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We consider the interaction between acceptor pairs in doped semiconductors in the limit of large
inter-acceptor separation relevant for low doping densities. Modeling individual acceptors via the
spherical model of Baldereschi and Lipari, we calculate matrix elements of the quadrupole tensor
between the four degenerate ground states and show that the acceptor has a nonzero quadrupole
moment. As a result, the dominant contribution to the large-separation acceptor-acceptor inter-
action comes from direct (charge-density) terms rather than exchange terms. The quadrupole is
the leading nonzero moment, so the electric quadrupole-quadrupole interaction dominates for large
separation. We calculate the matrix elements of the quadrupole-quadrupole interaction Hamilto-
nian in a product-state basis and diagonalize, obtaining a closed-form expression for the energies
and degeneracies of the sixteen-state energy spectrum. All dependence on material parameters en-
ters via an overall prefactor, resulting in surprisingly simple and universal results. This simplicity
can be traced to a mathematical happenstance, the nontrivial vanishing of a particular Wigner 6-j

symbol,
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= 0. Results are relevant to the control of two-qubit interactions in quantum

computing implementations based on acceptor spins, as well as calculations of the thermodynamic
properties of insulating p-type semiconductors.

I. INTRODUCTION

A leading candidate for implementing qubits for quan-
tum computation is the use of dopant spins in silicon
and other semiconductors1–21. In such implementations,
controlling two-qubit interactions requires a detailed un-
derstanding of the dopant-dopant interaction and its de-
pendence on the separation between dopants. One of the
difficulties associated with donor-based qubits in multi-
valley semiconductors like Si, Ge, and AlAs is that the
donor-donor interaction has a significant oscillatory com-
ponent as a function of inter-donor separation. Since
the oscillation occurs on atomic lengthscales, control of
donor-donor interactions often requires precise placement
of dopant atoms, which can be problematic7. Acceptor-
based qubits14–21 lack such multivalley complications, so
variation in the acceptor-acceptor interaction occurs on
the much longer lengthscale of the effective Bohr radius
(tens to hundreds of angstroms).

However, while donors are well modeled as effective
hydrogen atoms and donor pairs as effective hydrogen
molecules, acceptors are somewhat more complex, due
to a degenerate valence band maximum and the ef-
fects of spin-orbit coupling, as described by the Lut-
tinger Hamiltonian22,23. Acceptor models that account
for these effects were studied a long time ago24–27. One
particularly useful formulation is due to Baldereschi and
Lipari26, who showed that the acceptor problem based
on the Luttinger Hamiltonian can be reformulated so
as to split it into two parts. These parts, which corre-
spond to different behavior in angular momentum space,
consist of a “spherical” term, which can be solved quite
accurately, yielding much better acceptor ground states
than earlier variational estimates, plus a “cubic” correc-

tion, which can be treated perturbatively27. In what
follows, we refer to the model based on the first term
alone, valid when cubic corrections can be neglected, as
the Baldereschi-Lipari spherical model. Note that this
model is “spherical” in the sense that its Hamiltonian is
spherically symmetric, like an atomic system. However,
this does not preclude the eigenfunctions from having
nontrivial spatial angular structure, which they do. In
fact, the four-fold degenerate Baldereschi-Lipari ground-
state acceptor wave functions consist of two terms, an
s-wave term, reminiscent of the ground state of hydro-
gen, as well as a d-wave term, which exists due to strong
spin-orbit coupling.
In prior work28, we used the Baldereschi-Lipari single-

acceptor wave functions to develop a Heitler-London
model for the acceptor pair. This numerical calculation
provided the acceptor-pair energy spectrum for input val-
ues of material parameters and inter-acceptor separation,
but due to computational constraints, its results were
limited to acceptors separated by less than a few effec-
tive Bohr radii.
In the present work, we perform a complementary cal-

culation of acceptor-pair energy spectra, valid in the
large-separation limit, and yielding closed-form solutions.
Doing so was necessary, as many applications require an
understanding of acceptor-pair interactions over a wide
range of inter-acceptor separations. In particular, this
large-separation limit is directly relevant to quantum
computing applications, where dopant concentrations are
typically dilute. It is also relevant to calculations of
the thermodynamic properties of p-type semiconductors,
which involve a system of many randomly-distributed ac-
ceptors, separated from each other by distances that vary
by large factors.
The fact that the Baldereschi-Lipari single-acceptor
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wave functions contain both s-wave and d-wave terms
means that the charge distribution of a ground-state ac-
ceptor has a nonzero quadrupole moment, in contrast to
the spherically symmetric charge distribution of a hydro-
genic ground-state donor. As a result, while the dom-
inant contribution to the large-separation donor-donor
interaction comes from an exchange term and therefore
decays exponentially with inter-donor separation, the
dominant contribution to the large-separation acceptor-
acceptor interaction comes from a direct (charge-density)
term29 and therefore decays as a power law with inter-
acceptor separation. Since the first nonzero multipole
moment of the acceptor is the quadrupole moment, we
calculate, in this paper, the quadrupole-quadrupole in-
teraction between well-separated acceptors.

We formulate our model in Sec. II, calculate matrix el-
ements of the quadrupole tensor in Sec. III, and use those
matrix elements to calculate the quadrupole-quadrupole
energy spectrum in Sec. IV. Details of our matrix ele-
ment calculations are presented in the Appendices. Due
to a mathematical happenstance, the nontrivial vanish-
ing of a particular Wigner 6-j symbol, our results turn
out to be far simpler than would generically be expected.
Aside from the variational coefficients of the Baldereschi-
Lipari wave functions, which are computed numerically,
all other calculations are performed analytically with re-
sults presented in closed form. Conclusions are discussed
in Sec. V.

II. MODEL

A. Single Acceptor Model

We model each acceptor via the spherical model de-
veloped by Baldereschi and Lipari26, which treats the
acceptor-ion-plus-hole system as a hydrogenic atom mod-
ified to account for valence band degeneracy and spin-
orbit coupling. In most semiconductors, the low-energy
band structure consists of a nondegenerate (aside from
spin) conduction band minimum and a degenerate va-
lence band maximum. Spin-orbit coupling breaks a
three-fold degeneracy down to two-fold, with a split-off
bottom band that can be safely neglected in the large
coupling limit, which we will assume. Including spin,
this leaves a four-fold degeneracy at the top of the va-
lence band, compared to the two-fold spin degeneracy at
the bottom of the conduction band. Baldereschi and Li-
pari model the four-fold degenerate holes via an effective
spin J = 3/2, with Jz = {−3/2,−1/2, 1/2, 3/2} labeling
the four degenerates states. Thus, the acceptor prob-
lem becomes that of a spin-3/2 particle in the presence
of a Coulomb potential and spin-orbit coupling. Within
the effective mass approximation, the Hamiltonian can

be written as22,23,26

H = (γ1 +
5

2
γ2)

p2

2m0
− γ2

m0

(

p2xJ
2
x + p2yJ

2
y + p2zJ

2
z

)

− e2

ǫ0r

−2γ3
m0

(

{px, py}{Jx, Jy}+ {py, pz}{Jy, Jz}

+{pz, px}{Jz, Jx}
)

(1)

which is known as the Luttinger Hamiltonian22. Here
{a, b} ≡ (ab + ba)/2, J is the hole angular momentum
operator corresponding to spin-3/2, p is the hole mo-
mentum operator, m0 is the free electron mass, ǫ0 is
the crystal dielectric constant, and γ1, γ2, and γ3 are
the Luttinger constants describing hole dispersion near
the top of the valence band. This expression has the
cubic symmetry of the semiconductor crystal. The in-
novation of Baldereschi and Lipari26 was to rewrite it
in such a way that the terms with full spherical sym-
metry are separated from those with only cubic symme-
try. Expressing energies in units of the effective Rydberg,
Ryd ≡ e4m0/2~

2ǫ20γ1, and lengths in units of the effective
Bohr radius, aB ≡ ~

2ǫ0γ1/e
2m0, they showed that

H = −∇2 − 2

r
− µ
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(

P (2) · J (2)
)

+
δ

9~2

( [

P (2) × J (2)
](4)

4
+

√
70

5

[

P (2) × J (2)
](4)

0

+
[

P (2) × J (2)
](4)

−4

)

(2)

where P (2) and J (2) are rank-2 spherical tensor opera-
tors for momentum and effective spin (see Refs. 26,30 for
details regarding the irreducible tensor notation). The
third term, proportional to µ ≡ (6γ3 + 4γ2)/5γ1, is the
spherical contribution to the spin-orbit interaction, and
the fourth term, proportional to δ ≡ (γ3 − γ2)/γ1, is the
cubic contribution. In nearly all semiconductors (with
the important exception of Si), δ is much smaller than
µ, so the cubic term can be safely neglected. Doing so
yields the Baldereschi-Lipari26 spherical Hamiltonian

H = −∇2 − 2

r
− µ

9~2

(

P (2) · J (2)
)

(3)

which depends on material parameters only through its
units, the effective Rydberg and Bohr radius, as well as µ,
a dimensionless parameter between 0 and 1 that indicates
the strength of spin-orbit coupling in the material.
Since this Hamiltonian is spherically symmetric by

construction, total angular momentum, F = L + J, is
conserved, as in an atomic system, where L is the orbital
angular momentum and J is the effective spin angular
momentum of the hole. Since the spin-orbit term cou-
ples states of ∆L = 0,±2, the most general expression
for the acceptor ground state wave function is:26

|ΨFz
〉 = f0(r)

∣

∣L = 0, J = 3
2 , F = 3

2 , Fz

〉

+ g0(r)
∣

∣L = 2, J = 3
2 , F = 3

2 , Fz

〉

(4)
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FIG. 1: Baldereschi-Lipari ground-state acceptor radial func-
tions, f0 and g0, as a function of distance r from the acceptor
center, for various values of the spin-orbit coupling parameter
µ. With increasing µ, g0 grows and both f0 and g0 become
more localized. These numerical results reproduce those of
Ref. 26, Fig. 4.

where the |LJFFz〉 kets are eigenfunctions of total angu-
lar momentum and f0(r) and g0(r) are radial functions.
It is important to note that while the Baldereschi-

Lipari Hamiltonian [Eq. (3)] is spherically symmetric,
individual eigenfunctions of the Hamiltonian, and their
associated charge density distributions, are not necessar-
ily spherically symmetric (as is the case for the hydro-
gen atom, where all eigenfunctions except the s-orbitals
lack the spherical symmetry of the hydrogenic Hamilto-
nian). A key difference between the hydrogen atom and
the Baldereschi-Lipari acceptor, however, is in the sym-
metry of their ground states. While the two degenerate
ground states of the hydrogen atom are indeed spher-
ically symmetric, the four degenerate ground states of
the Baldereschi-Lipari acceptor are not spherically sym-
metric, due to the L=2 term in Eq. (4).
Following Baldereschi and Lipari, we use a variational

approach to estimate the radial functions, employing trial
radial functions of the form

f0(r) =

21
∑

i=1

Aie
−αir

2

g0(r) = r

21
∑

i=1

Bie
−αir

2

(5)

where the constants αi are chosen in geometric progres-
sion (αi+1 = gαi) from α1 = 10−2 to α21 = 5× 105. We
numerically compute the ground state energy, as well as
the 42 variational parameters Ai and Bi, as a function of
spin-order coupling parameter µ, by minimizing the ex-
pectation value of the Hamiltonian with respect to all 42
parameters. The details of this procedure are provided

in Appendix B of Ref. 28. The resulting radial functions
are plotted in Fig. 1 and reproduce the results of Ref. 26.
For µ = 0, f0 is the ground-state radial wave function of
hydrogen and g0 is zero. As µ increases toward one, g0
grows and both f0 and g0 become more localized.
The ground-state energy and radial functions are in-

dependent of the magnetic quantum number Fz . Thus,
Eq. (4) represents four degenerate ground states, labeled
by Fz = {−3/2,−1/2, 1/2, 3/2}. In what follows, we
restrict our Hilbert space to this ground-state manifold
and use these four Baldereschi-Lipari ground state wave
functions as a basis for evaluating matrix elements at low
energies.

B. Acceptor Interaction Model

To model the interaction between two acceptors,
we construct acceptor-pair basis functions from the
Baldereschi-Lipari ground-state acceptor wave functions
of Eq. (4). Since the acceptor-pair basis functions must
be antisymmetric upon exchange of identical holes, they
take the form

|Fz1Fz2〉 = 1√
2

(

|ΨA
Fz1

〉|ΨB
Fz2

〉 − |ΨB
Fz1

〉|ΨA
Fz2

〉
)

(6)

where |ΨFz1
〉 and |ΨFz2

〉 are the single-acceptor states
for acceptor 1 and acceptor 2 respectively, and the su-
perscripts indicate which hole (A or B) is in which state.
When evaluating matrix elements in this two-term ba-
sis, we obtain two direct (charge-density) terms where
each state is occupied by the same hole in both the bra
and the ket, and two exchange (cross) terms where the
states are occupied by different holes in the bra versus the
ket. Since the single-acceptor states are localized to their
acceptor locations on the scale of the effective Bohr ra-
dius, aB, exchange terms decay exponentially with inter-
acceptor separation, R, and can be neglected in compar-
ison to direct terms (which decay as a power law) in the
large-separation (R ≫ aB) limit that we consider herein.
Neglecting exchange terms is equivalent to treating the
holes as distinguishable, which they effectively become
for R ≫ aB. Thus, the acceptor-pair basis functions re-
duce to simple product states

|Fz1Fz2〉 ≈ |ΨFz1
〉|ΨFz2

〉 (7)

where one hole is localized about acceptor 1 and the other
is localized about acceptor 2.
In this product state basis, the Coulomb interaction

between the two acceptors can be expressed in terms of
a multipole expansion31 of the acceptor charge distribu-
tion. The monopole moment vanishes because acceptors
are neutral (total hole charge cancels the charge of the
acceptor ion). The dipole moment vanishes because elec-
tric dipole selection rules32 require bra and ket to dif-
fer by one in azimuthal quantum number, ∆L = ±1,
while the Baldereschi-Lipari ground-state wave functions
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[Eq. (4)] consist of only L=0 and L=2 terms. Since elec-
tric quadrupole selection rules allow ∆L = {0,±2}, we
expect a nonzero quadrupole moment. The leading term
in the multipole expansion of our interaction Hamiltonian
is therefore the quadrupole-quadrupole term. Hence,
in the large-separation limit, we can model the interac-
tion between two acceptors by their electric quadrupole-
quadrupole interaction.

III. MATRIX ELEMENTS OF THE

QUADRUPOLE TENSOR

A. Quadrupole Tensor

The quadrupole tensor,
↔
Q, is a traceless, symmetric,

Cartesian tensor of rank 2. In Cartesian coordinates,
measured from the center of the acceptor, it takes the
form31

↔
Q =





3x2 − r2 3xy 3xz
3yx 3y2 − r2 3yz
3zx 3zy 3z2 − r2



 . (8)

Rewriting the above in spherical coordinates, each com-
ponent can be expressed as a linear combination of spher-
ical harmonics32, Y m

ℓ (θ, φ), with ℓ = 2.

↔
Q =

√

2π

5
r2







√
2Y 0

2





−1 0 0
0 −1 0
0 0 2





+
√
3Y 1

2





0 0 −1
0 0 i
−1 i 0



+
√
3Y −1

2





0 0 1
0 0 i
1 i 0





+
√
3Y 2

2





1 −i 0
−i −1 0
0 0 0



+
√
3Y −2

2





1 i 0
i −1 0
0 0 0











(9)

Since the Baldereschi-Lipari ground-state acceptor wave
functions [Eq. (4)] are linear combinations of coupled an-
gular momentum eigenstates, |LJFFz〉, and the com-
ponents of the quadrupole tensor are linear combina-
tions of ℓ=2 spherical harmonics, Y m

2 , the evaluation of
the matrix elements of the quadrupole tensor between
Baldereschi-Lipari wave functions reduces to the evalua-
tion of the matrix elements of the ℓ=2 spherical harmon-
ics between such angular momentum eigenstates.

B. Matrix Elements

The matrix elements of r2Y m
2 (θ, φ) between the

Baldereschi-Lipari ground-state acceptor wave functions

[Eq. (4)] take the form

〈ΨF ′

z
|r2Y m

2 |ΨFz
〉 = 〈0 3

2
3
2F

′
z|Y m

2 |0 3
2
3
2Fz〉Rff

+ 〈2 3
2
3
2F

′
z|Y m

2 |0 3
2
3
2Fz〉Rfg

+ 〈0 3
2
3
2F

′
z|Y m

2 |2 3
2
3
2Fz〉Rfg

+ 〈2 3
2
3
2F

′
z|Y m

2 |2 3
2
3
2Fz〉Rgg (10)

where |0 3
2
3
2Fz〉 is shorthand for |L = 0, J = 3

2 , F = 3
2 , Fz〉

and

Rff ≡
∫ ∞

0

r4[f0(r)]
2dr

Rfg ≡
∫ ∞

0

r4f0(r)g0(r)dr

Rgg ≡
∫ ∞

0

r4[g0(r)]
2dr. (11)

are radial integrals that depend on material parameters
via the dependence of f0 and g0 on the spin-orbit coupling
parameter µ. For simplicity, we refer to the four coupled-
state matrix elements of ℓ=2 spherical harmonics that
appear in Eq. (10) as the 0-0, 2-0, 0-2, and 2-2 terms, re-
spectively. We calculate these in Appendix B by making
use of the Wigner-Eckart theorem (see Appendix A) and
show that the 0-0 term is trivially zero, the 2-2 term is
nontrivially zero (more about this in Sec. III C), and the
2-0 and 0-2 terms are equal and nonzero. Thus, Eq. (10)
simplifies to

〈ΨF ′

z
|r2Y m

2 |ΨFz
〉 = 2 〈2 3

2
3
2F

′
z|Y m

2 |0 3
2
3
2Fz〉 Rfg. (12)

This result, combined with Eq. (B5), allows us to cal-
culate the matrix elements of the five terms of the
quadrupole tensor in Eq. (9) between all combinations
of the four degenerate ground states of the acceptor. Do-
ing so, we obtain a 4 × 4 matrix (row F ′

z versus column
Fz) of 3× 3 quadrupole tensors, given by an overall fac-
tor of − 2

5Rfg multiplying the matrix of tensors shown in
Fig. 2.

〈ΨF ′

z
|
↔
Q|ΨFz

〉 = − 2
5Rfg × [Fig. 2] (13)

These quadrupole-tensor matrix elements will be used in
Sec. IV to calculate the quadrupole-quadrupole interac-
tion between Baldereschi-Lipari acceptors.
It is convenient to name the µ-dependent prefactor

Q0/2 and thereby define

Q0(µ) ≡ − 4
5Rfg = − 4

5

∫ ∞

0

r4f0(r)g0(r)dr

= − 4
5

∑

ij

AiBj

(αi + αj)3

= |〈ΨFz
|Qzz|ΨFz

〉| (14)

where the third equality results from expanding the ra-
dial functions via Eq. (5) and evaluating the Gaussian
integrals, and the fourth equality is obtained by inspec-
tion of the diagonal Qzz components in Fig. 2. Since Q0
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FIG. 2: Matrix elements of the quadruple tensor be-
tween Baldereschi-Lipari ground-state acceptor wave func-

tions, 〈ΨF ′

z
|
↔

Q|ΨFz
〉, are obtained by multiplying this 4 × 4

matrix of 3×3 tensors by a common factor of Q0/2 = − 2

5
Rfg.

F ′

z and Fz label the rows and columns of the matrix respec-
tively.
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FIG. 3: Acceptor quadrupole moment, Q0 = − 4

5
Rfg =

|〈ΨFz
|Qzz|ΨFz

〉|, as a function of spin-orbit coupling parame-
ter µ. Note that Q0 is maximized for intermediate µ, vanish-
ing as µ → 0, since the wave function becomes pure s-wave,
and as µ → 1, since the wave function becomes localized to
the origin.

is equal to the absolute value of the expectation value of
Qzz in any of the four acceptor ground states, we here-
after refer to it as the quadrupole moment of the ac-
ceptor. In Fig. 3, we plot Q0 as a function of µ. Note
that the acceptor quadrupole moment vanishes at both
µ = 0 and µ = 1. At µ = 0, it vanishes trivially because
g0 = 0. Without the d-wave (L=2) term in Eq. (4),
the Baldereschi-Lipari wave function is pure s-wave and
therefore lacks a quadrupole moment. As µ → 1, f0 and
g0 become sharply peaked about r = 0 (see Fig. 1), so the

r4 factor in the integrand drives the integral to zero. Es-
sentially, the quadrupole moment vanishes as the angular
structure of the wave function is squeezed to the origin.
Thus, the quadrupole moment of Baldereschi-Lipari ac-
ceptors is maximized when µ is large enough that the
wave function has a significant d-wave component but µ
is not so large that the wave function becomes too local-
ized.

C. Universal Results due to Vanishing 2-2 Term

As shown above (and in Appendix B), the matrix el-
ements of the quadrupole tensor between Baldereschi-
Lipari acceptor ground states have a particularly sim-
ple form. Note that all dependence on material pa-
rameters (the Luttinger constants and the spin-orbit pa-
rameter µ derived therefrom) enter only via our units
of length and energy (the effective Bohr radius and ef-
fective Rydberg) and an overall multiplicative factor,
Rfg. This simplicity is a consequence of the vanish-
ing of the 〈0 3

2
3
2F

′
z |Y m

2 |0 3
2
3
2Fz〉 and 〈2 3

2
3
2F

′
z |Y m

2 |2 3
2
3
2Fz〉

terms in Eq. (10), which multiply Rff and Rgg respec-
tively. If these 0-0 and 2-2 terms did not vanish, then
material parameters would enter via Rff and Rgg, in ad-
dition to Rfg, imbuing the various matrix elements and
tensor components of Fig. 2 with different parameter de-
pendence.
There are a number of trivial ways that such Y m

ℓ ma-
trix elements between |LJFFz〉 coupled states can van-
ish: (1) violation of the orbital-state triangle rule |ℓ−L| <
L′ < ℓ+L, (2) orbital-state parity violation, which occurs
when ℓ+L+L′ is odd, and (3) violation of the coupled-
state triangle rule |ℓ − F | < F ′ < ℓ + F . In atomic
physics, these define the selection rules that govern tran-
sitions between atomic states. Viewed through the lens
of the Wigner-Eckart theorem (see Appendix A), it is
clear that all three of these cases result from the vanish-
ing of Clebsch-Gordan coefficients, the ones in Eq. (A2),
Eq. (A3), and Eq. (A4), respectively.
The vanishing of our 0-0 term is, in this sense, trivial,

due to a trivial zero of type (1), as per the classification
in the prior paragraph. However, the vanishing of our 2-2
term is not due to any of the trivial zero types enumer-
ated above. It is not due to the vanishing of a Clebsch-
Gordan coefficient at all. Rather, in this case, it is the
coupled-state reduced matrix element from Eq. (A4) that
is itself zero. As shown in Eqs. (B8) through (B12), it
vanishes because up to three nonzero terms, each the
product of three Clebsch-Gordan coefficients, happen to
sum to zero.
To better understand this happenstance, it is helpful

to notice that the sum of triple-products of Clebsch-
Gordan coefficients that appears in Eq. (B8) has pre-
cisely the form indicated in Eq. (6.2.7) of Ref. 30 and is
therefore proportional to the product of a single Clebsch-
Gordan coefficient and a 6-j symbol (Racah coefficient).
Edmonds30 shows this to be true by making use of the
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definition of the 6-j symbol and the orthogonality prop-
erties of the Clebsch-Gordan coefficients. For the case at
hand, we see that Eq. (B8) becomes

〈2 3
2
3
2F

′
z |Y m

2 |2 3
2
3
2Fz〉

= −2
√
5C2

22〈mFz | 32F ′
z〉2 32

{

2 2 2
3
2

3
2

3
2

}

(15)

That such matrix elements are proportional to a single
6-j symbol turns out to be a general property of the
matrix elements of spherical tensor operators between
coupled angular momentum states where the spherical
tensor commutes with one of the coupled angular mo-
mentum operators (here, the spin one) but not the other
(here, the orbital one). This is shown by Biedenharn and
Louck (see Eq. (3.246) of Ref. 33).
The happenstance that results in the vanishing of our

2-2 term is that the particular 6-j symbol that appears
in Eq. (15) is equal to zero.

{

2 2 2
3
2

3
2

3
2

}

= 0 (16)

The 6-j symbols and the zeros thereof have been studied
extensively in the mathematical physics literature34–46.
Their values are provided by the following general
expression33,35,45:

{

j1 j2 j3
ℓ1 ℓ2 ℓ3

}

= N

βmin
∑

P=αmax

(−1)P (P + 1)!
4
∏

i=1

(P − αi)!

3
∏

k=1

(βk − P )!

(17)
where αmax is the largest of the four αi, βmin is the small-
est of the three βi,

α1 = j1 + j2 + j3 β1 = j1 + ℓ1 + j2 + ℓ2

α2 = ℓ1 + ℓ2 + j3 β2 = j1 + ℓ1 + j3 + ℓ3

α3 = j1 + ℓ2 + ℓ3 β3 = j2 + ℓ2 + j3 + ℓ3

α4 = ℓ1 + j2 + ℓ3 (18)

and

N = ∆(j1j2j3)∆(ℓ1ℓ2j3)∆(j1ℓ2ℓ3)∆(ℓ1j2ℓ3) (19)

∆(pqr) =

√

(p+ q − r)!(p − q + r)!(−p+ q + r)!

(p+ q + r + 1)!
(20)

where ∆(pqr) is zero if p, q, and r fail to satisfy the
triangle rule.
The literature distinguishes between trivial and non-

trivial zeros of the 6-j symbol. Trivial zeros are zero
because N is zero, which occurs whenever one or more
of the triples {(j1j2j3), (ℓ1ℓ2j3), (j1ℓ2ℓ3), (ℓ1j2ℓ3)} fails to
satisfy the triangle rule. In other words, trivial zeros cor-
respond to matrix elements that vanish as prescribed by
known selection rules. Nontrivial zeros are zero despite

N being nonzero, because the terms in the summation
sum to zero. This is possible because the terms in the
summation have alternating sign. Nontrivial zeros are
classified by the number of terms in the summation, with
the weight defined as the number of terms minus one.
The 6-j symbol zero that is relevant to the case at

hand,

{

2 2 2
3
2

3
2

3
2

}

= 0, is a nontrivial zero, since N is

nonzero, and is of weight 1, since αmax = 6 and βmin = 7.
It turns out to be the canonical nontrivial zero, because
it is the simplest one. (They are enumerated in the litera-
ture and ours appears first in such lists34 as it involves the
smallest input parameters.) Plugging in j1 = j2 = j3 = 2
and ℓ1 = ℓ2 = ℓ3 = 3

2 , Eqs. (17) through (20) yield

{

2 2 2
3
2

3
2

3
2

}

=
25√

14(6!)2

[

7!− 8!

(2!)3

]

= 0 (21)

Thus, the happenstance responsible for the universal
form of our results boils down to the fact that 23 = 8.

IV. QUADRUPOLE-QUADRUPOLE ENERGY

SPECTRUM

A. Quadrupole-Quadrupole Interaction

As noted in Sec. II B, the large-R acceptor-acceptor
interaction reduces to the electrostatic interaction be-
tween two quadrupoles separated in space by vector R.
Placing quadrupole 1 at the origin, it is straightfor-
ward to show31 that its electrostatic potential at position
R = x1x̂+ x2ŷ + x3ẑ = RR̂ is, in Gaussian units,

V1(R) =
e

2ǫ0R5

∑

kl

Q1
klxkxl (22)

where Q1
kl are the components of the quadrupole tensor

of quadrupole 1 and indices k and l run from 1 to 3. It is
also straightforward to show31 that the potential energy
cost of placing quadrupole 2 at positionR in the presence
of an arbitrary electrostatic potential V (R) is

U2(R) =
e

6

∑

ij

Q2
ij

∂2V

∂xi∂xj

(23)

where Q2
ij are the components of the quadrupole tensor

of quadrupole 2 and indices i and j run from 1 to 3.
Plugging V1 in for V yields (in agreement with Ref. 47)
the interaction energy of two quadrupoles separated by
vector R:

U12(R) =
e2

6ǫ0R5

[

∑

ij

Q1
ijQ

2
ij − 10

∑

ijk

niQ
1
ijQ

2
jknk

+ 35
2

∑

ij

niQ
1
ijnj

∑

kl

nkQ
2
klnl

]

(24)

where ni ≡ xi/R and we have made use of the fact
that the quadrupole tensors are symmetric and traceless.
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Converting to the units we have used throughout the rest
of this paper (energies in effective Rydbergs, lengths in
effective Bohr radii), rewriting in matrix form, and noting
that the above is precisely our interaction Hamiltonian,
we obtain

Hint =
1

3R5

[ ↔
Q1 :

↔
Q2 − 10R̂T

↔
Q1

↔
Q2R̂

+ 35
2

(

R̂T
↔
Q1R̂

)(

R̂T
↔
Q2R̂

) ]

(25)

where R̂ is the unit (column) vector pointing from

quadrupole 1 to quadrupole 2, R̂T is its transpose, and
↔
Q1 :

↔
Q2 ≡ ∑

ij

Q1
ijQ

2
ij is the Frobenius product of the two

quadrupole tensors.

B. Matrix Elements of the Interaction Hamiltonian

Evaluating the interaction Hamiltonian, Hint, in our
basis of sixteen product states, |Fz1Fz2〉 = |ΨFz1

〉|ΨFz2
〉,

yields a 16 × 16 Hamiltonian matrix. Since all terms in
Hint are proportional to the product of a component of
↔
Q1 times a component of

↔
Q2, and since each quadrupole

tensor acts only on its own single-acceptor states (in the
large-separation limit), evaluation of matrix elements in
the product-state basis is straightforward. Matrix ele-
ment 〈F ′

z1F
′
z2|Hint|Fz1Fz2〉 is obtained by substituting

〈ΨF ′

z1
|
↔
Q1|ΨFz1

〉 and 〈ΨF ′

z2
|
↔
Q2|ΨFz2

〉 for
↔
Q1 and

↔
Q2 in

Eq. (25).
The spherical symmetry of the Baldereschi-Lipari

single-acceptor Hamiltonian [Eq. (3)] means that we are
free to define the quantization axis (z-axis) along any di-
rection in coordinate space. The simplest choice is to
define it along the line joining the two acceptors. Doing
so sets R̂ = ẑ in Eq. (25), makes explicit the cylindrical
symmetry of the acceptor-pair problem, and therefore
requires the conservation of F tot

z ≡ Fz1 + Fz2. Thus,
with this choice, product states of different F tot

z can-
not couple to each other, which sets all but 44 of the
256 matrix elements of Hint to zero. Judicious ordering
of the product-state basis yields a Hamiltonian matrix
with the block diagonal form shown in Fig. 4. Additional
symmetries (swapping up for down, swapping acceptor 1
for acceptor 2, and the hermiticity of the Hamiltonian)
reduce the remaining 44 matrix elements to 13 unique
ones that need to be calculated. We calculate them by
plugging the appropriate quadrupole tensors from Fig. 2
into Eq. (25) and thereby obtain the Hamiltonian ma-
trix, which is given by an overall factor of Q2

0/R
5 times

the matrix in Fig. 4. Thus,

〈F ′
z1F

′
z2|Hint|Fz1Fz2〉 =

Q2
0

R5
× [Fig. 4] (26)

where Q0 is the µ-dependent quadrupole moment defined
in Eq. (14) that is equal to the absolute value of the ex-
pectation value of Qzz in any of the four single-acceptor

FIG. 4: Matrix elements of the quadrupole-quadrupole in-
teraction Hamiltonian between acceptor-pair product states,
〈F ′

z1F
′

z2|Hint|Fz1Fz2〉, are obtained by multiplying this 16×16
matrix by a common factor of Q2

0/R
5. All empty boxes con-

tain zeros. Defining ẑ along R̂ and arranging the product
state basis in order of decreasing F tot

z yields the block diag-
onal structure, with each block labeled by a distinct value of
F tot

z : 3, 2, 1, 0, −1, −2, −3, from top left to bottom right.

ground states. Due to the simple form of the matrix
elements of the quadrupole tensor (see Sec. III), all de-
pendence on spin-orbit parameter (via Q0(µ)) and inter-
acceptor separation R resides in the prefactor above,
which simply multiplies a matrix of numbers.

C. Energy Spectrum

The seven blocks of the Hamiltonian matrix in Fig. 4
are each labeled by a different value of F tot

z : 3, 2, 1, 0, −1,
−2, and −3, from top left to bottom right. Due to the
up-down symmetry of the acceptor-pair, blocks labeled
by F tot

z and −F tot
z are equivalent. Thus, we can solve for

the sixteen energy eigenvalues by diagonalizing the 1×1,
2× 2, 3× 3, and 4× 4 submatrices corresponding to F tot

z

= ±3, ±2, ±1, and 0, noting that energies obtained from
the first three submatrices are doubly degenerate. Doing
so, we obtain the following eight-level energy spectrum

Eint =
Q2

0

R5
×











































8 {0} (1)
6 {0} (1)
3 {−3,−1, 1, 3} (4)
1 {−2, 2} (2)
0 {0} (1)
−2 {−1, 0, 1} (3)
−4 {−1, 1} (2)
−7 {−2, 2} (2)

(27)

where F tot
z labels are provided within curly brackets

and energy level degeneracies are listed in parentheses.
Note that while symmetry limits the number of distinct
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µ

0 0.2 0.4 0.6 0.8 1

E
in

t R
5
 [

R
y
d

 a
B5
]

-3

-2

-1

0

1

2

3

4

(2)

(2)

(3)

(1)

(2)

(4)

(1)

(1) F
z

tot
 = ±3

F
z

tot
 = ±2

F
z

tot
 = ±1

F
z

tot
 = 0

FIG. 5: Quadrupole-quadrupole interaction energy spectrum
as a function of spin-orbit coupling parameter µ. We have
plotted EintR

5 in order to remove the 1/R5 dependence on
inter-acceptor separation R. Line colors denote different F tot

z

quantum number labels. Two-color dashed lines are labeled
by both colors. Level degeneracy is indicated in parentheses.
All µ dependence derives from a Q2

0 prefactor, so there is no
level crossing as a function of µ.

energy levels to ten, two additional, accidental degen-
eracies (the equivalence of a 0-level and a ±1-level at
E = −2Q2

0/R
5 and the equivalence of a ±1-level and a

±3-level at E = 3Q2
0/R

5) have reduced the number of
distinct energy levels from ten down to eight.
This is clearly a far richer energy spectrum than the

singlet-triplet spectrum of the hydrogen molecule, with
eight levels instead of two. And the ground state is two-
fold degenerate, with F tot

z = ±2, in contrast to the non-
degenerate singlet ground state of the hydrogen molecule.
That said, the structure of this energy spectrum is sur-
prisingly universal (due to the vanishing of the 2-2 term
in Sec. III) with only the prefactor depending on the
spin-orbit parameter µ or inter-acceptor separation R.
We plot the energy spectrum as a function of µ in Fig. 5
and as a function of R in Fig. 6. Since all µ and R de-
pendence enters through the prefactor, there is no level
crossing as a function of these parameters. Due to the
spherical symmetry of the Baldereschi-Lipari single ac-
ceptor Hamiltonian, this spectrum is also independent of
R̂, the direction from one acceptor to the other. If one
sets R̂ 6= ẑ in Eq. 25, the Hamiltonian matrix is different
and more complicated, but its eigenvalues are the same.
We can therefore characterize the quadrupole-

quadrupole interaction by a single interaction parameter

J(R, µ) ≡ Q0(µ)
2

R5
(28)

with the seven excited-state energy levels separated from
the ground state by 3J , 5J , 7J , 8J , 10J , 13J , and 15J ,
respectively. Since Q0 is a function of µ, J is in units

R [a
B
]

5 6 7 8 9 10

E
in

t [
R

y
d

]

×10
-4

-1.5

-1

-0.5

0

0.5

1

1.5

2

F
z

tot
 = ±3

F
z

tot
 = ±2

F
z

tot
 = ±1

F
z

tot
 = 0

µ = 0.77

FIG. 6: Quadrupole-quadrupole interaction energy spectrum
as a function of inter-acceptor separation R, for µ = 0.77,
which is the spin-orbit coupling parameter for GaAs. Line col-
ors denote different F tot

z quantum number labels. Two-color
dashed lines are labeled by both colors. All R dependence
derives from a 1/R5 prefactor, so there is no level crossing as
a function of R.

of effective Rydbergs, and R is in units of effective Bohr
radii, the interaction strength, measured via the splitting
between the ground state and the first excited state, 3J ,
is material dependent. In Ge, for example, a splitting of
1 µeV is obtained forR=42 nm. The same 1 µeV splitting
is obtained in GaAs for R=24 nm, in Si for R=20 nm, in
InP for R=19 nm, and in ZnTe for R=12 nm (based on
parameter values from Table I of Ref. 26). (Note that our
assumptions of large spin-orbit coupling and small cubic
corrections are less valid for Si than the other materials.)
The dependence of the splitting on inter-acceptor separa-
tion, in each material, then follows from the 1/R5 factor
in Eq. (28).

V. CONCLUSIONS

We have developed a quadrupole-quadrupole model
to describe the interaction between well-separated ac-
ceptors in doped semiconductors. We modeled indi-
vidual acceptors via the four-fold degenerate ground-
state wave functions of the Baldereschi-Lipari spheri-
cal model26. Since such acceptors lack monopole or
dipole moments but have nonzero quadrupole moments,
the dominant interaction, for large inter-acceptor separa-
tion R, is the electric quadrupole-quadrupole interaction.
We calculated the matrix elements of the quadrupole
tensor as a function of spin-orbit coupling parameter
µ. Results were far simpler than expected, with all µ-
dependence entering via a single prefactor, Q0(µ), that
multiplies all tensor components for all matrix elements.
We traced this simplicity to a mathematical happen-
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stance, the nontrivial vanishing of a particular Wigner

6-j symbol,

{

2 2 2
3
2

3
2

3
2

}

= 0. Deriving the quadrupole-

quadrupole interaction Hamiltonian as a function of the
two quadrupole tensors, we calculated its matrix ele-
ments between acceptor-pair product states and diago-
nalized to find the sixteen-state energy spectrum, with
eigenstates labeled by F tot

z quantum numbers. Due to
the simplicity of the quadrupole-tensor matrix elements,
we were able to calculate this acceptor-pair energy spec-
trum in closed form. It is an eight-level spectrum [see
Eq. (27)] controlled by a single interaction parameter,
J(R, µ) = Q0(µ)

2/R5, where the seven excited-state en-
ergy levels are separated from the ground state by 3J , 5J ,
7J , 8J , 10J , 13J , and 15J , respectively. From low energy
to high, the degeneracy of these eight levels is 2, 2, 3, 1,
2, 4, 1, and 1. In contrast to the singlet ground state of
the hydrogen molecule, the ground state here is two-fold
degenerate, corresponding to F tot

z = ±2. Since all R and
µ dependence enters via J , there are no level crossings
as a function of either parameter. The acceptor-acceptor
interaction is strongest for intermediate spin-orbit cou-
pling, vanishing in both the µ → 0 and µ → 1 limits
where the acceptor quadrupole moment vanishes. It de-
cays as a 1/R5 power law with increasing inter-acceptor
separation and, within the spherical acceptor model, it
is independent of the direction, R̂, from one acceptor to
the other.

In the future, we plan to improve upon these results
by including cubic corrections to the Baldereschi-Lipari
spherical acceptor model [due to the previously neglected
δ terms in Eq. (2)]. Though such corrections are typically
small, they are larger than typical in silicon and therefore
of interest. The effect of small cubic corrections on the
single-acceptor eigenstates was studied perturbatively, by
Baldereschi and Lipari, in Ref. 27. While some single-
acceptor excited-state degeneracies are split by cubic cor-
rections, the single-acceptor ground states (on which we
have based the present calculation) remain four-fold de-
generate, shifting together in energy. The single-acceptor
ground-state wave functions, however, can become more
complex in the presence of cubic corrections, with an-
gular momentum states of all even L contributing, not
just the L=0 and L=2 states of Eq. (4). These addi-
tional terms have the potential to modify the acceptor
quadrupole moment and to alter the acceptor-pair en-
ergy spectrum by shifting energy levels and lifting the
accidental degeneracies discussed in Sec. IVC. And we
expect their inclusion to introduce some anisotropy to
the acceptor-acceptor interaction, making the interaction
dependent on the direction, R̂, from one acceptor to the
other. It will therefore be instructive to study such ef-
fects, both perturbatively in δ/µ, as should be sufficient
for most semiconductors since δ/µ ≪ 1, and nonpertur-
batively if possible, as may be necessary for Si where
δ/µ ≈ 1/2.

We also intend to apply our results to the develop-
ment of a strong disorder renormalization group48–51

(SDRG) scheme for studying the thermodynamic proper-
ties of acceptor-doped semiconductors52. The Bhatt-Lee
SDRG technique49,50, developed to study donor-doped
semiconductors, assumes a two-level interaction spec-
trum where the singlet-triplet splitting decays exponen-
tially with inter-donor separation. We plan to general-
ize their technique to the eight-level spectrum derived
herein, with J decaying as a 1/R5 power law, in order to
apply it to acceptor-doped semiconductors.
We are hopeful that the surprisingly simple, closed-

form results derived herein will serve as a guide for ex-
perimenters who are working to control two-qubit inter-
actions in quantum computing implementations based on
acceptor spins. The large inter-acceptor separation limit
that we have considered should be directly relevant to the
dilute dopant concentrations typical in such experiments.
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Appendix A: Wigner-Eckart Theorem

The Wigner-Eckart theorem30,33,53–56 states that for
any spherical tensor operator T q

k of rank k

〈α′j′m′|T q
k |αjm〉 = 〈mq|j′m′〉jk〈α′j′||Tk||αj〉 (A1)

where |αjm〉 is an angular momentum eigenstate of az-
imuthal quantum number j, magnetic quantum num-
ber m, and additional quantum numbers collectively la-
beled α, 〈mq|j′m′〉jk is the Clebsch-Gordan coefficient
from the j × k Clebsch-Gordan table connecting the
|jm〉|kq〉 uncoupled state to the |j′m′〉 coupled state, and
〈α′j′||Tk||αj〉 is known as the reduced matrix element,
which is notably independent of m, m′, and q. Since the
five ℓ=2 spherical harmonics define a rank-2 spherical
tensor, this applies directly to the case at hand.
For purely orbital angular momentum states, |αjm〉 =

|LLz〉 = Y Lz

L (θ, φ), the matrix elements of spherical har-
monics are the solid-angle integrals of the product of
three spherical harmonics

〈L′L′
z|Y m

ℓ |LLz〉 =

∫

Y
L′

z

L′

∗
Y m
ℓ Y Lz

L dΩ

= 〈mLz|L′L′
z〉ℓL〈L′||Yℓ||L〉 (A2)
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where the second equality is due to the Wigner-Eckart
theorem. Since such integrals have known solutions56,
the values of the reduced matrix elements in this special
(purely orbital) case are known to be

〈L′||Yℓ||L〉 =
√

(2ℓ+ 1)(2L+ 1)

4π(2L′ + 1)
〈00|L′0〉ℓL ≡ CL′

ℓL

(A3)

where CL′

ℓL is a shorthand notation that we will use herein

and we note that CL′

ℓL = 0 if ℓ+L+L′ is an odd integer.
For coupled (not purely orbital) angular momentum

states, the Wigner-Eckart theorem still holds, though re-
duced matrix elements are not simply given by Eq. (A3).
For the |LJFFz〉 states that appear in the Baldereschi-
Lipari wave functions, F is the azimuthal quantum num-
ber, Fz is the magnetic quantum number, and L and J
are the additional quantum numbers represented by α in
Eq. (A1). Thus, for these coupled states, the Wigner-
Eckart theorem tells us that

〈L′JFF ′
z|Y m

ℓ |LJFFz〉 = 〈mFz |FF ′
z〉ℓF 〈L′JF ||Yℓ||LJF 〉

(A4)
where 〈L′JF ||Yℓ||LJF 〉 is the reduced matrix element
which, very importantly, does not depend on Fz, F

′
z, or

m.
In the matrix element calculations of Appendix B, we

take advantage of both of the above applications of the
Wigner-Eckart theorem.

Appendix B: Matrix Element Calculation

In this Appendix, we calculate the four coupled-state
matrix elements of ℓ=2 spherical harmonics that appear
in Eq. (10), referred to as the 0-0, 2-0, 0-2, and 2-2 terms.
Using Clebsch-Gordan coefficients, we expand the cou-
pled eigenstates |LJFFz〉 in the uncoupled basis of prod-
uct states |LLz〉|JJz〉

|0 3
2
3
2Fz〉 ≡ |0 0〉L| 32 Fz〉J (B1)

|2 3
2
3
2Fz〉 ≡

2
∑

Lz=−2

〈Lz Fz-Lz| 32 Fz〉
2
3
2

× |2 Lz〉L | 32 Fz-Lz〉J (B2)

where the subscripts L and J clarify orbital angular mo-
mentum kets versus spin angular momentum kets and
〈Lz Fz-Lz| 32 Fz〉

2
3
2

is the Clebsch-Gordan coefficient

found in the 2× 3
2 Clebsch-Gordan table that links the un-

coupled state |2 Lz〉| 32 Fz-Lz〉 to the coupled state | 32 Fz〉.
The 0-0 term is easily shown to be zero.

〈0 3
2
3
2F

′
z|Y m

2 |0 3
2
3
2Fz〉 = 〈0 0|Y m

2 |0 0〉L〈32 F ′
z | 32 Fz〉J

= C0
20 〈m 0|0 0〉20 δF ′

z
,Fz

= 0 (B3)

Here, the second equality is due to the Wigner-Eckart
theorem, via Eq. (A2), as well as the orthonormal-
ity of the spin eigenstates. The result is zero because
the Clebsch-Gordan coefficient is zero, since the triple
(2, 0, 0) violates the triangle rule (one cannot add spin-2
to spin-0 and get spin-0).

Expanding the 2-0 term, we find that

〈2 3
2
3
2F

′
z|Y m

2 |0 3
2
3
2Fz〉

=

2
∑

L′

z
=−2

〈L′
z F ′

z-L
′
z| 32 F ′

z〉2 32
〈2 L′

z|Y m
2 |0 0〉L

×〈32 F ′
z-L

′
z| 32 Fz〉J

=

2
∑

L′

z
=−2

〈L′
z F ′

z-L
′
z| 32 F ′

z〉2 32
[

C2
20〈m 0|2 L′

z〉20
]

δL′

z
,F ′

z
-Fz

= C2
20〈F ′

z-Fz Fz | 32 F ′
z〉2 3

2
〈m 0|2 F ′

z-Fz〉20

= 1√
4π

〈m Fz| 32 F ′
z〉2 32

(B4)

where, once again, the second equality makes use of
the Wigner-Eckart theorem [Eq. (A2)] and the orthonor-
mality of the spin eigenstates. The fourth equality fol-
lows from using Eq. (A3) to compute C2

20 = 1/
√
4π

and from noting that 〈m 0|2 F ′
z-Fz〉20 = δm,F ′

z
−Fz

and

〈m Fz| 32 F ′
z〉2 32

∝ δm,F ′

z
−Fz

. The matrix element is

therefore only nonzero if F ′
z = Fz + m. Plugging in

the Clebsch-Gordan coefficients from the 2 × 3
2 table57

yields matrix element values for all m, Fz , and F ′
z .

For each m, resulting values of 〈2 3
2
3
2F

′
z|Y m

2 |0 3
2
3
2Fz〉 are

given in row F ′
z = {−3/2,−1/2, 1/2, 3/2} and column

Fz = {−3/2,−1/2, 1/2, 3/2} of the following 4 × 4 ma-
trices:

m = −2 → 1
5

√

5
2π







0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0







m = −1 → 1
5

√

5
2π







0 −1 0 0
0 0 0 0
0 0 0 1
0 0 0 0







m = 0 → 1
5

√

5
2π











1√
2

0 0 0

0 −1√
2

0 0

0 0 −1√
2

0

0 0 0 1√
2











m = 1 → 1
5

√

5
2π







0 0 0 0
1 0 0 0
0 0 0 0
0 0 −1 0







m = 2 → 1
5

√

5
2π







0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0






(B5)
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Expanding the 0-2 term, we see that

〈0 3
2
3
2F

′
z|Y m

2 |2 3
2
3
2Fz〉

=

2
∑

Lz=−2

〈Lz Fz-Lz| 32 Fz〉2 32
〈0 0|Y m

2 |2 Lz〉L

×〈32 F ′
z| 32 Fz-Lz〉J

=
2

∑

Lz=−2

〈Lz Fz-Lz| 32 Fz〉
2
3
2

[

C0
22〈m Lz|0 0〉22

]

δLz,Fz-F ′

z

= C0
22〈-m F ′

z| 32 Fz〉
2
3
2
〈m -m|0 0〉22

= 1√
4π

〈m Fz | 32 F ′
z〉2 3

2
(B6)

where the final equality is obtained by taking advan-
tage of the symmetries of the Clebsch-Gordan coefficients
(see Eqs. (3.5.14) to (3.5.16) of Ref. 30) to note that

C0
22 =

√
5C2

20, 〈m -m|0 0〉22 = (−1)m√
5

〈m 0|2 m〉20, and
〈-m F ′

z| 32 Fz〉
2
3
2
= (−1)−m〈m Fz | 32 F ′

z〉2 3
2
. Comparing

with Eq. (B4), we see that the 0-2 term and the 2-0 term
are equal:

〈0 3
2
3
2F

′
z |Y m

2 |2 3
2
3
2Fz〉 = 〈2 3

2
3
2F

′
z |Y m

2 |0 3
2
3
2Fz〉. (B7)

Expanding the 2-2 term yields

〈2 3
2
3
2F

′
z |Y m

2 |2 3
2
3
2Fz〉

=
2

∑

L′

z
=-2

2
∑

Lz=-2

〈L′
z F ′

z-L
′
z| 32 F ′

z〉2 32
〈Lz Fz-Lz| 32 Fz〉

2
3
2

×〈2 L′
z| Y m

2 |2 Lz〉L〈32 F ′
z-L

′
z| 32 Fz-Lz〉J

=

2
∑

L′

z
=-2

2
∑

Lz=-2

〈L′
z F ′

z-L
′
z| 32 F ′

z〉2 32
〈Lz Fz-Lz| 32 Fz〉

2
3
2

×
[

C2
22〈m Lz|2 L′

z〉22
]

δL′

z
,Lz+F ′

z
-Fz

= C2
22

2
∑

Lz=-2

〈Lz+m Fz-Lz| 32 F ′
z〉2 32

〈Lz Fz-Lz| 32 Fz〉
2
3
2

×〈m Lz|2 Lz+m〉22 (B8)

where, first, we expressed the coupled |2 3
2
3
2Fz〉 states in

the uncoupled product state basis via Eq. (B2). Next, we
used the Wigner-Eckart theorem, via Eq. (A2), to write
the orbital matrix element 〈2L′

z|Y m
2 |2Lz〉L as the prod-

uct of the reduced matrix element C2
22 = −

√

5
14π and

the Clebsch-Gordan coefficient 〈mLz|2L′
z〉22. Finally, we

used the spin-state-orthonormality Kronecker delta to
eliminate one of the sums, and we made use of the fact

that the first Clebsch-Gordan coefficient vanishes unless
F ′
z = Fz +m. What remains is the sum of products of

three Clebsch-Gordan coefficients. It is straightforward
to calculate these matrix elements for any m, Fz , and F ′

z

by looking up the coefficients in the 2 × 3
2 and 2× 2 ta-

bles and plugging in to the above. But it turns out that,
thanks to the Wigner-Eckart theorem, we need only cal-
culate one of them. Consider the F ′

z = Fz = 1
2 case. We

know from the start that this can only be nonzero for
m = 1

2 − 1
2 = 0. Plugging in from the Clebsch-Gordan

tables57, we find that this particular matrix element is
zero.

〈2 3
2
3
2
1
2 |Y

0
2 |2 3

2
3
2
1
2 〉

= C2
22

2
∑

Lz=-2

〈Lz
1
2 -Lz| 32 1

2 〉2 32
〈Lz

1
2 -Lz| 32 1

2 〉2 3
2

×〈0 Lz|2 Lz〉22

= C2
22

[

−
√

2
5

√

2
5

√

1
14 −

√

1
5

√

1
5

√

2
7 +

√

2
5

√

2
5

√

2
7

]

= −1
7
√
5π

[−1− 1 + 2]

= 0 (B9)

Recall from Appendix A that the Wigner-Eckart theorem
can also be applied directly to matrix elements between
coupled angular momentum states. Thus, via Eq. (A4),
we can write

〈2 3
2
3
2F

′
z|Y m

2 |2 3
2
3
2Fz〉 = 〈mFz | 32F

′
z〉2 32

〈2 3
2
3
2 ||Y2||2 3

2
3
2 〉
(B10)

Since the last factor above, the reduced matrix element,
is independent of m, Fz, and F ′

z, it is the same for all
cases and can be calculated from any case for which the
Clebsch-Gordan coefficient is nonzero. For the case we
considered above, where F ′

z = Fz = 1
2 and m = 0, the

Clebsch-Gordan coefficient is 〈0 1
2 | 32 1

2 〉2 32
= −1/

√
5 6= 0.

Thus, since we found that the matrix element is zero, the
reduced matrix element must itself be zero.

〈2 3
2
3
2 ||Y2||2 3

2
3
2 〉 =

〈2 3
2
3
2
1
2 |Y 0

2 |2 3
2
3
2
1
2 〉

〈0 1
2 | 32 1

2 〉2 3
2

=
0
−1√
5

= 0 (B11)

Plugging into Eq. (B10), we see that

〈2 3
2
3
2F

′
z |Y m

2 |2 3
2
3
2Fz〉 = 0 (B12)

for all m, Fz , and F ′
z. This is a surprising and remarkable

result, which we make use of in Sec. III B and discuss
further in Sec. III C.
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