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The layered semiconductor InSe has a wide range of attractive electronic and optoelectronic
properties, in which the effective mass of the charge carriers plays a key role. Here, we study from
first principles the many-body renormalization of the electron effective mass in γ-InSe, taking into
account the effects of both electron-electron and electron-phonon interactions. Electron-electron
interaction, treated within the many-body GW approximation, leads to around 15% of increase in
the in-plane effective mass over the result from density functional theory, and a more than threefold
increase in the out-of-plane electron effective mass. The surprisingly large directional anisotropy
in the mass renormalization is explained in terms of the symmetries of band-edge wavefunctions.
The mass enhancement induced by electron-phonon interactions, which we find to mainly originate
from Fröhlich electron-phonon coupling, is less than 10% at room temperature, indicating weak
polaronic effect. After including the many-body renormalization effects, the calculated electron
effective masses of InSe are 0.12 and 0.09 in the in-plane and out-of-plane directions, respectively.

I. INTRODUCTION

With a measured room temperature electron mobil-
ity exceeding 1000 cm2/Vs in multilayer samples, InSe
has recently emerged as a promising layered semiconduc-
tor for a new generation of high-performance, energy-
efficient, and flexible electronics [1–9]. Such a large car-
rier mobility in bulk and multilayer systems has been con-
firmed by recent calculations based on the ab initio Boltz-
mann transport equation approach [10]. The large car-
rier mobility of multilayer InSe can be explained in part
by the small electron effective mass (m∗) of InSe, which
was experimentally determined to be around 0.14me and
0.08me along the in-plane and out-of-plane directions re-
spectively [11], where me represents the rest mass of an
electron. Density functional theory (DFT) calculations
within the local density approximation [12–14], on the
other hand, give the corresponding in-plane and out-of-
plane effective masses to be 0.10me and 0.024me, respec-
tively [10]. The discrepancy between the DFT and ex-
perimental results raises the interesting question of how
the electron effective masses of InSe are renormalized by
the many-body interactions in the material.

Many-body interactions in the forms of electron-
electron interaction (EEI) and electron-phonon interac-
tion (EPI) can both strongly renormalize the effective
mass of charge carriers in solids [15–17]. The considera-
tion of both EEI and EPI is therefore needed for an accu-
rate determination of carrier effective mass, and the cor-
responding mass renormalization provides insights into
the nature and strength of many-body interactions in
a solid. The influence of many-body interactions on the
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carrier effective mass of InSe is so far not well understood.
In this work, we employ state-of-the-art first-principles
computational methodologies based on many-body per-
turbation theory to calculate the effective mass enhance-
ment of InSe that arises from both EEI and EPI.

We find strong directional anisotropy in the electron
effective mass renormalization by EEI. The EEI-induced
electron effective mass enhancement in the out-of-plane
direction is more than an order of magnitude larger than
the mass enhancement in the in-plane direction (more
than threefold versus 15%), which is closely related to
the symmetry of band-edge wavefunctions. Furthermore,
we find less than 10% of EPI-induced electron effective
mass enhancement in both the in-plane and out-of-plane
directions at room temperature. This effect originates
from the weak Fröhlich coupling that dominates the EPI
in the system.

The paper is organized as follows. In Sec. II we de-
scribe the computational methodology for the calcula-
tions of the EEI and EPI in InSe. Sec. III presents the
main results, including the effects of both EEI and EPI on
the electron effective mass renormalization. In Sec. IV we
discuss our calculation results in relation to experimental
measured electron effective mass of InSe. In Sec. V we
summarize our key findings and present the conclusions.

II. METHODOLOGY

The atomistic structure of γ-InSe is shown in Fig. 1(a).
Each monolayer of InSe has a hexagonal lattice with
point group symmetry C3v, in which two atomic layers
of indium are sandwiched between two selenium layers,
as illustrated in Fig. 1(b). In bulk γ-InSe, monolayers
stack vertically such that the In sublattice of a given
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FIG. 1. The atomistic model and electronic band structure of γ-InSe. (a) Side view of the structural model, showing the
layer stacking sequence of the bulk. The rhombohedral unit cell is shown alongside, and the in- and out-of-plane directions are
indicated. (b) Top view of InSe monolayer and a trigonal-prismatic structural unit in the monolayer. The latter corresponds to
the shaded region on the top view of the monolayer structure. (c) The first Brillouin zone corresponding to the rhombohedral
unit cell. (d) The electronic band structures from many-body G0W0 calculation, as well as density functional theory (DFT)
calculation within the local density approximation (LDA). The G0W0 and DFT-LDA results are represented by blue and gray
lines respectively. The zero of energy corresponds to the energy maximum of the valence band.

layer sits on top of the Se sublattice that belongs to the
layer below. The monolayers are held together by weak
dispersive forces. Different layer stacking geometries can
lead to different structural polymorphs, such as the β
and ε phases [18]. The most commonly observed phases
of InSe are the γ and β phases, and their electronic and
transport properties were previously found to be rather
similar [10]. The smallest translationally invariant unit
of γ-InSe can be chosen to be a rhombohedral primitive
cell with two In and two Se atoms, as shown in Fig. 1(a).

We obtain the electronic structure of InSe by using
DFT [12] and subsequently calculate the quasiparticle
band structures renormalized by both EEI and EPI.
The EEI is treated using many-body perturbation the-
ory in the GW approximation [19, 20], while the ef-
fect of EPI is included by calculating the Fan-Migdal
electron self-energy due to EPI [17, 21, 22]. Details
of the DFT, GW , and electron-phonon calculations are
presented below. The effective mass tensor of InSe is
subsequently obtained from the DFT and quasiparticle
band structures by calculating the second derivative of
band-edge energies E with respect to the wavevecor k
as m∗ij = ~2(∂2E/∂ki∂kj)

−1. We focus on the effective
mass of the electrons in the conduction band as the elec-
tron mobility of InSe is much higher than the hole mo-
bility [10], making the electron effective mass a primary
subject of interest in many practical applications.

A. DFT calculations

DFT calculations of bulk γ-InSe are carried out within
the local density approximation (LDA) [14] as imple-
mented in the Quantum ESPRESSO code [23]. For
the DFT calculations we use the experimental lattice
constants of γ-InSe as reported in Ref. 24, and per-

form structural optimization of the internal atomic co-
ordinates, with a force convergence criterion of 10−5

Ry/Bohr. We use the norm-conserving pseudopotentials
of the Troullier–Martins form [25], treating the semicore
In 4d electrons as valence electrons. A plain-wave cutoff
energy of 100 Ry is used to expand the electronic wave-
functions. The Brillouin zone is sampled using a shifted
8×8×8 k-point mesh. Spin-orbit coupling (SOC) is not
included as the effect of SOC on the dispersion of the
conduction band edge is insignificant [10].

B. GW calculations

On top of the DFT band structure, we calculate the
quasiparticle band dispersion of InSe within GW many-
body perturbation theory [19, 20], as implemented in the
Yambo code [26]. The GW self-energy is evaluated in the
G0W0 approximation as Σ = iG0W0, where G0 denotes
the electron Green’s function calculated from the DFT
Kohn-Sham eigenfunctions ψnk and eigenvalues εnk cor-
responding to the band index n and the wavevector k.
The screened Coulomb interaction W0 is evaluated using
the random phase approximation [16, 27]. The frequency
dependence of the dielectric matrix in the evaluation of
W0 is calculated using the Godby-Needs plasmon-pole
model [28]. The renormalized GW quasiparticle energies
Enk are related to the DFT eigenvalues εnk as [16]:

Enk = εnk + ZEEI
nk 〈ψnk|Σ(εnk)− Vxc|ψnk〉, (1)

where ZEEI
nk is the quasiparticle renormalization factor

associated with EEI, and Vxc denotes the exchange-
correlation potential.

For the G0W0 calculations of the quasiparticle energies
we use a 60 Ry plane-wave cutoff for the exchange self-
energy, a 15 Ry cutoff for the polarizability, 500 bands,
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and the terminator technique of Ref. 29 for accelerated
convergence with respect to the number of bands. These
parameters are sufficient to converge the quasiparticle
energy within 0.05 eV. The G0W0 quasiparticle ener-
gies are calculated on a Γ-centered 6×6×6 grid, and are
subsequently interpolated on an arbitrary k-mesh using
Wannier interpolation [30]. We note that our calcula-
tions are for bulk InSe and therefore do not involve the
convergence issues unique to the GW calculations of 2D
materials [31, 32].

C. Electron-phonon calculations

For the calculation of the EPI-renormalized effective
mass we use the EPW code [33]. Starting from the G0W0

electronic band structure, we calculate the Fan-Migdal
electron self-energy Σnk at electron energy ε and tem-
perature T as [17, 21, 22]:

Σnk(ε;T ) =
∑
mν

∫
dq

ΩBZ
|gmnν(k,q)|2

×
∑
±

nqν + (1± [2fmk+q − 1])/2

ε− εmk+q ± ~ωqν − iδ
.

(2)

Here, εmk denotes the energy of the band m and wavevec-
tor k, ωqν represents the vibrational frequency for the
phonon branch ν and wavevector q, gmnν(k,q) are the
electron-phonon matrix elements, and the integral is car-
ried out over the first Brillouin zone whose volume is ΩBZ.
The effect of temperature is included through the phonon
occupation number nqν and the Fermi-Dirac distribution
function fnk of the electrons.

The electron-phonon matrix elements gmnν(k,q) are
initially calculated on a 6×6×6 grid for both the electron
and phonon wavevectors using the Quantum ESPRESSO
code [23], and subsequently interpolated onto fine grids
using the Wannier interpolation implemented in Wan-
nier90 and EPW [30, 33, 34]. The dielectric constants
and Born effective charges are calculated using density
functional perturbation theory [35]. Both shifted and
unshifted Monkhorst-Pack meshes up to 28× 28× 28 are
used to obtain converged results. The converged values
are used for the interpolation of Fröhlich electron-phonon
matrix elements [36]. Brillouin zone integration in the
electron-phonon self-energy is carried out by sampling
the phonon wavevector q according to a random Cauchy
distribution centered at Γ point, with the weight of each
q point determined by its Voronoi volume. More than
one million q points are used for the Brillouin-zone in-
tegration. In our calculations of effective mass enhance-
ment, the Debye-Waller contribution is not included as
the Debye-Waller self-energy varies smoothly as a func-
tion of k within the same band [17], and therefore it can
be neglected in the effective mass calculation [37].

Using the expression for electron-phonon self-energy
in Eq. (2), we calculate the EPI-renormalized quasiparti-

TABLE I. The bandgap (Eg), in-plane effective mass (m∗xx),
and out-of-plane effective mass (m∗zz) of γ-InSe obtained from
DFT and G0W0 calculations. The effective masses are mea-
sured in units of me, which represents the rest mass of an
electron.

Eg (eV) m∗xx/me m∗zz/me

DFT 0.21 0.103 0.024

G0W0 0.81 0.118 0.086

cle energies using the Brillouin-Wigner perturbation the-
ory [17] as:

Enk = εnk + ZEPI
nk ReΣnk(εnk), (3)

where Enk is the EPI-renormalized quasiparticle energy,
ReΣnk(εnk) the real part of the Fan-Migdal electron self-
energy, and ZEPI

nk = [1−Re(∂Σnk/∂ε)|εnk
]−1 is the quasi-

particle renormalization factor associated with the EPI.
By making the approximation ZEPI

nk = 1, the Rayleigh-
Schrödinger approach is obtained. The EPI-renormalized
effective mass is then calculated from the second deriva-
tive of Enk with respect to k. Denoting by mQP,∗ and m∗

the EPI-renormalized effective mass and the G0W0 effec-
tive mass respectively, the effective mass enhancement
parameter λ associated with EPI is calculated through
the relation mQP,∗ = m∗(1 + λ).

III. RESULTS

A. Effective mass renormalization by
electron-electron interactions

Fig. 1d shows the calculated G0W0 quasiparticle band
structure of γ-InSe together with the DFT band struc-
ture. The calculated DFT and G0W0 bandgaps (Eg) as
well as the in- and out-of-plane electron effective masses
(denoted by m∗xx and m∗zz respectively) are listed in Ta-
ble I. The inclusion of many-body EEI in the G0W0 ap-
proximation leads to an increase of Eg from 0.21 to 0.81
eV, which is accompanied by increases of both m∗xx and
m∗zz. However, a significant difference exists in the mag-
nitude of mass enhancement between in- and out-of-plane
directions. The inclusion of EEI results in an increase of
the in-plane effective mass m∗xx by 15%, from 0.103 to
0.118. In contrast, the out-of-plane effective mass m∗zz
increases by more than 350%, from 0.024 to 0.086.

We find that the surprisingly large directional
anisotropy in the mass enhancement of γ-InSe by EEI can
be explained using k ·p perturbation theory. Within the
theory, the effective mass of the conduction-band elec-
trons can be written as [38]:

me

m∗ij
= δij +

2

me

∑
m 6=c

〈ψc|pi|ψm〉〈ψm|pj |ψc〉
Ec − Em

, (4)

where δij denotes the Kronecker delta, and the summa-
tion is over the band index m but excludes the lowest con-
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TABLE II. Character table of the C3v point group. The three
symmetry classes of the point-symmetry group are identity
(E), two three-fold rotations (C3v), and three vertical mirror
planes parallel to the threefold axis (σv). The three irre-
ducible representations are denoted by A1, A2, and E.

C3v E 2C3 3σv

A1 +1 +1 +1

A2 +1 +1 −1

E +2 −1 0

duction band labelled as c. The Bloch wavefunctions and
the corresponding band energies at the crystal momen-
tum corresponding to the conduction-band minimum, i.e.
the Z point in the first Brillouin zone, are denoted by
|ψm〉 and Em, respectively. pi represents the component
of the momentum operator. Based on Eq. (4), the in- and
out-of-plane effective mass can be written respectively as:

me

m∗xx
= 1 +

2

me

∑
m 6=c

|〈ψm|px|ψc〉|2

Ec − Em
, (5)

me

m∗zz
= 1 +

2

me

∑
m 6=c

|〈ψm|pz|ψc〉|2

Ec − Em
. (6)

These equations indicate that only the states |ψm〉 that
are energetically close to the conduction band-minimum
state |ψc〉 and which have non-zero momentum matrix
elements 〈ψm|pi|ψc〉 will have a significant influence on
the electron effective mass. These states can be deduced
from group-theoretical considerations of the symmetry of
the wavefunctions.

Bulk γ-InSe has a point group symmetry C3v with re-
spect to either Se or In atoms. The small-group of the
wavevector at Z is also C3v. The Bloch wavefunctions
at Z can therefore be classified according to the three
irreducible representations of the C3v group, which are
denoted by A1, A2, and E. The corresponding character
table of the C3v point group is shown in Table II.

In Fig. 1(d) we label the symmetry representations of
the wavefunctions at Z. By analyzing the wavefunctions
and their transformations under symmetry operations,
we find that both the valence and conduction band-edge
states, represented by |ψv〉 and |ψc〉 respectively, derive
from the s and pz orbitals of In/Se atoms and belong
to the A1 representation. On the other hand, the four
valence-band wavefunctions at Z below the topmost va-
lence band, which are separated into two subgroups due
to their two-fold degeneracy, derive from the px/py or-
bitals of In/Se atoms and belong to the E representa-
tion. In the C3v group, the momentum operators px and
pz transform as E and A1 respectively. Therefore, ac-
cording to the direct product relationships E ⊗ A1 = E
and A1 ⊗ A1 = A1 [39], px|ψc〉 transforms as E, and
pz|ψc〉 transforms as A1. It then follows from group the-
ory that the matrix element 〈ψm|px|ψc〉 is non-zero only
when |ψm〉 belongs to the irreducible representation E,

and 〈ψm|pz|ψc〉 is non-zero only when |ψm〉 belongs to
the irreducible representation A1.

The above symmetry selection rules lead to the con-
clusion that 〈ψv|px|ψc〉 = 0 and 〈ψv|pz|ψc〉 6= 0. On the
other hand, opposite results hold for the momentum ma-
trix elements between |ψc〉 and the four states below |ψv〉
at Z. Our explicit calculations of the momentum ma-
trix elements based on the DFT wavefunctions confirm
the above results. Furthermore, the results indicate that
〈ψv−1|px|ψc〉 and 〈ψv−2|px|ψc〉 are the dominant px ma-
trix elements, where |ψv−1〉 and |ψv−2〉 represent the two
energy-degenerate states below |ψv〉 respectively. These
results allow us to write the expressions for the in- and
out-of-plane effective mass as:

me

m∗xx
≈ 1 +

2

me

|〈ψv−1|px|ψc〉|2 + |〈ψv−2|px|ψc〉|2

Eg + ∆Ev,v−1
, (7)

me

m∗zz
≈ 1 +

2

me

|〈ψv|pz|ψc〉|2

Eg
, (8)

where ∆Ev,v−1 = Ev − Ev−1 represents the energy dif-
ference between |ψv〉 and |ψv−1〉. Our DFT and G0W0

calculations give very close values of ∆Ev,v−1, both of
which are around 1.1 eV. On the other hand, the DFT
and G0W0 bandgaps, with Eg equal to 0.21 eV and 0.81
eV respectively, exhibit a much larger difference and are
both smaller than ∆Ev,v−1. Comparing the demonina-
tors on the right-hand side of Eq. (7) and Eq. (8), it
is clear that m∗zz will be affected more by a change in
the bandgap induced by EEI than m∗xx. Using the DFT
effective mass data listed in Table I, as well as the cal-
culated values of Eg and ∆Ev,v−1, we determine from
Eq. (7) and Eq. (8) that the EEI-induced change in Eg
would lead to 39% and 395% of increases in m∗xx and
m∗zz, respectively. The one order of magnitude difference
in the effective mass renormalization between m∗xx and
m∗zz is consistent with the direct calculation result that
the in-plane effective mass m∗xx increases by 15% from
DFT to G0W0, whereas the out-of-plane effective mass
m∗xx increases by more than 350%.

B. Effective mass renormalization by
electron-phonon interactions

With the above insight into the influence of EEI on
the electron effective mass of InSe, we now investigate
the effective mass renormalization by EPI. Fig. 2 shows
the calculated electron effective mass enhancement with
respect to the G0W0 effective mass as a function of tem-
perature, for both the in- and out-of-plane components
of the effective mass tensor. The effective mass renormal-
ization increases with temperature, which can be ratio-
nalized by the stronger EPI at higher temperature due to
the increased phonon occupation number. The Brillouin-
Wigner perturbation theory results in smaller mass en-
hancements than those from the Rayleigh-Schrödinger
perturbation theory, consistent with a previous study of
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FIG. 2. Electron effective mass enhancement of γ-InSe in-
duced by EPI. The in- and out-of-plane effective mass en-
hancements are calculated as a function of temperature (T )
using both Rayleigh-Schrödinger and Brillouin-Wigner per-
turbation theory. Top panel: in-plane electron mass enhance-
ment (λxx). Bottom panel: out-of-plane mass enhancement
(λzz).

TABLE III. EPI-induced effective mass renormalization of γ-
InSe at 300 K. The mass enhancement is calculated with re-
spect to the G0W0 effective mass.

In-plane Out-of-plane

m∗xx/me λxx m∗zz/me λzz

G0W0 0.118 – 0.086 –

Brillouin-Wigner 0.123 0.042 0.089 0.027

Rayleigh-Shrödinger 0.126 0.073 0.090 0.048

EPI-induced mass enhancement in a hybrid halide per-
ovskite [37].

The renormalized electron effective masses at 300 K are
listed in Table III. It can be seen that the EPI-induced
mass enhancement is small at room temperature. For
the in-plane effective mass enhancement λxx, the calcu-
lated values are around 0.04 and 0.07 using the Brillouin-
Wigner and Rayleigh-Schrödinger perturbation theory,
respectively. The corresponding out-of-plane mass en-
hancement λzz is even smaller, around 0.03 and 0.05 re-
spectively. These numbers indicate weak polaronic mass
enhancement for the electron carriers in γ-InSe, which is
beneficial for device applications.

To better understand the origin of the weak EPI-
induced mass enhancement, we decompose the mass
enhancement into contributions from different phonon
modes. Based on Eq. (2) and Eq. (3), the EPI-
renormalized quasiparticle energies within the Rayleigh-
Schrödinger perturbation theory can be written as:

Enk = εnk +
∑
ν

ReΣνnk(εnk), (9)

L P B Z X B1 P2Γ Γ F
0
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(a) (b)
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FIG. 3. Calculated phonon spectrum of γ-InSe. The phonons
that exhibit LO-TO splitting are indicated by arrows in (a).
The representative pattern of atomic displacements corre-
sponding to the in-plane Fröhlich phonons are illustrated
in (b).

where the summation is over the phonon branch in-
dex ν, and ReΣνnk(εnk) represents the real-part of the
Fan-Migdal electron-phonon self-energy originated from
the coupling of electron nk with the ν-th phonon
branch. ReΣνnk(εnk) involves an integral over the phonon
wavevector q:

ReΣνnk(εnk) =

∫
dq

ΩBZ

∑
m

[
|gmnν(k,q)|2

×
∑
±

nqν + (1± [2fmk+q − 1])/2

εnk − εmk+q ± ~ωqν

]
.

(10)

As described in Sec. II C, the EPI-renormalized elec-

tron effective mass mQP,∗
ij is calculated from the sec-

ond derivative of Enk with respect to k as mQP,∗
ij =

~2
(
∂2Enk/∂ki∂kj

)−1
, and the mass enhancement factor

λij is calculated through mQP,∗
ij = m∗ij(1 + λij), where

m∗ij represents the G0W0 effective mass. On the basis of
these definitions, from Eq. (9) we can derive the following
relation for λij :

1

1 + λij
= 1 +

m∗ij
~2

∂2

∂ki∂kj

∑
ν

ReΣνnk(εnk). (11)

When λij is small, as in the present case, (1 + λij)
−1 ≈

1 − λij . It follows that λij can be approximately writ-
ten as the sum of the contribution from different phonon
branches, i.e. λij ≈

∑
ν λ

ν
ij , where λνij represents the

mass enhancement calculated when only the contribution
from the phonon branch ν is included:

λνij = −
m∗ij
~2

∂2

∂ki∂kj
[ReΣνnk(εnk)] . (12)

Substitution of Eq. (10) into Eq. (12), we can furthur
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FIG. 4. Decomposition of phonon-mode contribution to the
effective mass enhancement of the electron carriers in InSe,
calculated within the Rayleigh-Schrödinger perturbation the-
ory at 300 K. (a) and (b) represent the results for in-plane and
out-of-plane effective mass enhancement respectively. The
size of magenta circles superimposed on the phonon spectra
is proportional to the relative contribution of each phonon
mode. The results show that the dominant contributions to
the effective mass enhancement originate from the Fröhlich
optical phonons and long-wavelength acoustic phonons.

write λij as:

λij ≈
∑
ν

∫
dq

ΩBZ

(
−
m∗ij
~2

)
∂2

∂ki∂kj

∑
m

[
|gmnν(k,q)|2

×
∑
±

nqν + (1± [2fmk+q − 1])/2

εnk − εmk+q ± ~ωqν

]
.

(13)

We can then compare the contributions of different
phonon modes qν to the effective mass enhancement
λij of electron nk by comparing the following quantity
Θqν
ij (εnk) between different phonon modes:

Θqν
ij (εnk) =− |q|2 ∂2

∂ki∂kj

∑
m

[
|gmnν(k,q)|2

∑
±

nqν + (1± [2fmk+q − 1])/2

εnk − εmk+q ± ~ωqν

]
,

(14)

where |q|2 takes into account the difference in volume
elements in q space within spherical approximation.
The calculated phonon dispersion of γ-InSe is shown in
Fig. 3(a).

0 100 200 300
T (K)

0

0.02

0.04

0.06

0.08

0.10

xx

Total
Fröhlich
Acoustic

FIG. 5. The temperature dependence of phonon-branch con-
tributions to the effective mass enhancement of electron car-
riers in InSe, calculated within the Rayleigh-Schrödinger per-
turbation theory. We plot the in-plane effective mass en-
hancement (λxx) as a function of temperature (T ) and the
respective contributions of the Fröhlich and acoustic phonons
to the mass enhancement. Similar results are found for the
out-of-plane effective mass enhancement.

In Fig. 4 we overlap the relative values of Θqν
ij for the

electron at conduction band minimum at 300 K on the
calculated phonon spectrum of γ-InSe. The values of
Θqν
ij , which are proportional to the size of the super-

imposed circles, correspond to the relative contributions
of different phonon modes qν to the effective mass en-
hancement λij . In the plots we only show circles when
Θqν
ij > 30 meV. The results indicate that the main con-

tributions to the EPI-induced effective mass renormal-
ization at 300 K originate from long-wavelength polar
longitudinal optical (LO) phonons, namely the Fröhlich
optical phonons, as well as long-wavelength acoustic
phonons. The Fröhlich optical phonons, whose energies
are around 25 meV, are indicated on the phonon spec-
trum of γ-InSe in Fig. 3(a). A representative pattern of
the atomic displacements corresponding to the in-plane
Fröhlich phonons is shown in Fig. 3(b).

We have further investigated the temperature depen-
dence of the different phonon-branch contributions to ef-
fective mass enhancement by calculating λνij as a function
of temperature. In calculating λνij using Eq. (10) and
Eq. (12), we converge the self-energy ReΣνnk(εnk) by car-
rying out the Brillouin-zone integration over q according
to a random Cauchy distribution centered at Γ point, as
described in Sec. II C. Fig. 5 shows that the main contri-
bution to the EPI-induced in-plane effective mass renor-
malization at low temperature originates from the in-
teraction of electrons with the Fröhlich optical phonons,
whereas the acoustic contribution exhibits a more rapid
increase with respect to temperature than the Fröhlich
contribution and becomes comparable to the LO contri-
bution at room temperature. This trend can be ratio-
nalized by the smaller energies of the acoustic phonons
as compared to those of the Fröhlich phonons, leading
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TABLE IV. The calculated high-frequency dielectric con-
stants ε∞, static dielectric constants ε0, and Born effective
charges Z∗ of γ-InSe along both the in-plane and out-of-plane
directions. The results are obtained from calculations based
on density functional perturbation theory.

ε∞ ε0 Z∗(In) Z∗(Se)

In-plane 8.8 11.2 2.39 -2.39

Out-of-plane 11.6 12.2 1.18 -1.18

to a more rapid increase of the phonon occupation num-
ber with temperature and the resulting enhanced renor-
malization of the carrier effective mass. Similar phonon-
branch contributions are found for the out-of-plane effec-
tive mass enhancement.

The significant contribution of the Fröhlich interaction
to the effective mass enhancement near room tempera-
ture motivates us to quantify the strength of this inter-
action. For this purpose we employ the simple Fröhlich
model, which considers an isotropic polar medium in
which electrons with parabolic band dispersion and effec-
tive mass m∗ interact with polar LO phonons with a con-
stant energy ~ω0 [40]. Within this model, the strength of
the Fröhlich interaction can be quantified using a dimen-
sionless Fröhlich coupling constant α, whose expression
is given by

α =
e2

4πε0~

(
m∗

2~ω0

)1/2(
1

ε∞
− 1

ε0

)
. (15)

Here, ε∞ and ε0 represent the high-frequency and static
dielectric constants respectively. Although bulk γ-InSe is
not a fully isotropic system, the calculated in- and out-
of-plane band effective masses, as listed in Table III, as
well as the calculated dielectric constants listed in Ta-
ble IV, do not exhibit significant directional anisotropy.
Therefore the isotropic Fröhich model can still provide
useful insight into the strength of Fröhlich interaction in
this system.

Using the calculated in-plane effective mass m∗xx =
0.12, the Fröhlich phonon energy ~ω0 = 25 meV, and
the in-plane dielectric constants ε∞ = 8.8 and ε0 = 11.2,
we obtain α = 0.2. This value places the Fröhlich inter-
action in InSe in the weak coupling regime [40]. In this
regime, the effective mass enhancement λ is related to α
as λ ≈ α/6 [41], from which we obtain λ ≈ 0.033. This
value is very close to the calculated Fröhlich contribu-
tion to the in-plane mass enhancement of InSe within the
Rayleigh-Schrödinger perturbation theory, as seen from
Fig. 5. We additionally calculate the value of α using
the measured in-plane dielectric constants of InSe [42]:
ε∞ = 7.8 and ε0 = 10.9. The corresponding value of α is
0.29, in close agreement with the ab initio result. These
results indicate that the small effective mass of the con-
duction band electrons, the reasonably strong electronic
screening as seen from ε∞, and the weak lattice polariz-
ability as reflected in the small difference between ε0 and
ε∞, all contribute to the weak Fröhlich coupling strength

TABLE V. The bandgap (Eg), in-plane effective mass (m∗xx),
and out-of-plane effective mass (m∗zz) of γ-InSe obtained from
DFT with different exchange-correlation functionals. The ef-
fective masses are measured in units of me, which represents
the rest mass of an electron.

exchange-correlation functional Eg (eV) m∗xx/me m
∗
zz/me

LDA 0.21 0.103 0.024

PBEsol 0.32 0.109 0.036

PBE 0.42 0.117 0.045

and the small EPI-induced electron mass enhancement.

IV. DISCUSSION

The DFT electron effective masses of bulk γ-InSe cal-
culated at LDA level are 0.103me and 0.024me in the
in-plane and out-of-plane directions respectively. Af-
ter including both electron-electron and electron-phonon
renormalization, the in- and out-of-plane electron effec-
tive masses separately increase to 0.123me and 0.089me.
For comparison, the corresponding experimentally mea-
sured electron effective masses of InSe are 0.14me and
0.08me, respectively [11]. Although the calculation and
experimental results are quite close, the calculation re-
sults represent an underestimate of 12% for the in-plane
and an overestimate of 11% for the out-of-plane experi-
mental effective masses.

Since we found that many-body renormalization of
electron effective masses are dominated by electron-
electron effect, one possible origin of the discrepancy
between calculation and experiment could be the de-
pendence of single-shot G0W0 effective masses on the
DFT starting point for many-body perturbation calcu-
lations. It is well established that the Kohn-Sham eigen-
values and eigenstates used as the DFT starting point for
G0W0 calculations could affect the G0W0 quasiparticle
energies and hence the effective masses [43, 44]. In our
study, we use the LDA exchange-correlation functional
as the DFT starting point. We have additionally cal-
culated the DFT effective masses using the PBEsol [45]
and PBE [46] exchange-correlation functionals, using the
same atomic structure of LDA. The results, listed in Ta-
ble V, indicate that the exchange-correlation functional
employed in the calculations affects both the in- and
out-of-plane effective masses at DFT level. Such dif-
ference in the DFT starting point could in turn influ-
ence the G0W0 effective masses. For example, given that
the in-plane effective mass calculated at DFT level us-
ing the PBE exchange-correlation functional is 0.117me

compared to the value of 0.103me calculated using LDA,
the use of PBE exchange-correlation functional as the
DFT starting point is likely to bring the G0W0 effective
mass closer to the experimental value of 0.14me. How-
ever, regardless of the DFT starting point, the conclu-
sions of our study, that electron-electron effects dominate
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over electron-phonon effects in many-body renormaliza-
tion, and that the many-body corrections are anisotropic,
would remain robust. We also note that the sensitivities
of GW effective mass on the DFT starting point can be
mitigated by employing a self-consistent approach by it-
eratively updating the Green’s function G and/or the
screened Coulomb potential W [43, 47, 48]. Detailed in-
vestigation of the effect of self-consistency on the GW ef-
fective mass of InSe could be the subject of future study.

For the temperature dependence of electron effective
mass, in addition to the change in effective mass renor-
malization due to the change of phonon occupation num-
ber, which affects the strength of electron-phonon inter-
action, we note that the change of lattice constants due to
thermal expansion could also affect the electron effective
mass. The thermal expansion coefficients of InSe have
been experimentally measured by Belenkii et al. [49]. Be-
ing a layered material, the thermal expansion coefficients
of InSe are anisotropic. In the temperature range from
100 K to room temperature, the in- and out-of-plane
thermal expansion coefficients of InSe are both around
1×10−5 K−1, with the out-of-plane coefficients about two
times larger than the in-plane coefficients. On the basis
of the experimental data in Ref. [49], we estimate that
the lattice-constant change of InSe from zero to room
temperature is less than 0.25% in the in-plane direction,
and less than 0.5% in the out-of-plane direction. We
note that the experimental electron effective masses in
Ref. [11] were measured at 94 K, whereas our calcula-
tions employ the experimental lattice constants measured
at room temperature. Hence, the lattice constants corre-
sponding to the temperature at which the electron effec-
tive masses are measured should be smaller than those we
use for DFT calculations, by an amount less than 0.5%.

To understand the effects of thermal expansion on the
electron effective mass of InSe, we first apply a −0.5% of
strain along the c axis of the crystal (the z direction in
Fig. 1), while keeping the in-plane lattice constants the
same. The DFT electron effective mass calculated in the
in-plane direction changes slightly, from 0.103 to 0.105,
while the out-of-plane electron effective mass decreases
from 0.022 to 0.019. On the other hand, if we apply
a −0.5% of strain on the experimental in-plane lattice
constants, while keeping the c lattice constant the same,
the in-plane electron effective mass increases marginally
from 0.103 to 0.104, while the out-of-plane effective mass
increases from 0.022 to 0.028. The results indicate that
the in-plane electron effective mass of InSe is relatively
insensitive to thermal contraction/expansion below room
temperature. For out-of-plane electron effective mass,
the effect of lattice constant change along the in- and
out-of-plane directions due to thermal expansion coun-

terbalances each other, which reduces the magnitude of
possible effective mass change. Indeed, when applying a
−0.5% of strain along the c axis and a −0.25% of in-plane
strain simultanously, which approximates the decrease of
experimental lattice constants from 300 K to 94 K, we
find that the DFT in-plane electron effective mass only
varies from 0.103 to 0.104, while the out-of-plane elec-
tron effective mass barely increases from 0.022 to 0.023.
Therefore, the effects of thermal expansion on the elec-
tron effective mass of InSe are insignificant.

V. CONCLUSIONS

In conclusion, using state-of-the-art computational
methods, we have presented a comprehensive study of
the many-body renormalization of the electron effective
mass in γ-InSe. The EEI- and EPI-renormalized effec-
tive electron mass are around 0.12me and 0.09me in the
in- and out-of-plane direction respectively, in good agree-
ment with the measured data of 0.14me and 0.08me, re-
spectively [11]. We find that the EEI-induced electron
effective mass renormalization has a strong directional
anisotropy, which we explain in terms of the symmetry
of the band-edge wavefunctions. We also find weak EPI-
induced mass renormalization, which mainly originates
from the weak Fröhlich interaction in the system. These
results provide insight into the nature and strength of
many-body interactions in InSe. Given the broad impact
of carrier effective mass on the properties of semiconduc-
tors, the results presented in this study will be useful for
designing electronic and optoelectronic devices based on
InSe as well as other monochalcogenide semiconductors
with similar atomic and electronic structure, such as GaS
and GaSe [18].
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[5] S. J. Magorrian, V. Zólyomi, and V. I. Fal’ko, Spin-orbit
coupling, optical transitions, and spin pumping in mono-
layer and few-layer InSe, Phys. Rev. B 96, 195428 (2017).

[6] S. J. Magorrian, A. Ceferino, V. Zólyomi, and V. I.
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D. Terry, A. Barinov, A. Garner, J. Donoghue, A. P.
Rooney, V. Kandyba, A. Giampietri, A. Graham,
N. Teutsch, X. Xia, M. Koperski, S. J. Haigh, V. I. Fal’ko,
R. V. Gorbachev, and N. R. Wilson, Indirect to direct
gap crossover in two-dimensional InSe revealed by angle-
resolved photoemission spectroscopy, ACS Nano 13, 2136
(2019).

[9] J. Zultak, S. Magorrian, M. Koperski, A. Garner, M. J.
Hamer, E. Tovari, K. S. Novoselov, A. Zhukov, Y. Zou,
N. R. Wilson, S. J. Haigh, A. Kretinin, V. I. Fal’ko,
and R. Gorbachev, Ultra-thin van der Waals crys-
tals as semiconductor quantum wells, arXiv e-prints ,
arXiv:1910.04215 (2019).
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