,p′ |2

+
∑
p′′

|Vp,p′′ |2G+
−p′′+h̄q,ε+h̄ωG

−
p′′,εCp′′,p′ .

(12)

The Cooperon amplitude above represents the effective
interaction vertex which renormalizes the impurity scat-
tering potential Vp,p′ . It iteratively includes all higher-
order processes (multiple scattering events) involving the
scattering off of impurities of two electrons following
time-reversed paths described by the retarded and ad-
vanced impurity-averaged propagators G±. We solve
Eq. 12 via an iterative procedure by expanding the
Cooperon ampliture in its angular harmonics and in the
limit h̄q � p (since h̄q = p + p′ and p′ ≈ −p). Af-
ter some lengthy but straightforward calculation (SM)
we find for the relevant zeroth-order harmonic of the
Cooperon amplitude

C
(0)
p,p′(q) =

|Vp,p′ |2

τ0H
. (13)

The operator H in the denominator of the Cooperon is

H = Dq2 +
1

τϕ
+D

{[
Q2

+ +Q2
3

]
J2
z +

[
Q2
− +Q2

3

]
J2
x

+ 2Q+qzJx − 2Q−qxJz} , (14)

where Jx,z are the total spin angular momentum compo-
nents and

Q± =
2m∗

h̄2 (α± β) , (15)

Q3 =
2m∗

h̄2

(
β3

√
τ3
τ1

)
. (16)

We can now diagonalize the Cooperon operator in
Eq. (13), a matrix in the basis of the total angular mo-
mentum of the two spins, and obtain the quantum cor-
rection from Eq. (11). In what follows, we carry out this
procedure for the case in the presence of a quantizing
magnetic field B⊥ relevant for the experimental probing
of the weak- (and anti-) localization corrections to the
conductivity. As described in detail in the SM, in this
case we need to switch to a real space description. This
is so because in the presence of a magnetic field we ap-
proximate the propagators by simply multiplying their
zero-field counterpart by a vector potential (A) depen-
dent phase [40]

G̃±(r, r′) = e
ie
h̄

∫ r′
r

A(l)·dlG±(r, r′) . (17)

This standard procedure leads to the change H → H̃
with

H̃(r, r′) = ei
2e
h̄

∫ r′
r

A(l)·dlH(r, r′) , (18)

in the denominator of the zeroth-order Cooperon oper-
ator; the Fourier transform of H(r, r′) at zero magnetic
field is given by Eq. (14).

We solve the generalized eigenvalue problem,∫
ei

2e
h̄ A·(r′−r)H(r, r′)ψ(r′)dr′ = Eψ(r) , (19)

with suitable expansions of the integrand in powers of
∆r = r′−r� l and define the canonical transformation,

−i∇z =
√

2eB⊥
h̄

(a−a†)
i
√

2
, (20)

z + z0 = 1√
2eB⊥

h̄

(a+a†)√
2

, (21)

with z0 = kxh̄/2eB⊥ (kx is the Cooperon wave vector
along x̂). a and a† are bosonic operators, i.e. [a, a†] = 1
that describe the quantization of the Landau levels. We
thus obtain the characteristic equation in the number
representation,{

1

τϕ
+D

(
Q2

+ +Q2
3

)
J2
z +

(
Q2
− +Q2

3

)
J2
x

−DQ+Jz

√
4eB⊥
h̄

(a+ a†)− iDQ−Jx

√
4eB⊥
h̄

(a− a†)

+ D

(
4eB⊥
h̄

)(
a†a+

1

2

)}
|u〉 = E|u〉 , (22)

where |u〉 is the corresponding eigenket.
In the basis of the total spin angular momentum as-

sociated with the 4-dimensional tensor product of the
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two spin operators of the electrons in time-reversed path,
we evaluate the singlet and triplet Landau eigenvalues
Ẽn,i = En,i/(4DeB⊥/h̄) of the Cooperon (i = 0 corre-
sponds to the singlet state and i = 1, 2, 3 label the triplet
state).

The singlet J = 0, Jz = 0 solution of the Cooperon
equation is immediately factored, as it is diagonal both
in the spin and Landau level spaces. With these, the

single Cooperon mode generates an eingenvalue for the
n-th Landau level given by,

Ẽn,0 = n+
1

2
+
Bϕ
B⊥

. (23)

The remaining triplet equation, from Eq. (22), is writ-
ten in the basis of J = 1, Jz = {1, 0, 1} in terms of the
effective magnetic fields from Eqs. (6a)-(7b) as

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Bϕ

B⊥
+ BSO+

B⊥
+ BSO−+3BSO3

2B⊥
−i
√

BSO−
2B⊥

(a− a†) BSO−+BSO3

2B⊥

+a†a+ 1
2 −

√
BSO+

B⊥
(a+ a†)− Ẽ

−i
√

BSO−
2B⊥

(a− a†) Bϕ

B⊥
+ BSO−+BSO3

B⊥
+ a†a+ 1

2 − Ẽ −i
√

BSO−
2B⊥

(a− a†)

BSO−+BSO3

2B⊥
−i
√

BSO−
2B⊥

(a− a†) Bϕ

B⊥
+ BSO+

B⊥
+ BSO−+3BSO3

2B⊥

+a†a+ 1
2 +

√
BSO+

B⊥
(a+ a†)− Ẽ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0 . (24)

In the limit of α ≈ β, BSO− � BSO+, as well as
BSO3 � BSO+, leading to a justified cancellation of all
off-diagonal terms proportional with BSO− or BSO− +
BSO3 in Eq. (24). Then, by redefining the canonical
transformations to operators a, a† are modified to incor-
porate the additional translation proportional to Q+,

−i∇z =
√

2eB⊥
h̄

(a−a†)
i
√

2
,

z + z0 ∓
h̄Q+

2eB⊥
= 1√

2eB⊥
h̄

(a+a†)√
2

, (25)

where − corresponds to Jz = 1 and + to Jz = −1. Then
each mode can be diagonalized independently generating
the following triplet eigenvalues,

Ẽn,1 = Ẽn,2 = n+ 1
2 +

Bϕ

B⊥
+ BSO−+3BSO3

2B⊥
, (26)

Ẽn,3 = n+ 1
2 +

Bϕ

B⊥
+ BSO−+BSO3

B⊥
, (27)

Within the same approximation, the associated eigen-
states are written in the tensor product space between
the LL and the total angular momentum representations
as |n〉

⊗
|J, Jz〉. Because the modes are obtained from

three different canonical transformations, Eq. (21) for
Jz = 0, and Eq. (25) for Jz = ±1, the corresponding
orbit center in the position representation is determined
by the Cooperon wave vector kx for Jz = 0 and kx ∓Q+

for Jz = ±1 respectively. The difference 2Q+ between
the centers of the parallel-spin Cooperon configurations
corresponds to the Q+ separation between the kx mo-
menta of the single-particle states associated with the
α = β regime [27]. (The Cooperon has a charge 2e vs.
the single particle states of charge e, hence the halving
of the momentum translation along x̂.)

Phenomenologically, this situation corresponds to a de-
creased coupling between the triplet modes within the

same Landau level as the scattering processes do not in-
volve any spin-flipping. The original orientation of the
incident particle is preserved as the electron population
becomes polarized by the effective field BSO+ along the
ẑ axis.

After angular integration, Eq. (11) is properly modi-
fied to account for the magnetic field, i.e., 1

2π

∫
qdq →

1
4π

4eB⊥
h̄

∑
n, and the quantum corrections to the con-

ductivity ∆σ(B⊥) in the presence of a magnetic field are
obtained,

∆σ(B⊥) ∼ −
nm∑
n=0

∑
i=0,3

1

Ẽn,i

=

nm∑
n=0

{
2

n+ 1
2 +

Bϕ

B⊥
+ BSO−+3BSO3

2B⊥

+
1

n+ 1
2 +

Bϕ

B⊥
+ BSO−+BSO3

B⊥

− 1

n+ 1
2 +

Bϕ

B⊥

}
.

(28)

By using the general identity

nm∑
n=0

1

n+ a
=

nm∑
n=0

1

n+ a
−

nm∑
n=1

1

n
+

nm∑
n=1

1

n

= −
nm∑
n=1

a− 1

n(n+ a− 1)
+ C + lnnm

= −Ψ(a) + lnnm , (29)

(C is the Euler constant), we obtain Eq. (5). This is the
main theoretical result of our work and essential for the
two-stage fitting procedure used to accurately determine
all the spin-orbit couplings presented here. We emphasize
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that the closed form expression for ∆σ(B⊥) in Eq. (5)
contains not only the Rashba, but also the linear and
cubic Dresselhaus terms.

B. GaAs Quantum Well Materials

The sample is a modulation-doped 11 nm thick
GaAs/AlGaAs quantum well, grown by molecular beam
epitaxy on a (001) n-doped substrate with two symmet-
rically placed δ doping layers, each set back 12 nm from
the quantum well. The highly n-doped substrate serves
as a back gate by incorporating a 600 nm thick low tem-
perature grown GaAs barrier, which pins the Fermi level
midgap [80]. This reduces the effective distance dB from
the QW to the back gate and increases the available range
of gate voltages. Using wet etching, two identical Hall
bars were defined with a Ti/Au gate of 300× 100µm2 on
top. The 2DEG is contacted with thermally annealed low
resistance GeAu/Pt contacts. The annealing parameters
were carefully determined to achieve decent contact to
the 2D gas without short circuiting the back gate. The
top and back gate architecture allows us to keep the den-
sity in the QW constant, while changing the electric field
detuning δEz, which can be calculated in terms of the
distances effective dT and dB and gate voltages VT and
VB of the top- and back gate, using a simple plate capac-
itor model. The detuning then reads [23]:

δEz =
1

2

(
VT
dT
− VB
dB

)
. (30)

The back gate range is [-3 ,1 ] V and [-0.3 ,0.6 ] V for
the top gate, corresponding to a density range of
[3 ,12 ]×1015m−2, and mobility range [2 ,14 ] m2/Vs. In-
dividual density and mobility maps are shown in the sup-
plementary [70].

C. Measurement Technique

We perform the experiments in a 3He-4He dilution re-
frigerator with a base temperature of 20 mK. We measure

in a standard four-wire lock-in configuration with a time
constant of 100 ms and a current bias of 100 nA, chosen
to avoid self-heating, which can reduce the coherent part
of the signal. After setting the gate voltages for each
gate configuration gates were given 20 minutes to stabi-
lize. To observe a clear WL/WAL signal each trace was
measured at least 10-20 times and averaged.

D. Symmetry Point Determination and Value of
BSO3

To obtain a value of BSO3, the symmetry point (i.e.
α = β) has to be determined first. For this we per-
form fits to the measured conductivity traces for all
gate configurations along constant density, but replace
the SO fields in the argument of Eq. (5) with B∗SO ∝
(α−β)2 +BSO3 and the extracted value of B∗SO will show
a minima at α = β and we can locate the approximate
position of the symmetry point for each density, where we
can then estimate the value of BSO3 (see supplementary
[70], Sec. III).

E. Fit Mask

The fit mask ensures that the data points included
are described by Eq. (5) and have the correct δEz. We
exclude data from the gate configurations in the non-
linear region of the density map (see Fig. 3), where the
contours for VB <∼ −1V, start to bend. This bending
corresponds to a change in the effective distance dB to the
back gate, which we use to calculate the detuning δEz.
We suspect unpinning of the Fermi level to be the reason
for this change in dB . For more positive gate voltages
we exclude data from gate configurations, where the fit
to the conductivity traces no longer matches the data.
This gives a lower bound on the validity of Eq. (5) and
agrees quite well with the condition BSO− � BSO+ (see
red dashed lines in Fig. 3).
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[33] P. S. Eldridge, J. Hübner, S. Oertel, R. T. Harley,
M. Henini, and M. Oestreich, Spin-orbit fields in asym-
metric (001)-oriented GaAs/AlxGa1−xAs quantum wells,
Physical Review B 83, 041301 (2011).

[34] M. P. Walser, U. Siegenthaler, V. Lechner, D. Schuh,
S. D. Ganichev, W. Wegscheider, and G. Salis, De-
pendence of the Dresselhaus spin-orbit interaction on
the quantum well width, Physical Review B 86, 195309
(2012).

[35] J. Ishihara, Y. Ohno, and H. Ohno, Direct Imag-
ing of Gate-Controlled Persistent Spin Helix State in
a Modulation-Doped GaAs/AlGaAs Quantum Well, Ap-
plied Physics Express 7, 013001 (2013).

[36] Y. Kunihashi, H. Sanada, H. Gotoh, K. Onomitsu,
M. Kohda, J. Nitta, and T. Sogawa, Drift transport of he-
lical spin coherence with tailored spin-orbit interactions,
Nature Communications 7, 10722 (2016).

[37] B. Das, D. C. Miller, S. Datta, R. Reifenberger, W. P.
Hong, P. K. Bhattacharya, J. Singh, and M. Jaffe, Ev-
idence for spin splitting in InxGa1−xAs/In0.52Ga0.48As
heterostructures for B → 0, Physical Review B 39, 1411
(1989).

[38] S. Hikami, A. I. Larkin, and Y. Nagaoka, Spin-Orbit In-
teraction and Magnetoresistance in the Two Dimensional
Random System, Progress of Theoretical Physics 63, 707
(1980).

[39] B. L. Al’tshuler, A. G. Aronov, A. I. Larkin, and D. E.
Khmel’nitskii, Anomalous magnetoresistance in semicon-
ductors, Journal of Experimental and Theoretical Physics
54, 411 (1981).

[40] B. L. Altshuler, D. Khmel’nitzkii, A. I. Larkin, and
P. A. Lee, Magnetoresistance and Hall effect in a dis-
ordered two-dimensional electron gas, Physical Review B
22, 5142 (1980).

[41] F. G. Pikus and G. E. Pikus, Conduction-band spin
splitting and negative magnetoresistance in A3B5 het-
erostructures, Physical Review B 51, 16928 (1995).

http://dx.doi.org/ 10.1103/PhysRevLett.107.136603
http://dx.doi.org/10.1103/PhysRevLett.105.077001
http://dx.doi.org/10.1103/PhysRevLett.105.077001
http://dx.doi.org/ 10.1103/PhysRevLett.105.177002
http://dx.doi.org/ 10.1103/PhysRevLett.105.177002
http://dx.doi.org/10.1103/RevModPhys.76.323
http://dx.doi.org/10.1103/RevModPhys.76.323
http://dx.doi.org/10.1103/PhysRevA.57.120
http://dx.doi.org/10.1103/RevModPhys.79.1217
http://dx.doi.org/ 10.1146/annurev-conmatphys-030212-184248
http://dx.doi.org/ 10.1146/annurev-conmatphys-030212-184248
http://dx.doi.org/10.1103/PhysRevB.55.R1958
http://dx.doi.org/10.1103/PhysRevLett.78.1335
http://dx.doi.org/10.1103/PhysRevLett.78.1335
http://dx.doi.org/10.1126/science.283.5410.2056
http://dx.doi.org/ 10.1103/PhysRevLett.84.6074
http://dx.doi.org/ 10.1103/PhysRevLett.84.6074
http://dx.doi.org/ 10.1103/PhysRevLett.89.046801
http://dx.doi.org/ 10.1103/PhysRevLett.89.046801
http://link.aps.org/doi/10.1103/PhysRevB.86.081306
http://link.aps.org/doi/10.1103/PhysRevB.86.081306
http://dx.doi.org/10.1063/1.4944931
http://dx.doi.org/10.1063/1.4944931
http://dx.doi.org/10.1103/PhysRevX.7.031010
http://dx.doi.org/10.1103/PhysRevX.7.031010
http://dx.doi.org/ 10.1103/PhysRev.100.580
http://dx.doi.org/ 10.1103/PhysRevLett.90.146801
http://dx.doi.org/ 10.1103/PhysRevLett.90.146801
http://dx.doi.org/10.1103/PhysRevLett.97.236601
http://dx.doi.org/10.1103/PhysRevLett.97.236601
http://dx.doi.org/10.1038/nature07871
http://dx.doi.org/ 10.1038/nature02202
http://dx.doi.org/ 10.1038/nature02202
http://dx.doi.org/10.1038/nphys675
http://dx.doi.org/10.1038/nphys675
http://dx.doi.org/10.1103/PhysRevLett.103.027201
http://dx.doi.org/10.1103/PhysRevLett.103.027201
http://dx.doi.org/ 10.1103/PhysRevB.83.041301
http://dx.doi.org/ 10.1103/PhysRevB.86.195309
http://dx.doi.org/ 10.1103/PhysRevB.86.195309
http://dx.doi.org/10.7567/APEX.7.013001
http://dx.doi.org/10.7567/APEX.7.013001
http://dx.doi.org/10.1038/ncomms10722
http://dx.doi.org/10.1103/PhysRevB.39.1411
http://dx.doi.org/10.1103/PhysRevB.39.1411
http://dx.doi.org/10.1143/PTP.63.707
http://dx.doi.org/10.1143/PTP.63.707
http://www.jetp.ac.ru/cgi-bin/e/index/e/54/2/p411?a=list
http://www.jetp.ac.ru/cgi-bin/e/index/e/54/2/p411?a=list
http://dx.doi.org/10.1103/PhysRevB.22.5142
http://dx.doi.org/10.1103/PhysRevB.22.5142
http://dx.doi.org/10.1103/PhysRevB.51.16928


13

[42] M. P. Walser, C. Reichl, W. Wegscheider, and G. Salis,
Direct mapping of the formation of a persistent spin helix,
Nature Physics 8, 757 (2012).

[43] J. J. Krich and B. I. Halperin, Cubic Dresselhaus Spin-
Orbit Coupling in 2D Electron Quantum Dots, Physical
Review Letters 98, 226802 (2007).
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