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Radiative heat transfer between bodies at the nanoscale can surpass blackbody limits on thermal radiation
by orders of magnitude due to contributions from evanescent electromagnetic fields, which carry no energy
to the far-field. Thus far, principles guiding explorations of larger heat transfer beyond planar structures have
assumed utility in surface nanostructuring, via enhancement of the density of states, and the possibility that
such design paradigms can approach Landauer limits, in analogy to conduction. Here, we derive fundamental

shape-independent limits to radiative heat transfer, applicable in near- through far-field regimes, that incorporate
material and geometric constraints such as intrinsic dissipation and finite object sizes, and show that these pre-
clude reaching the Landauer limits in all but a few restrictive scenarios. Additionally, we show that the interplay
of material response and electromagnetic scattering among proximate bodies means that bodies which maximize
radiative heat transfer actually maximize scattering rather than absorption. Finally, we compare our new bounds

to Landauer limits as well as limits that ignore the interplay between material and geometric constraints, and
show that these prior limits lead to overly optimistic predictions. Our results have ramifications for the ultimate
performance of thermophotovoltaics and nanoscale cooling, as well as incandescent and luminescent devices.

The concept of a blackbody, derived from electromagnetic
reciprocity (or detailed balance), has provided a benchmark
of the largest emission rates that can be achieved by a heated
macroscopic object: through nanoscale texturing, gray ob-
jects can be designed in myriad ways to mimic the response
of a blackbody at selective wavelengths,1–6 with implications
for a variety of technologies, including high-efficiency so-
lar cells, selective emitters, and thermal sensors.7 Over the
past few decades, motivated by potential applications to ther-
mophotovoltaics,8–11 nanoscale cooling,12 and thermal mi-
croscopy,13,14 much effort has gone toward understanding
analogous limits to enhancements of near-field radiative heat
transfer (RHT),15–18 supported by a rich and growing num-
ber of experimental6,19–21 and theoretical22–26 investigations.
A key principle underlying further near-field RHT enhance-
ments is the use of materials supporting bound (plasmon and
phonon) polaritons in the infrared, where the Planck distri-
bution peaks at typical temperatures probed in experiments.
This leads to strong subwavelength responses tied to corre-
sponding enhancements in the density of states;4,27–29 con-
sequently, the amplified near-field RHT spectrum exhibits a
narrow lineshape, justifying focus on selective wavelengths.
However, while the properties of such polaritons, particularly
their resonance frequencies, associated densities of states, and
scattering characteristics can be modified through nanoscale
texturing, only recently have computational methods23–25,30–32

arisen to model RHT between bodies of arbitrary shapes be-
yond high-symmetry cases.26,33–35 Furthermore, the challenge
of gaining simultaneous control over the scattering properties
of large numbers of contributing surface waves has generally
precluded general upper bounds on RHT.

RHT between two bodies A and B in vacuum is given as

P =

ˆ ∞

0

|Π(ω, TB)−Π(ω, TA)|Φ(ω) dω, (1)

in terms of the Planck function Π(ω, T ) =
~ω/[exp(~ω/(kBT )) − 1] evaluated at the local tem-
peratures TA and TB, and the spectral function Φ(ω),
which can be enhanced by changing material and geometric

properties through the creation of resonances and changes
in the electromagnetic density of states. In particular,
nanostructuring metallic surfaces or polar dielectrics makes it
possible to tailor resonances in the infrared, such that peaks
of the spectrum Φ may coincide with the peak of the Planck
distribution near room temperature. It remains an open
question, however, to what extent the peak value of Φ itself at
any given frequency ω may be enhanced through appropriate
geometric and material choices, as well as what such optimal
structures should be.

Previous attempts at deriving bounds on RHT have primar-
ily focused on extended media,15–17,36 showing that at least for
translationally invariant structures, Φ can be expressed as the
trace of a “transmission” matrix whose singular values (cor-
responding to evanescent Fourier modes) each contribute a fi-
nite flux, bounded above by a Landauer limit in analogy with
conduction.37,38 Aside from being restricted to planar geome-
tries, these bounds turn out to be either pessimistic,17 ignor-
ing the large densities of states that can arise in nanostruc-
tured and low-loss materials, or too optimistic,15,16 ignoring
any constraints imposed by Maxwell’s equations and assum-
ing instead that all such Fourier modes, up to an unrealistic
cutoff on the order of the atomic scale, can saturate the flux.15

From a design perspective, Landauer limits present a hurdle
as they rely on ad-hoc estimates of the number and relative
contribution of radiative modes/channels, which depend on
specific material and geometric features. More recent works
have derived complementary material limits on electromag-
netic absorption in subwavelength regimes,39 showing that ab-
sorbed power in a medium of susceptibility χ increases in
proportion to an “inverse resistivity” material figure of merit,
|χ|2/ Imχ, in principle diverging with increasing indices of
refraction and decreasing dissipation. Saturation of these
bounds for a subwavelength absorber in the quasistatic regime
can generally be achieved through the strong polarization cur-
rents arising in resonant media supporting surface plasmon or
phonon polaritons. These arguments have been extended to
near-field RHT18 by exploiting energy conservation and reci-
procity, finding the upper bound of Φ at a polariton resonance
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to scale quadratically with |χ|2/ Imχ. While near-field RHT
between dipolar objects can attain these bounds in a dilute
limit, such a universal scaling has yet to be observed in large-
area structures. This naïvely suggests room for improvement
in Φ through nanostructuring via enhancements in the den-
sity of states or equivalently, via saturation of modal contri-
butions, yet trial-and-error explorations and optimization pro-
cedures40,41 have failed to produce nanostructured geometries
that bridge this gap, leading to the alternative possibility that
existing bounds are too loose.

In this paper, we derive new algebraic bounds on RHT, valid
in the near-, mid-, and far-field regimes, through analysis of
the singular value decompositions of relevant response quanti-
ties. In contrast to prior limits, our bounds incorporate the in-
terplay of constraints imposed by material losses and geomet-
ric radiative effects between bodies, and are therefore tighter.
In particular, every channel of energy transmission is shown to
be generally prohibited from saturating its Landauer limit, in
contrast to predictions based on modal decompositions15–17,36

that neglect material properties and are most applicable in the
ray optics regime. Furthermore, the growth of RHT with de-
creasing material dissipation is shown to be strongly limited
by radiative losses, in contrast to predictions based on energy-
conservation limits to material response18 that neglect finite-
size scattering effects between bodies and are thus tightest in
the quasistatic regime. In upcoming papers closely related to
this one, we apply these bounds to various scenarios of inter-
est, providing predictions of the maximum RHT achievable
in compact and extended geometries,42 and deriving related
bounds on far-field thermal emission from single bodies in
isolation.43

I. HEAT TRANSFER DEFINITIONS

For two bodies A and B in vacuum [Fig. 1], the spectral
function Φ appearing in (1) represents the average power ab-
sorbed in B due to fluctuating current sources in A , depicted
in Fig. 1, and is reciprocal (invariant under interchange of A
and B). Using operator notation, this average absorbed power
can be written in terms of the susceptibilities Vp, the vacuum
Maxwell Green’s function Gvac

pq , and scattering T-operators
Tp, for p, q ∈ {A,B}. For local homogeneous isotropic me-
dia, each susceptibility is written as Vp = χpIp, where Ip is
the projection onto the space of body p. The vacuum Maxwell
Green’s function Gvac solves [(c/ω)2∇× (∇×)− I]Gvac = I

in all space, and its blocks are denoted as Gvac
pq for sources in

body q propagating fields to body p. Finally, the T-operators
Tp = (V−1

p −Gvac
pp )−1 represent the total induced polarization

moment in body p due to a localized field of unit magnitude
incident upon it. All of these quantities are reciprocal, so they
are equal to their unconjugated transposes in position space:
Vp = V⊤

p , Tp = T⊤
p , and Gvac

pq = (Gvac
qp )⊤. This means that

Hermitian conjugation is equivalent to complex conjugation:
V†

p = V⋆
p, T†

p = T⋆
p, and (Gvac

pq )† = Gvac⋆
qp . Additionally, we

may define these operators in the combined space of the two

χ
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Figure 1. Two bodies labeled A and B exchange heat in vacuum.
Each body could be compact or of infinite extent in at least one spa-

tial dimension, and for given susceptibilities χp, the optimal struc-
tures may be quite complicated, but the upper bounds, which de-
pend on ζp = |χp|

2/ Im(χp), can be evaluated in simpler bounding
domains that enclose each object while respecting any other design
constraints present.

bodies in 2× 2 block matrix form as

Gvac =

[

Gvac
AA Gvac

AB

Gvac
BA Gvac

BB

]

(2)

V−1 =

[

V−1
A 0
0 V−1

B

]

(3)

from which the overall T-operator is defined as

T−1 =

[

T−1
A −Gvac

AB

−Gvac
BA T−1

B

]

(4)

in terms of the individual T-operators. Finally, we note that all
of these quantities depend on frequency ω, though this will be
suppressed for the sake of notational brevity.

Given these definitions and relations (see Appendix C for
details), the RHT spectrum can be written as26

Φ =
2

π
Tr[T⋆

B(IB −Gvac⋆
BA T⋆

AG
vac⋆
AB T⋆

B)
−1 Im(V−1⋆

B )×

TB(IB −Gvac
BATAG

vac
ABTB)

−1×
Gvac

BATA Im(V−1⋆
A )T⋆

AG
vac⋆
AB ], (5)

where Im(A) = (A − A⋆)/(2 i) and Asym(A) = (A −
A†)/(2 i) for any operator A; if A is reciprocal, then
Asym(A) = Im(A). This expression is manifestly recipro-
cal in A and B, and treats the T-operators of A and B on an
equal footing, linked only by the Green’s function Gvac

BA prop-
agating fields in vacuum from one body to the other. However,
it is possible to write this spectrum more suggestively in terms
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of operator combinations that hide this reciprocity in order to
more strongly link this expression to absorbed and emitted
powers. In particular, Φ may be rewritten as

Φ =
2

π
Tr[Y⋆

B Im(V−1⋆
B )YBG

vac
BATA Im(V−1⋆

A )T⋆
AG

vac⋆
AB ],

(6)
in terms of the reciprocal operator YB = TBS

A
B , which is

in turn written in terms of the scattering operator SAB =
(IB − Gvac

BATAG
vac
ABTB)

−1. Essentially, YB is a new “dressed
T-operator” describing absorption and scattering in B in the
presence of A, just as the bare T-operatorsTp describe absorp-
tion and scattering from each body p ∈ {A,B} in isolation.

The assumption that the susceptibility in each body p ∈
{A,B} is homogeneous, uniform, and isotropic, yields the

identity Im(V−1⋆
p ) =

Im(χp)
|χp|2

Ip. For convenience, we denote

ζp =
|χp|

2

Im(χp)
as the “material response factor”. Using this, we

write the RHT spectrum as

Φ =
2

πζAζB
‖YBG

vac
BATA‖2F (7)

where ‖A‖2F = Tr(A†A) denotes the Frobenius norm for any
operator A.

As we show in Appendix C, the RHT spectrum may alter-
natively be written as

Φ =
2

π
‖Q‖2F (8)

in terms of the transmission operator Q =
Im(VB)

1/2GBA Im(VA)
1/2, which in turn depends on

the total Green’s function GBA = V−1
B TBS

A
BG

vac
BATAV

−1
A

connecting dipole sources in body A to total fields in body
B and accounting for multiple scattering to all orders within
and between both bodies. This obeys a Landauer limit, as
the singular values of Q†Q do not exceed 1/4, so including
the prefactor 2/π, the contribution of each mode/channel in
the trace expression to Φ does not exceed 1

2π . Our goal is to
explain the conditions under which the Landauer bounds for
each of these contributions may be saturated.

II. SINGULAR VALUE BOUNDS

We derive upper bounds on Φ starting from (6) by making
liberal use of the singular value decomposition for the rele-
vant operators and associated bounds on the trace of products
of operators. To start, in Appendix B, we prove the lemma
that the largest real positive value for the trace of a product of
operators occurs when those operators share singular vectors
and when their fixed singular values are each arranged in a
consistent order. This will be useful to bound (6), though the
connection is more subtle as we wish to vary the singular val-
ues of some of the operators involved, and the extent to which
those singular values can vary is restricted by physical con-
straints requiring nonnegative far-field scattered power. Once
it is established that the proof in Appendix B is applicable, we
vary the singular values of relevant operators to maximize the
upper bound on Φ, which we call Φopt.

A. Constraints on nonnegative far-field scattering

As we have cast (6) as an absorption quantity that is guaran-
teed to be nonnegative, the most relevant physical constraints
are that far-field scattering from each individual body, and for
the system as a whole in turn, must be nonnegative. In gen-
eral, given a susceptibility V and an associated T-operator T,
the far-field scattered power from a given incident field |Einc〉
is ω

2 〈Einc, (Im(T) − T⋆ Im(V−1⋆)T)Einc〉, and for this to

be nonnegative, the operator Im(T) − T⋆ Im(V−1⋆)T must
be positive-semidefinite. This must hold true for each body
in isolation, meaning Im(Tp) − T⋆

p Im(V−1⋆
p )Tp is likewise

positive-semidefinite for each p ∈ {A,B}, and reciprocity
means that Im(Tp) − Tp Im(V−1⋆

p )T⋆
p must also be positive-

semidefinite. As the following derivations make clear, this
condition is most relevant for body A, meaning that

〈

Einc,

[

Im(TA)−
1

ζA
T⋆
AT

⋆
A

]

Einc

〉

≥ 0 (9)

for every incident field |Einc〉, after using Im(V−1⋆
A ) = 1

ζA
IA.

Further conditions become relevant when the two bodies are
proximate to each other.

As a first step, we show that the operator YB = (T−1
B −

Gvac
BATAG

vac
AB)

−1 = TBS
A
B is an effective T-operator for body

B dressed by the proximity of body A. In particular, refer-
ring to Appendix C, the definitions (3) and (4) can be plugged
into (C5) and rearranged in order to write

|PB〉 = YB(G
vac
BATAV

−1
A |P(0)

A 〉+ V−1
B |P(0)

B 〉).

If only sources in A are relevant, then we may set

|P(0)
B 〉 → 0 and define an effective incident field |Einc(A)〉 =

Gvac
BATAV

−1
A |P(0)

A 〉 which depends on multiple scattering
within A but not on any properties of B apart from projec-
tion onto its volumetric degrees of freedom. This means that
|PB〉 = YB|Einc(A)〉, which is interpreted to mean that the
total induced polarization in B arises from the response of B
dressed in the presence of A, namely YB, acting on the effec-
tive incident field |Einc(A)〉 accounting only for body A; this
is analogous to TB which relates the total polarization induced
in B to incident fields in vacuum.

Given this and the fact that |EB〉 = V−1
B |PB〉 af-

ter setting |P(0)
B 〉 → 0, the scattered power only from

body B (in the presence of body A) may be written as
the difference between extinction and absorption powers
only from body B (in the presence of body A), namely
ω
2

(

Im(〈Einc,PB〉)− 〈EB,PB〉
)

= ω
2 〈Einc, (Im(YB) −

Y⋆
B Im(V−1⋆

B )YB)E
inc〉. Nonnegativity of this quantity

for any |P(0)
A 〉, or more generally any |Einc〉, means that

Im(YB)− Y⋆
B Im(V−1⋆

B )YB must be positive-semidefinite.
Moreover, nonnegativity of far-field scattering from the

system in general means that upon evaluating the inverse
of (4), the operator Im(T)−T Im(V−1⋆)T⋆ must be positive-
semidefinite, which means in turn that each of its diagonal
blocks must be positive-semidefinite. Manipulating operators
allows for showing that the bottom-right block is Im(YB) −
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YB

(

Im(V−1⋆
B ) +Gvac

BATA Im(V−1⋆
A )T⋆

AG
vac⋆
AB

)

Y⋆
B,

which involves another positive-semidefinite operator
(as Im(V−1⋆

A ) is positive-semidefinite and is multiplied
on its left and right by operators which are Hermitian
adjoints of each other) subtracted from the operator
Im(YB) − Y⋆

B Im(V−1⋆
B )YB. Therefore, Im(YB) −

YB

(

Im(V−1⋆
B ) +Gvac

BATA Im(V−1⋆
A )T⋆

AG
vac⋆
AB

)

Y⋆
B is

positive-semidefinite, which can be written more explicitly as
the condition

〈

Einc, Im(YB)E
inc

〉

−
〈

Einc,YB

(

1

ζB
IB +

1

ζA
Gvac

BATAT
⋆
AG

vac⋆
AB

)

Y⋆
BE

inc

〉

≥ 0

(10)

for every incident field |Einc〉, where we have used
Im(V−1⋆

p ) = 1
ζp
Ip. Equation 10 yields stronger bounds on

the singular values of YB than the positive-semidefiniteness
of Im(YB) − 1

ζB
Y⋆

BYB alone, because the former also sub-

tracts the absorption in body A in the presence of body B,
whereas the latter does not.

B. Optimization of singular values

With the constraints in (9) and (10) in mind, we define the
operatorA ≡ Gvac

BATAT
⋆
AG

vac⋆
AB so that (6) may be rewritten as

Φ = 2
πζAζB

Tr[YBAY
⋆
B] and (10) may be rewritten as the con-

dition that the operator Im(YB) − YB

(

1
ζB
IB + 1

ζA
A

)

Y⋆
B be

positive-semidefinite. The reason for this is as follows. The
proof in Appendix B depends on the singular values being
fixed and independent of the singular vectors, whereas an ar-
bitrary grouping of operators might have variable singular val-
ues whose constraints depend on the singular vectors. How-
ever, we take the singular values of Gvac

BA as fixed, and while
we choose to vary the singular values of TA, the constraints
on those singular values from (9) are independent of the vari-
ous singular vectors or values of other operators. In particular,
reciprocity of TA allows for writing the singular value decom-
position TA =

∑

i τi|ai〉〈a⋆i | where 〈ai, aj〉 = δij . Thus, if
the singular values τj are appropriately set, the assumptions
in Appendix B remain valid. We choose to write the singu-
lar decomposition A =

∑

j αj |bj〉〈bj |, so (10) implies that

Φ = 2
πζAζB

Tr[YBAY
⋆
B] ≤ 2

πζB
Tr

[

Im(YB)− 1
ζB
YBY

⋆
B

]

.

From this, we can immediately see that the right-hand side is
maximized if YB = i Im(YB) is purely anti-Hermitian, as any
nontrivial Hermitian part increases the magnitude of the nega-
tive contribution relative to the positive contribution. More-
over, while the right-hand side is basis-independent, it can
be evaluated in the singular value basis {|bi〉} of A, so the
overall sum (trace) is guaranteed to be maximized when each
individual contribution is maximized: the constraint in (9) is
evaluated for a particular |bi〉 as 1

ζA

∑

j αj |〈bj ,YBbi〉|2 ≤
〈bi, Im(YB)bi〉− 1

ζB

∑

j |〈bj ,YBbi〉|2, and so the right-hand

side is maximized for each channel i if YB has {|bj〉} as
its right singular vectors. Thus, the proof in Appendix B

is indeed applicable, and reciprocity then allows us to write
the singular value decomposition YB =

∑

j yj|b⋆
j 〉〈bj |,

where 〈bi,bj〉 = δij and 〈bj ,b
⋆
j 〉 = i for each channel

j. In this basis of singular vectors, we may write Φ ≤
2

πζAζB

∑

j αjy
2
j , and the constraint in (9) can be written as

yj − y2j (ζ
−1
B + ζ−1

A αj) ≥ 0, so yj ≤ 1
ζ−1

B
+ζ−1

A
αj

. Satu-

rating the inequality on yj means we may write the bound
Φ ≤ 2

πζAζB

∑

j
αj

(ζ−1

B
+ζ−1

A
αj)2

, and then optimize each αj to

maximize the bound itself.

Returning to the definition of A, the bound on Φ can po-
tentially be largest when the singular values αj of A have
the largest possible range from which optimal values may
be chosen, and this occurs when TA shares its left singular
vectors {|aj〉} with Gvac

BA. This in turn combines with the
structure of A to ensure that its singular vectors {〈bj |} are
in fact the left singular vectors of Gvac

BA. Thus, we rewrite
αi = (giτi)

2, where gi are the singular values of Gvac
BA, so that

Φ ≤ 2
πζAζB

∑

j
(gjτj)

2

(ζ−1

B
+ζ−1

A
(gjτj)2)2

. As the singular values gj

are fixed, we then optimize the singular values τj to maximize
this upper bound for each channel j. The constraints on the
singular values τj from (9) are loosest when TA = i Im(TA)
(purely anti-Hermitian), implying that its singular vectors sat-
isfy 〈a⋆j , aj〉 = i for each channel j. Hence, Equation 9 yields
the constraint τj ≤ ζA for each channel j.

The contribution of each channel j to the upper bound on
Φ is maximized at the Landauer limit of 1

2π if τj =
1√

ζ−1

A
ζBgi

is chosen, which requires
√
ζAζBgi ≥ 1 in order for τi ≤ ζA

to hold; this also corresponds to yj = ζB
2 . We interpret this

to mean that to obtain optimal heat transfer, the T-operator of
body A in isolation must be engineered in a way that depends
on the presence of body B, due to both the presence of the
material response factor ζB and the dependence on the singu-
lar values gj of Gvac

BA (propagating electromagnetic fields in

vacuum from A to B). In turn, the expression yj = ζB
2 means

that the effective T-operator of body B dressed by scattering
from body A must actually exhibit maximal scattering, and
not absorption, in the presence of body A,39 though it is more
difficult to extract information about the implications for the
T-operator of body B in isolation. Importantly, maximal scat-
tering includes both far-field scattering from body B in the
presence of body A, as well as absorption from body A in the
presence of body B. If these two conditions can be met si-
multaneously for the given channel j, which is effectively a
rate-matching condition relating the absorption and scattering
rates of each body in the presence of the other, then the per-
channel Landauer transmission upper bound 1

2π is achieved.

Otherwise, if
√
ζAζBgi < 1, then τi = ζA must be used to

maximize the contribution, which yields
2ζAζBg2

i

π(1+ζAζBg2

i
)2

< 1
2π ,

and corresponds to yi = ζB
1+ζAζBg2

i

≥ ζB
2 . We interpret this

to mean that if the singular value gi of Gvac
BA falls below a

threshold involving the two material response factors, then the
optimal T-operator of body A in isolation corresponds to max-
imal absorption, and the optimal effective T-operator of body
B dressed by body A evinces the effects of multiple scattering
with A. The contribution to Φ similarly shows the effects of
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multiple scattering between the two bodies and is unable to
saturate the Landauer bound for that channel.

C. Generality of singular value bounds

To summarize, the bound on RHT may be written as

Φ ≤ Φopt =
∑

i

[ 1

2π
Θ(ζAζBg

2
i − 1)

+
2

π

ζAζBg
2
i

(1 + ζAζBg2i )
2
Θ(1− ζAζBg

2
i )
]

(11)

where Θ is the Heaviside step function. This bound depends
intimately on the interplay between material response factors
ζp for p ∈ {A,B} and the singular values gi of Gvac

BA, which
we term “radiative efficacies” as they describe the magnitudes
of coupling between natural bases of currents in bodies A and
B via propagation of EM fields. As the material response (en-
coded in ζAζB) increases, progressively more channels may
saturate the Landauer limit per channel, so that the Landauer
limit (summed over all channels) is reached asymptotically as
ζAζB → ∞. However, the rate at which this divergence oc-
curs depends on the general geometry of the problem, as that
determines how the radiative efficacies gi depend on the index
i. We use the term “material-limited contributions” to refer to
the terms 2

π
ζAζBg2

i

(1+ζAζBg2

i
)2

, for ζAζBg
2
i < 1, which do not satu-

rate the Landauer limit for those channels.

We emphasize that while the singular values gi of Gvac
BA are

technically restricted to the domains of the objects to give the
tightest bound on heat transfer, such a restriction is less than
ideal given the explicit dependence on the shapes of the ob-
jects. However, as we prove in Appendix D, the singular
values gi of Gvac

BA are domain monotonic, meaning that they
increase monotonically as the volumes of regions A and B
increase; consequently, Φopt is domain monotonic, as it is
monotonically nondecreasing with respect to gi for each i.
Separately from this, the regions containing only the material
degrees of freedom of each body can be replaced by larger
regions that fully enclose each body, as the T-operators of
each body will commute with projections into the smaller sub-
spaces corresponding to the actual material degrees of free-
dom. Thus, these bounds can be slightly loosened to be in-
dependent of body shapes, and can then be evaluated subject
to constraints on topology and domain volumes as determined
by the desired application [Fig. 1], e.g. ellipsoids with pre-
scribed aspect ratios or films of prescribed thicknesses repre-
sentative of compact or extended object shapes, respectively.
Essentially, the effective rank of Gvac

BA, which determines the
number of modes that could participate in RHT, is largely de-
termined by the size and topology of the choice of bounding
surface, which represents a general and fundamental geomet-
ric constraint on the bounds of RHT analogous to the general
material constraints imposed by ζp for each body p ∈ {A,B};
our bounds in turn capture the coupling between both con-
straints.

III. COMPARISON TO ALTERNATIVE BOUNDS

The bound for the RHT spectrum Φ in (11) may be com-
pared to a number of other bounds. Strictly speaking, Φopt

is not necessarily the tightest general bound that could be for-
mulated. In particular, using the relation T−1

A = V−1
A −Gvac

AA
allows for writing (6) in terms of TA and Im(Gvac

AA) without
reference to VA. Such a procedure, in analogy with bounds
on thermal emission which we detail in an upcoming paper,43

would more explicitly capture far-field radiative losses from
bodies of finite size, which becomes more relevant at large
separations where such losses may compete with RHT itself.
However, as we show in Appendix E, we find the resulting
bound to be intractable, requiring self-consistent solution of
systems of nonlinear equations to find the optimal singular
values of TA. Therefore, we do not further consider such a
bound, and henceforth refer only to (11).

With respect to prior work, the most obvious point of com-
parison is the Landauer bound,15 namely

ΦL =
∑

i

1

2π
, (12)

which simply depends on the number of modes participating
in RHT, without any reference to separation, geometric or ra-
diative constraints, or even material constraints, let alone their
interplay; consequently, in contrast to our bounds, there is no
metric to evaluate how many participating modes can actually
saturate the limit 1

2π . Even modal analyses that technically
do not necessarily assume saturation of the Landauer limits
for every mode15–17,36 tend to neglect material effects, so the
purely geometric arguments are valid only in the ray-optical
regime where blackbody limits are reproduced. Thus, it is
clear that Φopt ≤ ΦL.

We also compare to the bound found by Miller et al,18 tight
only in the quasistatic regime, written as

Φqs =
∑

i

2

π
ζAζBg

2
i (13)

which we term the “quasistatic bound”. This is derived by lim-
iting the singular values of YB such that only the total scatter-
ing of body B in the presence of body A needs to be nonnega-
tive, meaning Im(YB)−Y⋆

B Im(V−1⋆
B )YB should be positive-

semidefinite; this leads to the bound yi ≤ ζB, so maximiza-
tion of Φ subject to that constraint as well as τi ≤ ζA simply
requires saturation of both of these constraints. The domain
monotonicity of this bound trivially follows from that of gi
for each channel i, and the validity of the embedding argument
with respect to Tp still holds, meaning that Φqs is also a useful
bound for the RHT spectrum when considering bounding sur-
faces of arbitrary size and topology. However, we have shown
that positive-semidefiniteness of Im(YB)−Y⋆

B Im(V−1⋆
B )YB,

corresponding to nonnegative total scattering from body B
in the presence of body A, is a looser constraint on yi
than nonnegativity of scattering from the system as a whole,
corresponding to positive-semidefiniteness of Im(YB) −
YB

(

Im(V−1⋆
B ) + Gvac

BATA Im(V−1⋆
A )T⋆

AG
vac⋆
AB

)

Y⋆
B: the for-

mer constraint says that only the sum of far-field scattering
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from B and absorption in A needs to be nonnegative for B
in the presence of A, whereas the latter constraint says that
far-field scattering from B in the presence of A needs to be
nonnegative by itself after discounting absorption in A. In this
way, Φopt accounts not only for material constraints on each
body but also on the interplay with constraints on radiation
between the bodies given their geometries and separations,
whereas Φqs accounts for each constraint separately without
considering the interplay; for this reason, the contribution to
Φopt per channel is bounded from above, whereas the con-
tribution to Φqs per channel may be unbounded. The contri-
bution from each channel to Φopt is also bounded above by
the corresponding contribution to Φqs for that channel, which
implies Φopt ≤ Φqs overall.

We may write the overall inequalities as

Φopt ≤ Φqs,ΦL. (14)

In general, it is not possible to write an inequality relation
between Φqs and ΦL in all situations, because Φqs may have
some contributions 2

π ζAζBg
2
i which fall above or below 1

2π ,
and the geometry determining gi would have to be known in
order to know how many fall above or below. This is now a
moot point though as we now have a bound that is at least as
tight as each of those bounds.

IV. CONCLUDING REMARKS

We have determined bounds for the RHT spectrum Φ based
purely on algebraic arguments. In particular, we have shown
that there is a tension between optimizing transmission chan-
nels and material/geometric constraints placed on each object
in isolation as well as in in the presence of the other. As a
result, a select number of channels can saturate previously
derived Landauer bounds, while others are restricted by the
aforementioned constraints. By virtue of domain monotonic-
ity, these bounds can be applied in a shape-independent man-
ner, so while they can be evaluated analytically in highly sym-
metric bounding surfaces, they can just as easily be evaluated
numerically in more complicated domains depending on spe-
cific design constraints [Fig. 1]. Similarly, the dependence on
the material response factor ζ = |χ|2/ Imχ does not make
explicit reference to a particular frequency or material model.
In comparison, the Landauer bounds yield overly optimistic
predictions, while choosing a scalar response for each object
corresponding to maximal absorption of every incident field
in isolation yields overly pessimistic predictions. Addition-
ally, we find that previous work by Miller et al18 also yields
overly optimistic predictions compared to our current bounds,
because those derivations neglect the interplay between mate-
rial and geometric radiative constraints between the two bod-
ies and consequently overestimate the optimal response of one
body in the presence of the other. We point out that while our
bounds are always at least as tight as Landauer and quasistatic
limits for any given bounding domain, they say nothing about
which domains may yield the tightest per-volume limits given
material constraints, or whether they may in fact be attained

by physically realizable structures. In summary, while qua-
sistatic and Landauer limits are technically upper bounds on
RHT, their neglect of the coupling between radiative geomet-
ric constraints and material losses in both cases (and of each
constraint itself in the latter case) render them loose compared
to the bounds presented here. We further emphasize that in
contrast to quasistatic limits,18 which can become unphysi-
cally loose and diverge beyond the near-field for extended ge-
ometries, our bounds are valid and could be tighter from the
near-field all the way through the far-field for bodies of arbi-
trary size: no nonretarded or quasistatic approximations are
made, and the saturation of contributions per channel at the
Landauer limit constitutes a greater promise of a finite bound.

In a complementary paper,42 we analyze these bounds in the
near-field in specific geometries of interest, particularly high-
symmetry domains enclosing dipolar as well as extended (in-
finite area) bodies. There, we find that Φopt either saturates or
increases very slowly compared to the rapid increase in Φqs as
a function of ζAζB, and that the material-limited contributions
to Φopt, representing the feasible energy transfer spectrum for
high-symmetry homogeneous isotropic media at a polariton
condition, comes very close to Φopt for practically achiev-
able material response factors. These findings suggest that the
role of nanostructuring in enhancing the near-field RHT spec-
trum above results achievable in high-symmetry objects made
of appropriately-chosen polar dielectric materials will be lim-
ited, and this has important implications for the theoretical
and experimental design of devices for cooling, heat dissipa-
tion, and energy generation. Additionally, we apply similar
ideas to upper bounds on thermal emission (see Appendix C)
in a separate work.43
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Appendix A: Notation

We briefly discuss the notation used through the main
text and the appendices. A vector field v(x) will be de-
noted as |v〉. The conjugated inner product is 〈u,v〉 =
´

d3x u⋆(x) · v(x). An operator A(x,x′) will be denoted
as A, with

´

d3x′ A(x,x′) ·v(x′) denoted as A|v〉. The Her-

mitian conjugate A† is defined such that 〈u,A†v〉 = 〈Au,v〉.
The anti-Hermitian part of a square operator (whose do-
main and range are the same size) is defined as the operator
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Asym(A) = (A− A†)/(2 i). Finally, the trace of an operator
is Tr(A) =

´

d3x Tr(A(x,x)). Through this paper, unless
stated explicitly otherwise, all quantities implicitly depend on
ω, and such dependence will be notationally suppressed for
brevity.

Appendix B: Proof of von Neumann trace inequality

In this section, we reproduce the proof of a trace inequal-
ity by von Neumann44 for clarity. The lemma is as fol-
lows: if operators An for n ∈ {1, 2, . . . , N} have fixed

singular values labeled σ
(n)
i , then the singular vectors that

maximize Tr[A1A2 . . .AN ] are common between operators
multiplied together. That is, the singular value decomposi-

tion of An should follow An =
∑

i σ
(n)
i |a(n)i 〉〈a(n+1)

i | for

n ∈ {1, 2, . . . , N − 1}, with AN =
∑

i σ
(N)
i |a(N)

i 〉〈a(1)i |,
where the vectors |a(n)i 〉 are orthonormal for each n such that

〈a(n)i , a
(n)
j 〉 = δij . This lemma will hold even if each An

is not square, as long as AnAn+1 forms a valid nontrivial
operator product, as these can be embedded in larger spaces
padded with more vanishing singular values. Thus, we restrict
our consideration to square operators. Moreover, associativity
means AnAn+1An+2 = (AnAn+1)An+2, and the trace of a
product of operators is invariant under cyclic permutations, so
we ultimately only consider maximizing the trace of a product
of two operators, as maximization of the trace of products of
more than two operators follows inductively from this.

To maximize Tr[AB], assuming it to be real and nonnega-
tive, we start by writing

A =
N
∑

i=1

σi|ui〉〈vi| (B1)

B =

N
∑

j=1

τj |wj〉〈yj | (B2)

where N is the size of the space; this may be larger than
the rank of either A or B, but the point is moot because the
singular values are fixed, whether they vanish or not, and
it has already been assumed that A and B are square. We
also assume that the singular values are ordered such that
σi ≥ σi+1 for all i ∈ {1, 2, . . . , N − 1} and τj ≥ τj+1 for all
j ∈ {1, 2, . . . , N − 1}. This allows for writing

Tr[AB] =

N
∑

i=1

N
∑

j=1

σipijτjqji (B3)

in terms of pij = 〈vi,wj〉 and qji = 〈yj ,ui〉. As the singu-
lar vectors are orthonormal, then pij and qji are the elements

of unitary matrices, satisfying
∑N

j=1 |pij |2 =
∑N

i=1 |pij |2 =
∑N

j=1 |qji|2 =
∑N

i=1 |qji|2 = 1. As Tr[AB] is assumed to
be real and nonnegative, it is maximized when σipijτjqji are
all nonnegative; this means the singular vectors can be chosen
without loss of generality such that pij and qji are real and

nonnegative, implying pij and qji are the elements of real-
valued orthogonal matrices.

We use induction to prove that maximizing the trace re-
quires that {|ui〉} be the duals of {〈yj |}, and that {〈vi|}
by the duals of {|wj〉}. The case N = 1 is trivial, as
all quantities are scalars. For N = 2, we use orthogonal-
ity to note that p1,2 = p2,1, q1,2 = q2,1, p1,1 = p2,2 =
√

1− p21,2, and q1,1 = q2,2 =
√

1− q21,2. As a result, we

may write Tr[AB] =
√

(1− p21,2)(1− q21,2)(σ1τ1 + σ2τ2) +

p1,2q1,2(σ1τ2+σ2τ1). As the first term in parentheses is larger
than the second term in parentheses by the nonnegative value
(σ1 − σ2)(τ1 − τ2) given the ordering of singular values, hav-
ing the left singular vectors of one operator not be duals of the
right singular vectors of the other and vice versa could only

increase the trace if
√

(1− p21,2)(1− q21,2) + p1,2q1,2 > 1,

but this leads to the impossible condition 0 > (p1,2 − q1,2)
2,

so we can only have p1,2 = q1,2 for the trace to be maximized,
implying the duality result must hold.

The inductive step assumes an arbitrary N − 1 and moves
from there to proving the statement for N . Without loss of
generality, we consider first the contribution of the largest
singular value τ1 of B, namely τ1|w1〉〈y1|, interacting with
A =

∑

i σi|ui〉〈vi| in the trace. This yields the contribution
∑

i(pi,1− q1,i)
2 = 2 (1−∑

i pi,1q1,i) ≥ 0 using the fact that
∑

i p
2
i,1 =

∑

i q
2
1,i = 1, so this in turn gives the condition

∑

i pi,1q1,i ≤ 1. The trace can be seen to be maximal when
the above condition is saturated, so

∑

i pi,1q1,i = 1, which
implies pi,1 = q1,i for every i. As this also holds when the
roles of A and B are interchanged, and as this can be progres-
sively carried out for each successively smaller singular value
given orthonormality of the singular vectors, then the duality
condition must hold, completing the proof.

Appendix C: Derivation of radiative heat transfer formulas

In this section, we derive the formula for the radiative
heat transfer spectrum between two bodies, without assump-
tions about retardation, homogeneity, locality, or isotropy.
The formula depends on individual T-operators and the vac-
uum Green’s function, and follows a previous derivation45

which considered energy transfer by fluctuating volume cur-
rents. Through further derivation, we also equate this for-
mula to another formula involving the susceptibilities and the
full Maxwell Green’s function, and use that to recast the heat
transfer spectrum in a Landauer form, whence we prove that
the singular values of the Landauer transmission operator for
RHT do not exceed 1/4. Finally, we prove that the formula
for thermal emission of a single body in isolation can be de-
rived from the formula for RHT between two bodies in vac-
uum, by taking the second body to fully enclose the first and
to be perfectly absorbing, thus taking on the role of a perfectly
absorbing medium (vacuum).
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1. T-operator formula

Our derivation of the heat transfer spectrum from the
fluctuation–dissipation theorem for dipole sources in each
body follows Ref.,45 which we reproduce here for clarity.
Consider two bodies A and B in vacuum with general suscep-
tibilities Vp for p ∈ {A,B} which may be inhomogeneous,
nonlocal, or anisotropic. Maxwell’s equations may be written
in integral form as

|E〉 = Gvac|P〉 (C1)

|P〉 = |P(0)〉+ V|E〉 (C2)

for the fields |E〉 and total polarizations |P〉 in terms of the
polarization sources |P(0)〉, after defining

|E〉 =
[

|EA〉
|EB〉

]

, |P〉 =
[

|PA〉
|PB〉

]

(C3)

(C4)

in block form for the material degrees of freedom constituting
each object. Using these in conjunction with (2), (3), and (4),
where as a reminderT−1

p = V−1
p −Gvac

pp , Maxwell’s equations
can be formally solved to yield

|E〉 = GvacTV−1|P(0)〉
|P〉 = TV−1|P(0)〉

(C5)

obtained by applying formulas for the block matrix inverse to
compute T. We also define the projection operators,

IA =

[

IA 0
0 0

]

, IB =

[

0 0
0 IB

]

, (C6)

such that (abusing notation) Ip is the projection onto the ma-
terial degrees of freedom of body p.

We consider the energy flow from fluctuating dipole
sources only in body A into material degrees of freedom in
body B, noting that reciprocity would yield the same heat
transfer if the roles of bodies A and B were interchanged. This

means |P(0)〉 =

[

|P(0)
A 〉
0

]

defines the fluctuating sources in

body A. The heat transfer spectrum is the ensemble-averaged
work, denoted by 〈· · ·〉, done by the field,

Φ =
1

2
Re(〈〈IBE, IBJ〉〉) (C7)

where |J〉 = − iω|P〉. Using the Hermiticity and idempo-
tence of Ip yields Φ = − ω

4 i (〈〈IBP,E〉〉 − 〈〈E, IBP〉〉), and
using the results of (C5) gives

Φ = −ω

2
〈〈P(0)

A , IAV
−1†T† Asym(IBG

vac)TV−1IAP
(0)
A 〉〉
(C8)

in terms of the fluctuating sources |P(0)
A 〉. As these fluctua-

tions are thermal in nature, their correlations are given by the
fluctuation–dissipation theorem

〈|P(0)
A 〉〈P(0)

A |〉 = 4

πω
Asym(VA) (C9)

(suppressing the Planck function Π as it has already been fac-
tored to be separate from Φ), yielding

Φ = − 2

π
Tr(Asym(V−1†

A )IAT
† Asym(IBG

vac)TIA)

(C10)
as the dressed radiative heat transfer spectrum.

To prove equivalence of this expression for Φ to that involv-
ing only Gvac and Tp, it is useful to explicitly invoke reci-
procity: V⊤

p = Vp, T⊤
p = Tp, and (Gvac

pq )⊤ = Gvac
qp for p, q ∈

{A,B}, implying that V†
p = V⋆

p, T†
p = T⋆

p, (Gvac
pq )† = Gvac⋆

qp ,
and Asym(A) = Im(A) for A ∈ {Vp,Tp,G

vac
pp }. This allows

for writing the operators

Asym(IBG
vac) =

[

0 −Gvac⋆
AB /(2 i)

Gvac
BA/(2 i) Im(Gvac

BB)

]

TIA =

[

(T−1
A −Gvac

ABTBG
vac
BA)

−1

TBG
vac
BA(T

−1
A −Gvac

ABTBG
vac
BA)

−1

]

IAT
† =

[

(T−1⋆
A −Gvac⋆

AB T⋆
BG

vac⋆
BA )−1

(T−1⋆
A −Gvac⋆

AB T⋆
BG

vac⋆
BA )−1Gvac⋆

AB T⋆
B

]

in block matrix form, where the projection onto A al-
lows for truncation to the appropriate block column or
row for notational convenience; note that IAT

† should
actually be a row vector, but has been written as
a column for ease of reading. Multiplying these
matrices together, it can be noted that Gvac

BA(T
−1
A −

Gvac
ABTBG

vac
BA)

−1 = Gvac
BA(IA − TAG

vac
ABTBG

vac
BA)

−1TA =
(IB − Gvac

BATAG
vac
ABTB)

−1Gvac
BATA = SABG

vac
BATA using

the definition of the scattering operator SAB = (IB −
Gvac

BATAG
vac
ABTB)

−1. Additionally, using the definition
T−1
p = V−1

p − Gvac
pp , it is easy to prove that Im(TB) −

T⋆
B Im(Gvac

BB)TB = T⋆
B Im(V−1⋆

B )TB, and likewise Im(TA)−
TA Im(Gvac

AA)T
⋆
A = TA Im(V−1⋆

A )T⋆
A. Thus, the result is (5)

in the main text, as expected.

2. Derivation of Green’s function heat transfer formula

Our derivation of the bounds in the main text relies on the
relationship between the heat transfer spectrum Φ written in
terms of the vacuum Green’s function and the T-operators of
individual objects, to the heat transfer formula1

Φ =
2

π
Tr[Asym(VA)G

†
BA Asym(VB)GBA] (C11)

where G = (Gvac−1 − VA − VB)
−1 is the full Maxwell

Green’s function in the presence of both bodies, with the block
GBA representing the fields in body B due to dipole sources
in body A. We start with the T-operator form by writing

Φ(ω) =
2

π
Tr[Asym(VA)V

−1†
A T

†
A(S

A
BG

vac
BA)

†T
†
B×

V
−1†
B Asym(VB)V

−1
B TBS

A
BG

vac
BATAV

−1
A ] (C12)

where we have used the facts that Asym(V−1†
B ) =

V
−1†
B Asym(VB)V

−1
B and Asym(V−1†

A ) =
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V−1
A Asym(VA)V

−1†
A along with invariance of the trace

under cyclic permutations of operator products. From
this, it can be seen that the two expressions for Φ(ω)
are guaranteed to be the same if the operator GBA is the
same as V−1

B TBS
A
BG

vac
BATAV

−1
A . We use the fact that

V−1
σ = T−1

σ +Gvac
σσ to say that

V−1
B TBS

A
BG

vac
BATAV

−1
A = (IB+Gvac

BBTB)S
A
BG

vac
BA(IA+TAG

vac
AA)

must hold. To prove that this is equal to GBA, we use the
definition

G = Gvac +GvacTGvac (C13)

in conjunction with definitions of Gvac and T as 2 × 2 block
matrices in (4) to write

GBA = Gvac
BA +

[

Gvac
BA Gvac

BB

]

T

[

Gvac
AA

Gvac
BA

]

(C14)

for this system. Performing this matrix multiplication, rec-
ognizing that Gvac

BATAG
vac
AB(T

−1
B − Gvac

BATAG
vac
AB)

−1 = SAB −
IB, using the fact definition of SAB , and collecting and can-
celing terms leads to the proof of the equality GBA =
V−1

B TBS
A
BG

vac
BATAV

−1
A .

3. Landauer bounds on heat transfer singular values

We now prove that radiative heat transfer between arbitrar-
ily shaped bodies can also be expressed as the trace of a trans-
mission matrix whose singular values can be bounded above,
similar to previously derived bounds in planar media. This re-
lation intuitively connects the finite value of the RHT bounds
and approximate low rank of GBA, and can be proved as fol-
lows. For this, we use the cyclic property of the trace to define

Φ =
2

π
Tr(Q†Q) (C15)

where Q = Im(VB)
1/2GBA Im(VA)

1/2 is the heat transmis-
sion operator.

The definition G−1 = Gvac−1− (VA+VB) along with the
fact that the vacuum Maxwell operator Gvac−1 is real-valued
in position space leads to

Asym(G) = G†Asym(VA + VB)G (C16)

which relates dissipation in polarization currents and elec-
tromagnetic fields in equilibrium. Additionally, the fact
that Asym(Vp) is a Hermitian positive-definite operator for
each body p ∈ {A,B} means it has a unique square root
Asym(Vp)

1/2. Rearranging the above equation, multiplying

both sides by 2 Asym(VA)
1/2, and adding IA to both sides

gives

4 Asym(VA)
1/2G†Asym(VB)GAsym(VA)

1/2

+ 4 Asym(VA)
1/2G†Asym(VA)GAsym(VA)

1/2

+ 2 i(Asym(VA)
1/2GAsym(VA)

1/2

−Asym(VA)
1/2G†Asym(VA)

1/2) + IA = IA

recognizing the equality Q†Q =
Asym(VA)

1/2G†Asym(VB)GAsym(VA)
1/2. Follow-

ing this substitution, this may be factored as

4Q†Q+
(

IA + 2 i Asym(VA)
1/2GAAAsym(VA)

1/2
)†

×
(

IA + 2 i Asym(VA)
1/2GAAAsym(VA)

1/2
)

= IA

(C17)

where G has been replaced by its blocks GAA and GAB due
to multiplications on each each side by Asym(Vp)

1/2 for
p ∈ {A,B} (and likewise for G†). This expression is the
sum of two Hermitian positive-semidefinite operators equal to
the identity; though this has been done for body A, reciprocity
of heat transfer yields a similar expression in terms of the op-
erators for body B. Consequently, the singular values of the
operator Q†Q entering the trace expression for Φ(ω) must all
be less than or equal to 1/4. We emphasize that this deriva-
tion is valid for compact or extended structures of arbitrary

geometry, without any need to expand heat transfer in terms
of incoming and outgoing plane waves specific to translation-
ally symmetric systems.15

4. Single-body thermal radiation from two-body radiative heat

transfer

In this section, we prove that the formula for thermal emis-
sion of a single body in isolation in vacuum can be derived by
starting from the formula for heat transfer between two bodies
in vacuum under the following conditions. We take body A to
be the thermal emitter in question, while body B is taken to
fully surround body A as a shell of inner radius rB and outer
radius RB with susceptibility VB = χBIB, and take the si-
multaneous limits Im(χB) → 0 and ωrB/c → ∞ constrained
by ω(RB − rB)/c → ∞ and ω(RB − rB) Im(χB)/c → 1, in
which case body B takes on the role of a perfectly absorbing
medium.

To start, we note that T−1
B = V−1

B − Gvac
BB in conjunction

with reciprocity allows for writing (5) as

Φ =
2

π
Tr[TBS

A
B Asym(V−1†

B )SA†
B T

†
B×

(Gvac
AB)

†(Asym(TA)− T
†
A Asym(Gvac

AA)TA)G
vac
AB].

In the aforementioned size and susceptibility limits for body

B, TB → 0 so SAB → IB, and TBS
A
B Asym(V−1†

B )SA†
B T

†
B →

Asym(VB). Using reciprocity, this yields Φ =
2
π Tr[Gvac

AB Im(VB)G
vac⋆
BA (Im(TA) − T⋆

A Im(Gvac
AA)TA). For

a system with a general susceptibility V and Maxwell Green’s
function G = (Gvac−1 − V)−1, the relations G Im(V)G⋆ =
G⋆ Im(V)G = Im(G) will always hold. Considering B in iso-
lation, the simultaneous constrained limits of infinite size and
infinitesimal susceptibility mean that Gvac

AB Im(VB)G
vac⋆
BA →

Im(Gvac
AA). Finally, this yields the emission formula

Φ =
2

π
Tr[Im(Gvac)(Im(T)− T⋆ Im(Gvac)T)] (C18)
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in agreement with the formula derived by Krüger et al,26

where the subscripts A have been dropped as there is only
one material body under consideration given that body B has
effectively vanished.

Appendix D: Proof of domain monotonicity of singular values of

Gvac

BA

In this section, we prove that the singular values gi of Gvac
BA

are domain monotonic. The singular values of Gvac
BA are the

eigenvalues of Gvac
BA(G

vac
BA)

†. We consider the effects of a per-
turbative addition of volume only to body A; a perturbative
effect on body B can be considered through reciprocity, and
the proof will remain the same. Under this condition, we write
the block row vector of operators

Gvac
BA =

[

Gvac
BA0

Gvac
B∆A

]

(D1)

whereGvac
BA0

is the operator propagating fields in vacuum from
the unperturbed volumeA0 to body B, andGvac

B∆A is the opera-
tor propagating fields in vacuum from the perturbative volume
∆A to body B. Using reciprocity, we may then write

Gvac
BA(G

vac
BA)

† = Gvac
BA0

Gvac⋆
A0B +Gvac

BA0
Gvac⋆

∆AB +Gvac
B∆AG

vac⋆
A0B

+Gvac
B∆AG

vac⋆
∆AB (D2)

for which the first term Gvac
BA0

Gvac⋆
A0B

is the Hermitian positive-
semidefinite unperturbed operator, the terms Gvac

BA0
Gvac⋆

∆AB and
Gvac

B∆AG
vac⋆
A0B

vanish because the projections onto the volume
A0 and ∆A are orthogonal to each other, and Gvac

B∆AG
vac⋆
∆AB

is the Hermitian positive-semidefinite perturbation. From
Rayleigh-Schrödinger perturbation theory, if ρi is an unper-
turbed singular value of Gvac

BA0
with |bi〉 being the correspond-

ing normalized right singular vector, then the perturbation to
ρi is 〈bi,G

vac
B∆AG

vac⋆
∆ABbi〉, which is nonnegative by virtue of

the positive-semidefiniteness of Gvac
B∆AG

vac⋆
∆AB. Therefore, any

increase in the volume of a body will increase the singular
values of Gvac

BA.

Appendix E: Alternative bounds incorporating far-field

radiative losses through Im(Gvac

AA)

In this section, we derive an alternative bound to (11) that
involves Im(Gvac

AA), thus capturing constraints on scattering
losses purely from finite object sizes rather than through mul-
tiple scattering. Starting from T−1

A = V−1
A − Gvac

AA, oper-

ator manipulations lead to T−1
A Im(V−1⋆

A )T⋆
A = Im(TA) −

TA Im(Gvac
AA)T

⋆
A. Hence, from (6),

Φ =
2

πζB
Tr [Gvac⋆

AB Y⋆
BYBG

vac
BA (Im(TA)− TA Im(Gvac

AA)T
⋆
A)] ,

which now hides reciprocity, as no similar transformation
has been made to eliminate terms giving rise to ζB. Us-
ing the singular value decompositions Gvac

BA =
∑

i gi|bi〉〈ai|
and YB =

∑

i yi|b⋆
i 〉〈bi| but leaving TA general, we

find that the constraint on yi is saturated when yi =

(

ζ−1
B + ζ−1

A g2i 〈ai,TAT
⋆
Aai〉

)−1
. Completing the square, one

may write

Im(TA)− TA Im(Gvac
AA)T

⋆
A = Im(Gvac

AA)
−1/2

×
[

1

4
IA −

(

Im(Gvac
AA)

1/2TA Im(Gvac
AA)

1/2 − i

2
IA

)

×

(

Im(Gvac
AA)

1/2TA Im(Gvac
AA)

1/2 − i

2
IA

)⋆
]

Im(Gvac
AA)

−1/2.

This strongly suggests that the optimal TA should be diago-
nalized in the same basis as Im(Gvac

AA), so if we write

Im(Gvac
AA) =

∑

i

ρi|qi〉〈qi|,

then one may also write TA = i
∑

i τi|qi〉〈qi|. This implies
that the constraint on the singular values of YB becomes

yi =



ζ−1
B + ζ−1

A g2i
∑

j

τ2j |〈ai,qj〉|2




−1

so yi depends on τj for every channel j, not just j = i. Con-
sequently, we arrive at the following bound:

Φ ≤ 2

π

∑

i

ζBg
2
i

(

∑

j τj(1− ρjτj)|〈ai,qj〉|2
)

[

1 + ζ−1
A ζBg2i

(

∑

j τ
2
j |〈ai,qj〉|2

)]2 (E1)

for which finding the optimal values of τi for each chan-
nel i requires self-consistently solving a large set of nonlin-
ear equations subject to the constraint τi ≤ ζA for each i.
While this expression should yield tighter bounds on RHT
owing to the incorporation of constraints on scattering losses
for both objects in isolation (in addition to multiple scatter-
ing), it appears to be analytically intractable and must there-
fore be evaluated numerically, which we leave to future work;
that said, numerical solution of the optimal values of τi for
evaluating this bound requires solving a large set of nonlin-
ear polynomial equations, which is generally computationally
easier than brute-force optimization of the RHT spectrum due
to the non-polynomial dependence of Φ on the T-operators
in general. We point out that in the nonretarded quasistatic
limit, Im(Gvac

AA) → 0, so all of its singular values may be
taken to vanish as well; this means that its singular vectors be-
come arbitrary, allowing for choosing |qi〉 = |ai〉. Doing so,

the above expression simplifies to Φ = 2
π

∑

i
ζBg2

i τi

(1+ζ−1

A
ζBg2

i
τ2

i
)2

,

from which it can be seen that if the material bound τi ≤ ζA is
saturated, each contribution is identical to the corresponding
contribution from (11); if the material bound is not saturated,
then the optimal τi =

1√
3ζ−1

A
ζBgi

leads to a larger contribution

than what we find in (11), yielding an overall looser bound.
This corroborates the notion that our present bounds, which
do not include an explicit expression in terms of Im(Gvac

AA), do
not fully account for dissipation via far-field radiative losses.
Considering the singular values ρi will remedy this, but at the
cost of greater complexity.
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