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Efficient ab initio calculations of correlated materials at finite temperature require compact repre-
sentations of the Green’s functions both in imaginary time and Matsubara frequency. In this paper,
we introduce a general procedure which generates sparse sampling points in time and frequency from
compact orthogonal basis representations, such as Chebyshev polynomials and intermediate repre-
sentation (IR) basis functions. These sampling points accurately resolve the information contained
in the Green’s function, and efficient transforms between different representations are formulated
with minimal loss of information. As a demonstration, we apply the sparse sampling scheme to
diagrammatic GW and GF2 calculations of a hydrogen chain, of noble gas atoms and of a silicon
crystal.

I. INTRODUCTION

The finite temperature Green’s function formalism [1–
4] is a standard approach to study equilibrium proper-
ties of correlated quantum systems at finite tempera-
ture. Many-body theories, approximations, and meth-
ods based on this formalism are widely used in con-
densed matter physics, quantum chemistry, and mate-
rial science. Applications to low-energy effective model
Hamiltonians include lattice Monte Carlo [5], dynamical
mean-field theory [6] with its cluster [7], multi-orbital ex-
tensions [8, 9], and diagrammatic extensions [10–12], and
diagrammatic or continuous-time quantum Monte Carlo
methods [13, 14]. In the context of ab initio calcula-
tions of correlated materials, examples include the GW
method [15–23], the self-consistent second order approx-
imation (GF2) [24–31], variants of the dynamical mean
field theory [8, 32–36], and the self-energy embedding
theory [37–43].

The fundamental object of these theories are numeri-
cally computed one- and two-particle Green’s functions
and derived quantities such as self-energies and vertex
functions. These quantities are known on a finite Mat-
subara frequency or imaginary time grid.

In ab initio calculations, the difference between the
scales of the bare Hamiltonian (which sets a frequency
range), temperature (which dictates the frequency res-
olution), and the energy scales for competing quantum
phenomena spans many orders of magnitude. As a conse-
quence, a naive representation of the Green’s function re-
quires an imaginary-time grid too large to store in mem-
ory, and solving equations such as the Dyson equation
to the required accuracy becomes prohibitively expen-
sive. This issue becomes even more pronounced for two-
particle response functions, which are generically a func-
tion of multiple time and orbital indices.

Compact representations of Green’s functions are cru-
cial to address this problem. Representations based on
power meshes [44, 45], Legendre polynomials [27, 46],
Chebyshev polynomials [47, 48], intermediate numerical
representations (IR) [49–51], quadrature rules [52, 53],

and spline interpolations [28] have been proposed, as well
as high frequency tail expansions [54–56].

Green’s function representations, in addition to be-
ing compact, also need to enable efficient calculations.
The two main stages in most methods are the evaluation
of self-energy diagrams (usually best done in imaginary
time, as the interaction is instantaneous) and the solu-
tion of the Dyson equation (usually best done in Matsub-
ara space, where the equation is diagonal in frequency).
Some of the representations mentioned above are only
compact in either time or frequency, and transforming
between those domains is expensive or involves a loss
of accuracy. Others, such as the orthogonal polynomial
bases, can efficiently and accurately be transformed be-
tween coefficients and imaginary time sampling points,
but frequency transforms result in a loss of compactness.

It is therefore natural to ask if there is a set of ‘sparse’
sampling points in both frequency and time such that,
if the Green’s function is evaluated on these points, one
may reconstruct the continuous Green’s functions in both
time and frequency to high precision. This will then allow
to perform diagram calculations in time, Dyson equation
solutions in frequency, and transformations in between
with minimal loss of accuracy.

This paper presents such a compact representation in
both time and frequency by proposing a sparse sampling
scheme for finite temperature Green’s functions, follow-
ing prior efforts using frequency interpolation [28, 48] and
MP2 quadratures [53]. We illustrate our scheme at the
example of Chebyshev [47] and IR basis functions [49].
Our method aims to accurately resolve all the informa-
tion contained within finite temperature Green’s func-
tions in a compact set of sampling points, and enables
efficient and accurate transforms between imaginary time
and Matsubara frequency. The sparsity of the sampling
points directly corresponds to the compactness of the
basis representation, which leads to system-independent
time and frequency grids with few control parameters.

The paper will proceed as follows. In Sec. II we will in-
troduce and derive the sparse sampling method. Sec. III
will discuss the application to low-order diagrammatic
methods such as GW and GF2. Sec. IV will show appli-
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cations to well-known systems in order to illustrate the
power of the method.

II. SPARSE SAMPLING METHOD

A. General description and notation

The main object of this paper is the Green’s function
Gα, which we assume is expanded into a compact rep-
resentation in terms of N basis functions, such that in
imaginary time and Matsubara frequencies

Gα(τ) =

N−1∑
l=0

Gαl F
α
l (τ), (1)

Ĝα(iωαn) =

N−1∑
l=0

Gαl F̂
α
l (iωαn) (2)

F̂αl (iωαn) =

∫ β

0

dτFαl (τ)eiω
α
nτ , (3)

where Gαl are expansion coefficients, Fαl (τ) imaginary

time basis functions with Fourier transform F̂αl (iωαn)
(the ‘hat’ denoting frequency representations), ωαn =
π(2n + δα,F )/β Matsubara frequencies, and α denotes
the statistics (F for fermions and B for bosons).

In the Chebyshev representation [47]

Fαl (τ) ≡ Tl[x(τ)], (4)

where Tl(x) are Chebyshev polynomials of the first kind
and x(τ) = 2τ/β − 1. In the IR basis [51]

Fαl (τ) ≡ Uαl (τ) (5)

where Uαl (τ) depend on the statistics and a dimension-
less parameter Λ = βωmax with a cutoff frequency ωmax.
Appendix A summarizes notations for Chebyshev and IR
as well as their practical differences.

To determine Gαl from Gα(τ), we choose a finite set of
M sampling points τ̄α0 , . . . , τ̄

α
M−1 ∈ [0, β] (M ≥ N). If

{τ̄αk } are chosen such that the discretized basis vectors
{Fα0 (τ̄αk )}, . . . , {FαN−1(τ̄αk )} are linearly independent, the
exact values of Gαl can be computed (transformed) from
sampled values of Gα(τ). Similarly, if a subset of Mat-
subara frequencies {iω̄αk } is chosen such that the basis
functions are linearly independent, Gαl can be obtained

from Ĝα(iω̄αk ).
If as many sampling points M are chosen as imaginary

time points N , these transformations are

Gαl =

N−1∑
k=0

[F−1α ]lkG
α(τ̄αk ) (6)

=

N−1∑
k=0

[F̂−1α ]lkĜ
α(iω̄αk ), (7)

FIG. 1. Schematic illustration of relations between different
representations. Solid lines denote transformations between
the basis representation coefficients Gαl (center) and Green’s
functions evaluated at imaginary time or frequency sampling
points via transformation matrices. Dashed lines represent
basis expansions of Gαl to arbitrary imaginary time or fre-
quency points.

where Fα and F̂α are N ×N matrices:

[Fα]kl = Fαl (τ̄αk ) (8)

[F̂α]kl = F̂αl (iω̄αk ). (9)

This procedure only requires evaluating the Green’s func-
tion onN sampling points, and linear transforms between
the time or frequency domain and the basis representa-
tion Gαl become invertible. Gαl can thus serve as a proxy
to transform between imaginary time and frequency sam-
pling points, as well as evaluation at arbitrary τ and iωn
values, as illustrated in Fig. 1.

For M > N (more sampling points than basis coeffi-
cients), the inverses in Eqs. (6) and (7) are replaced by
the corresponding pseudoinverses F+ ≡ (F†F)−1F†, and
the exact transform is replaced by a least squares fitting
procedure.

In practical calculations, different choices of basis func-
tions and sampling points lead to differently conditioned
equation systems. A naive choice of sampling points,
such as uniformly distributed time or frequency grids,
results in almost linearly dependent basis vectors and ill-
conditioned transforms, which improve very slowly when
additional grid points are added. For an efficient method,
a minimal set of sampling points that generates well-
conditioned transformation matrices is desired in order
to minimize the number of function evaluations and the
loss of accuracy during transforms.

In the remainder of this section, we show that such
a set with M = N can be generated according to the
distribution of the roots of the basis functions.

B. Imaginary time sampling

Chebyshev.– For a truncated Chebyshev basis of size
N , the N sampling points in τ are naturally given by the
roots of the (N + 1)-th basis function TN (τ) as

τ̄αk ≡ τ
(

cos

(
π

2k + 1

2N

))
, (10)
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for k = 0, . . . , N − 1 with the mapping τ(x) = β(x +
1)/2. These sampling points lead to very well conditioned
transformation matrices due to the discrete orthogonality
of Chebyshev polynomials, and the condition number of
Fα (defined as ‖Fα‖2‖F−1α ‖2) takes the constant value

of
√

2.
IR basis.– For the IR basis with N basis functions and

given β and ωmax, we choose the sampling points {τ̄αk }
to be the midpoints of the grid composed of the N − 1
roots of the highest order basis function UαN−1(τ) and the
boundary points 0 and β. We choose not to use the roots
of the next basis function UαN (τ) like in the Chebyshev
case due to the fact that the IR basis is a numerical basis,
and thus it is more convenient to determine sampling
points from the available basis functions.

C. Matsubara frequency sampling

We generate sampling points in Matsubara frequen-
cies following an algorithm similar to the imaginary time
cases, with two additional considerations. First, function
values should only be evaluated on the discrete Matsub-
ara frequencies. Second, fermionic and bosonic Matsub-
ara frequencies have to be treated separately, and the
zero bosonic frequency (which represents static physics)
has to be considered explicitly.

Chebyshev.–In the Chebyshev representation, we follow
the same heuristics as in the τ sampling by finding or
approximating zeros of the next basis function T̂αN (iωαn)
defined in Matsubara frequency.

For fermions and even N , when continued to continu-
ous Matsubara frequency space, T̂F

N (iωαn) has N roots on
the imaginary axis (−i∞, i∞). We take N Matsubara
frequencies closest to these roots as sampling points.

For bosons and odd N , T̂B
N (iωαn) has N − 1 roots. We

define N − 1 sampling points as the Matsubara frequen-
cies closest to the roots. We take the zero bosonic fre-
quency iωB

n = 0 as the last sampling point. The zero
bosonic frequency, which corresponds to a constant off-
set in τ and often has to be treated separately, serves as
a natural complement.

The requirement that even N should be used for
fermions and odd N for bosons is necessary because the
other cases (odd N for fermions or even N for bosons)
will not yield adequate number of sampling points due to
the analytic structure of T̂αN (iωαn). See Appendix B for a
discussion.

IR basis.–For the IR basis, the procedure for getting
frequency sampling points is more empirical due to the
numerical nature of the basis function. We partition all
Matsubara frequencies into contiguous groups such that
the highest order basis function Ûαlmax

(iωαn) has the same

sign within each group (lmax ≡ N − 1). Ûαlmax
(iωαn) is

either purely real (for even lmax) or purely imaginary (for
odd lmax). We therefore use the sign of the corresponding

real or imaginary part as the sign of Ûαlmax
(iωαn). The
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FIG. 2. Distribution of sampling points and results trans-
formed from imaginary time (left panels) and Matsubara fre-
quency (right panels) for the IR basis by sparse sampling.
We consider a model of a semicircular density of states of half
width 1 at β = 100 defined in Eq. (11). We take ωmax = 1 for
the IR basis. The sampling points are denoted by crosses. Top
row: The basis functions used to generate sampling points
(l = 33). Bottom row: Comparison of the reconstructed
Green’s function to exact results.

sampling points iω̄αk are chosen to be those that maximize

|Ûαlmax
(iωαn)| in each group.

By checking the resulting sampling points numerically,
we conclude that by requiring N to be even (lmax odd) for
fermionic basis and odd (lmax even) for bosonic basis, the
number of sampling points is exactly N , and the bosonic
sampling points naturally include zero.

D. Numerical demonstration

The transformation defined in Eqs. (6) and (7) is ex-
act if the Green’s function is a linear combination of a
finite set of basis functions (1). With physical Green’s
functions, this is seldom the case, and any finite expan-
sion incurs a truncation error. Fortunately, in both the
IR and the Chebyshev expansion, the truncation error
is controlled: the analyticity of the finite-temperature
Green’s function in (0, β) guarantees exponential conver-
gence of the Chebyshev expansion, and the construction
of the IR basis from analytic continuation guarantees the
same thing for the IR expansion [49].

To demonstrate the behavior of the sparse sampling
scheme when applied to physical Green’s functions, we
consider a model with semicircular density of states (full
bandwidth is 2) for the IR basis in Fig. 2:

ρ(ω) =
2

π

√
1− ω2. (11)

As an example, the top left panel shows UF
34 as a func-

tion of imaginary time (blue lines) and illustrates the
N = 34 sampling points for the fermionic basis of β = 100
and ωmax = 1 (red crosses). The sampling points cluster
near τ = 0 and β, where this basis function is rapidly
oscillating.
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The top right panel of Fig. 2 shows the distribution
of the Matsubara frequency sampling points generated
for the same basis for N = 34. The Fourier transformed
basis function ÛF

33(iωn) (blue lines) exhibits N − 1 = 33
sign changes, which define N = 34 sampling points (red
crosses). The sampling points are distributed almost log-
arithmically, which allows us to capture all the features
of ÛF

lmax
(iωn) from low to high frequency.

In the bottom row of Fig. 2, the left and right pan-
els illustrate the sampling of G(τ) and Ĝ(iωn), respec-
tively. The sampling points capture relevant features of
the Green’s function in both cases. We compare the inter-
polated and extrapolated results with the numerically ex-
act values. For imaginary time, one can see agreement at
the level of ∼ 10−12 in the whole interval of [0, β], which
matches the singular value cutoff we used (10−12).For
Matsubara frequency, the coefficients obtained by the
sparse sampling not only interpolate Ĝ(iωn) but also ex-
trapolate it precisely beyond the highest sampling fre-
quency.

E. Technical details

In practical applications, it is advisable to precompute
the sampling points and transformation matrices for the
basis functions employed, to avoid unnecessary evalua-
tions of T̂αl (iωαn) and Ûαl (iωαn).

The irbasis library [51] provides numerical data of
the IR basis functions in the dimensionless form for se-
lected values of Λ from Λ = 10 up to Λ = 107. The
numerical evaluation of the basis functions in Matsubara
frequency is also implemented.

The procedures we have presented are not unique, and
we do not claim that they are optimal definitions of sam-
pling points. One may design other choices with similar
or, potentially, better numerical performance. The num-
ber of sampling points may also exceed the basis size
N , as long as inversions in Eqs. (6) and (7) are replaced
with a pseudoinverse, and the resulting transformations
are well-conditioned. Nevertheless, the algorithms intro-
duced in this section provide a systematic and unambigu-
ous way to obtain the minimum sets of sampling points
which yield well-conditioned numerical transforms and
high accuracy. Appendix B includes numerical investiga-
tions of the transformation matrices.

III. SPARSE SAMPLING APPROACH TO
SOLVING DIAGRAMMATIC EQUATIONS

Self-consistent second order Green’s function theory
(GF2) is a second order perturbation theory which renor-
malizes the Green’s function [24–31]. Self-consistent
GW [15, 17, 21–23] further renormalizes the interaction.

GF2 and GW calculations involve evaluations of dia-
grams in τ and solving convolution equations in Matsub-
ara frequencies. Quantities such as the Green’s function

and the screened interaction are repeatedly converted
back and forth between time and frequency. These calcu-
lations therefore serve as a good test platform to demon-
strate the numerical stability and computational advan-
tage of the sparse sampling scheme.

In ab initio calculations of molecules, a finite spatial
basis set is chosen for each atom. Since the energy scale
ωmax in IR basis is only well defined for Green’s functions
under orthogonal spatial orbitals, for better estimations
of ωmax or Λ we perform canonical orthogonalizations [57]
on the atomic orbitals for a chosen basis set in each sys-
tem, and use the resulting orthogonal spatial basis in all
calculations. The Hamiltonian reads

H =
∑
ijσ

hijc
†
iσcjσ +

1

2

∑
ijkl

∑
σσ′

Vijklc
†
iσc
†
kσ′clσ′cjσ (12)

where h is the single-particle Hamiltonian, and V is the
Coulomb integrals defined on the orthogonalized orbitals.

The self-consistency in GF2 and GW is defined by the
Dyson equation

Ĝ(iωF
n) = [(iωF

n + µ)I − F − ˆ̃Σ(iωF
n)]−1. (13)

The Fock matrix F = h + ΣHF includes the frequency
independent Hartree-Fock contribution

ΣHF
ij = (2Vijkl − Vilkj)ρkl, (14)

where i, j, k, l are orbital indices. GF2 approximates the
frequency-dependent self-energy Σ̃ as

Σ̃ij(τ) = −Gkl(τ)Gqm(τ)Gnp(−τ)×
× Vikpq(2Vljmn − Vmjln), (15)

while GW approximates Σ̃ as

Σ̃ij(τ) = −Glk(τ)W̃ilkj(τ), (16)

where W̃ = W−V is the frequency-dependent part of the
screened interaction W . W is calculated by the random
phase approximation (RPA) [58] as

Ŵijkl(iω
B
n ) = Vijkl + VijpqP̂qpsr(iω

B
n )Ŵrskl(iω

B
n ), (17)

where the bare polarization is given by

Pijkl(τ) = −Gil(τ)Gjk(−τ). (18)

At self-consistency, physical properties are evaluated
from G and Σ. For example, density matrix ρ is given
by ρij = Gji(0

−) = −Gji(β), and the total electronic
energy is

E = Tr [ρH0] +
1

2
Tr [ρΣHF]

+
1

2β

∑
n

Tr [ ˆ̃Σ(iωF
n)Ĝ(iωF

n)]. (19)
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GF2 & GW GW only

FIG. 3. Illustration of GF2 and GW procedures using the sparse sampling scheme. The red and blue lines denote GF2-only
and GW -only steps, respectively. Dashed arrows indicate evaluations that change the statistics of the representation.

Fig. 3 illustrates how the self-consistent calculations
can be performed by sparse sampling. In a GF2 cal-
culation, we first evaluate Green’s function at sampling
points τ̄Fk , and construct the self-energy Σ̃(τ̄Fk ) follow-
ing second-order approximation (15). The self-energy is

then transformed to the basis representation Σ̃F
l follow-

ing Eq. (6), which is then evaluated on the frequency

sampling points to get ˆ̃Σ(iω̄F
k ). The Dyson equation (13)

is solved for each iω̄F
k to obtain Ĝ(iω̄F

k ). We then trans-
form the Green’s function to its basis representation GF

l
following Eq. (7). The updated Green’s function in τ is
recovered by evaluating GF

l on sampling points τ̄Fk . The
procedure is repeated using the updated Green’s function
until self-consistency, which corresponds to the inner loop
in Fig. 3. We can see that the compact basis represen-
tations GF

l and Σ̃F
l serve as proxies to convert back and

forth between τ and frequency domains, all evaluated on
corresponding sampling points.

While all quantities involved in GF2 are fermionic,
in GW we have to switch between fermionic quantities
(G and Σ) and bosonic quantities (P and W ). This is
achieved again by using compact basis representations as
proxies: when calculating the polarization P , we evalu-
ate GF

l on the bosonic sampling points τ̄Bk and assemble
P (τ̄Bk ) following Eq. (18). We then carry out the calcu-

lation of W̃ on the frequency sampling points iω̄B
k , and

obtain the compact basis representation W̃B
l . Finally we

evaluate W̃B
l back on the fermionic sampling points τ̄Fk ,

and compute self-energy using the GW approximation
(16). The rest of the procedure is identical to GF2.

Collective physical observables such as the total energy
and the density matrix can be evaluated accurately from
the compact basis representation of G and Σ. Efficient
evaluation of the density is beneficial in calculations with
a fixed number of electrons, where one has to adjust the
chemical potential in each self-consistent iteration [25].
Appendix C discusses these technical aspects in detail.

Note that since most basis functions, including Cheby-
shev and IR, cannot capture constant shifts in frequency
(which correspond to a delta function at τ = 0), it is im-

portant that one only expands the frequency-dependent
components such as Σ̃ and W̃ using compact basis rep-
resentations. One also needs to be careful when zero-
energy mode exists in a bosonic quantity, in which case
the IR basis function cannot describe the constant shift
in imaginary time [50].

IV. RESULTS

A. Hydrogen chain

We first apply our sparse sampling scheme to GF2 and
GW caculations of a system composed of 10 hydrogen
atoms placed on a straight line with equal spacing r. The
hydrogen chain, due to its simplicity, serves as a bench-
mark platform for testing numerical methods of corre-
lated electrons. Reference data for the hydrogen chain
were carefully compared and analyzed in Ref. 59 with
many methods including GF2 and GW . It is therefore
convenient to use this system to analyze the sparse sam-
pling scheme.

We perform GF2 and GW calculations for H10 with
r = 1 a0 and β = 1000Eh

−1 (T ∼ 315.8 K). We use the
minimal basis set STO-6g with only one 1s orbital per
atom. Hartree-Fock calculations show that the difference
between the highest and the lowest Hartree-Fock energy
levels is about ∆E ≈ 5.76Eh (∼ 156 eV). The dimen-
sionless parameter for the IR basis can thus be estimated
by taking Λ to bound the value β∆E ≈ 5.76 × 103. We
take Λ = 105 in all our calculations.

Both Chebyshev and IR basis functions are used to-
gether with the sparse sampling scheme. To demonstrate
convergence, we examine a series of calculations with dif-
ferent sizes of basis functions. Typically we choose N to
be an even number, which is then used as the size of the
fermionic basis. For corresponding bosonic basis func-
tions in GW , we used the closest odd number N − 1
as the basis size. The Python library irbasis version
2.0.0b1 [51] is used for calculating IR basis functions.

With each basis of fixed size N , we perform self-
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consistent GF2 and GW calculations following the proce-
dures described in the previous section. The initial guess
of the Green’s function is constructed from Hartree-Fock
calculations using the PySCF library [60]. Self-consistent
calculations, as illustrated in Fig. 3, are then executed re-
peatedly until the energy difference is below the conver-
gence tolerance Etol = 10−8Eh between two consecutive
iterations. Energy values converged with respect to basis
size N are cross-checked with reference data to ensure
correctness. All results are then compared to converged
values to assess errors in energy and density matrix as a
function of basis size N .

In the left panel of Fig. 4, we show the convergence
of errors in total energy with respect to N . GF2 and
GW share similar convergence behavior, in that the er-
ror decreases almost exponentially with respect to N in
either basis representation. In the Chebyshev represen-
tation, we obtain convergence of the total energy below
the tolerance Etol with around 350 Chebyshev polyno-
mials. With IR basis, convergence is reached with less
than 100 basis functions. Similarly, the right panel of
Fig. 4 illustrates the convergence of the maximum er-
ror in density matrix, exhibiting an exponential decay of
errors. This indicates that with a reasonable number of
sampling points, we can reach very high precision in both
global observables such as the energy and local proper-
ties like the density matrix. The observation that GW
shows a convergence behavior similar to GF2 indicates
that no substantial additional errors are introduced dur-
ing the frequent switching between fermionic and bosonic
representations.

The sparse sampling scheme is stable thanks to the
well-conditioned transformation matrices generated from
the sampling points. We demonstrate this in Fig. 5,
which shows the relative magnitude of basis expansion
coefficients for the converged solution. N is chosen large
enough to ensure that all quantities are well approxi-
mated by the basis representations, with N = 600 for
Chebyshev and N = 130 for IR with Λ = 105. Even
after several iterations with multiple transforms forward
and backward between different types of sampling points,
we see that for all quantities, expansion coefficients decay
at least exponentially as we expect from the properties of
the basis, down to a relative size below 10−12. The trun-
cation error due to the finite basis expansion is therefore
controlled, and no amplification of error is observed dur-
ing the self-consistent iterations.

The sparse sampling scheme ensures that the number
of τ grid points and the number of Matsubara frequencies
is the same as the basis size N . We reach a precision of 8
digits in total energy with only hundreds of τ points and
Matsubara frequencies, a significant improvement from
the conventional approach used in Ref. 59, where ∼ 104

Matsubara frequencies were used for higher temperature
(β ∼ 100Eh

−1) and bigger convergence threshold (Etol ∼
10−6Eh or 10−7Eh). This greatly reduces the computa-
tional cost and memory requirement in all parts of the
calculations while still being accurate. The sparse sam-
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pling scheme thus allows to tackle problems that were
too costly to calculate, especially low temperature calcu-
lations of systems with large energy scales.

B. Noble gas atoms

Noble gas atoms such as Kr have deep core states, if no
pseudopotentials are employed. Due to the large energy
scale caused by the core states, it is computationally very
demanding for conventional methods to resolve sharp fea-
tures close to τ = 0 or β in G(τ) or the slow decay of

Ĝ(iωn) at high frequency. Even with a compact polyno-
mial basis such as Chebyshev, thousands of basis func-
tions are required to represent the Green’s functions [47],
and effective core potentials (ECP), which absorb elec-
tron in inner orbitals to the ionic potential, have to be
employed in most practical calculations. We choose this
problem to demonstrate the power of the sparse sam-
pling method when dealing with large energy scales, while
avoiding additional physical or technical difficulties.

The IR basis is a natural choice for systems with large
energy scales. As long as the spectral cutoff ωmax is cho-
sen to include all energy scales in the system, exponential
convergence of the coefficients is guaranteed by construc-
tion, usually with no more than a couple hundred basis
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functions [49]. The full potential of IR basis is realized
when combined with the sparse sampling scheme devel-
oped in this paper. Numerical difficulties in either τ or
frequency domain are reduced to a single issue: whether
the basis functions can capture all relevant quantities
well. Therefore, by using a sparse sampling method with
the IR basis, we are able to treat noble gas atoms effi-
ciently even in all-electron calculations.

We choose the all-electron correlation consistent basis
set cc-pVDZ [61], and perform GF2 and GW calcula-
tions of four noble gas atoms: He, Ne, Ar, and Kr, at
β = 1000Eh

−1. Similar to the case for H10, we estimate
the dimensionless parameter Λ according to the Hartree-
Fock energy spectrum for each individual atom: Λ = 104

for He, Λ = 105 for Ne, and Λ = 106 for Ar and Kr.
The sparse sampling scheme is used in all calculations,
and we vary the basis size N to explore the convergence
behavior. The energy convergence threshold is set to
Etol = 10−8Eh, which is much smaller than the energy
scale of Kr (∼ 103Eh).

Fig. 6 shows the energy convergence of all four atoms
with respect to basis size N with GF2 (left column) and
GW (right column). The upper panels indicate that the
basis converges for all atoms, with absolute difference
in energy dropping in an exponential trend below the
convergence tolerance Etol. The lower panels put the
convergence in a relative scale, where all atoms in both
GF2 and GW can reach ∼ 10−10 relative convergence.

Our results show that we can obtain fast basis con-
vergence with around 100 basis functions for all systems
studied. This is consistent with the property of IR ba-
sis that the basis size N scales only logarithmically with
Λ [50].

C. Application to solids

One can apply the sparse sampling technique to peri-
odic systems the same way as in molecules. Additional
momentum dependence can be viewed as an extra “or-
bital index”. As an example, we apply our method to the
GW calculation of a silicon crystal, using a 4×4×4 mo-
mentum mesh, inverse temperature β = 1000Eh

−1, and
energy self-consistency threshold Etol = 10−6Eh. We
choose the GTH-DZVP basis of Gaussian orbitals [62],
which has 13 orbitals per Si atom. The initial Green’s
function is constructed from the LDA solution in this
basis set with a GTH-LDA pseudopotential. We or-
thogonalize the spatial basis set in all GW calculations.
The LDA spectrum shows a maximum energy scale of
∆E ≈ 3Eh, thus we choose Λ = 104 and 105 for IR basis
to bound the value β∆E ≈ 3× 103 .

Table I shows the total energy convergence with re-
spect to the size of basis representations N . With both
Chebyshev and IR, the total energy per unit cell con-
verges below the self-consistency threshold of 10−6Eh to
the same value Etot = −7.880 430Eh as N increases. The
Chebyshev basis converges at around N ≈ 300, and the
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N
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10−7

10−5
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FIG. 6. Total energy convergence in GF2 and GW calcula-
tions of noble gas atoms with respect to the number of IR
basis functions N . Left and right columns show GF2 and
GW results respectively. Top row: absolute differences in to-
tal energy to the converged value. Dashed black horizontal
line illustrates the energy convergence threshold of 10−8Eh.
Bottom row: relative differences in total energy.

TABLE I. GW total energy of the silicon crystal per unit cell
at β = 1000Eh

−1, with self-consistency convergence thresh-
old Etol = 10−6Eh. Note that the energy values reflect the
pseudopotential approximation in our calculations and are
only used to assess basis convergence.

Chebyshev IR Λ = 104 IR Λ = 105

N Etot [Eh] N Etot [Eh] N Etot [Eh]

100 -8.0270874 80 -7.8804300 110 -7.8804300

150 -7.8861508 82 -7.8804300 112 -7.8804300

200 -7.8806642 84 -7.8804300

250 -7.8804379 86 -7.8804300

300 -7.8804302

350 -7.8804298

IR basis at N ≈ 80 for Λ = 104, N ≈ 110 for Λ = 105.
In contrast, conventional approaches using uniform Mat-
subara frequency grid and high frequency tail expansions
require ∼ 105 frequency points.

The sparse sampling method thus allows us to ob-
tain numerically precise values for physical quantities
with much less computational cost. Figure 7 shows the
momentum-resolved spectral functions calculated from
the converged GW Green’s function via analytical con-
tinuation to the real frequency axis using the maximum
entropy (MaxEnt) method [63–65]. The indirect band
gap of the silicon crystal between Γ and X points is
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FIG. 7. Momentum resolved spectral function of silicon at
β = 1000Eh

−1, calculated from converged GW Green’s func-
tions. Blue and red lines highlight spectra at Γ and X points,
which are the locations of the indirect band gap.

well captured, with an estimated value of 1.84 eV. The
band gap from our fully self-consistent GW shows de-
cent agreement with previous GW results obtained with
quasi-particle approximations [21, 23].

V. CONCLUSIONS

We have introduced a sparse sampling scheme for
imaginary-time Green’s functions which greatly reduces
the size of imaginary time and frequency grids in re-
alistic calculations. We have developed general proce-
dures to generate imaginary time and frequency sam-
pling points from basis representations such as Cheby-
shev and IR, with efficient transformations between time
and frequency domain. We have applied the procedure to
low-order diagrammatic methods and demonstrated the
numerical performance in realistic molecules and solids.
With no more than a few hundred sampling points, the
sparse sampling scheme can accurately capture physics
in realistic systems with large energy scales and at low
temperatures.

The sparse sampling reveals the full power of compact
basis representations of the Green’s function as the com-
pactness is maintained in all stages of a calculation. The
number of sampling points necessary for the required pre-
cision scales slowly as temperature is lowered and energy
scales are increased. Our work therefore allows finite-
temperature many-body methods to access physics of
correlated electrons at larger energy scale and lower tem-
perature.

Potential applications of the sparse sampling scheme
include state-of-the-art methods for strongly correlated
materials such as GW+DMFT [32–36] and the self-
energy embedding theory (SEET) [41]. Quantitative es-
timates of superconducting temperature Tc based on the
Migdal-Eliashberg theory in ab initio calculations may

benefit from the sparse sampling scheme so that the con-
stant density of states approximation is no longer neces-
sary [66].

In addition, two-particle quantities play a key role in
many diagrammatic calculations such as computing lat-
tice susceptibility in DMFT [67] as well as diagrammatic
extensions of DMFT [10, 68]. Two-particle quantities are
difficult to handle even in effective model calculations due
to the multiple indices for frequencies and spin/orbital
degrees of freedom. The IR basis has recently been ex-
tended to two-particle quantities [69]. The application of
the sparse sampling scheme to two-particle quantities is
an interesting topic for future research.
Note added. After the submission of our manuscript,

the authors became aware of another independent devel-
opment of similar techniques. We direct the reader to
Ref. 70 in case of interest.
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Appendix A: Compact orthogonal representation of
Green’s function

1. Chebyshev basis

The Chebyshev polynomials of the first kind Tl(x) form
an orthogonal system in the interval [−1, 1], which can
be mapped in to the interval [0, β] via

x(τ) =
2τ

β
− 1, τ(x) =

β(x+ 1)

2
(A1)

such that Fαl (τ) = Tl[x(τ)]. We use the notation Tl(τ)
to represent the order l Chebyshev polynomial mapped
onto the interval [0, β].

Approximating an analytical function with the first N
Chebyshev polynomials is convenient due to the discrete
orthogonality on the roots of the (N + 1)-th Chebyshev
polynomial

1

N

N−1∑
k=0

Ti(xk)Tj(xk) =
1 + δi,0

2
δij (A2)
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where xk are the roots of TN (x). The Chebyshev co-
efficients are therefore well approximated by Clenshaw–
Curtis quadrature:

Gαl =
2

N(1 + δ0,l)

N−1∑
k=1

Gα(τk)Tl(τk) +O(2−N ) (A3)

where τk = τ(xk) defined in (A1).
With the Chebyshev coefficients Gαl , one can perform

fast interpolation of Gα(τ) at any τ ∈ [0, β] using recur-
sion relations. Fourier transforms of the basis function
T̂αl (iωαn) can also be computed, see Ref. 47.

2. IR basis

The IR basis introduced in Refs. 49 is designed to bet-
ter capture properties of Green’s functions in physical
systems rather than arbitrary analytic functions. The
IR basis has been applied to numerical analytic contin-
uation [71] and DMFT calculations [72]. This section
provides a brief description of the IR basis following the
notation used in Ref. 51. The IR basis originates from
the Lehmann representation of the single-particle Green’s
function

Gα(τ) = −
∫ ωmax

−ωmax

dωKα(τ, ω)ρα(ω), (A4)

where the spectrum ρα(ω) is bounded in the interval
[−ωmax, ωmax] (ωmax is a cutoff frequency). The kernel
Kα(τ, ω) reads

Kα(τ, ω) ≡ ωδα,B e−τω

1± e−βω (A5)

for τ ∈ [0, β], where the + and − signs are used for
fermions and bosons, respectively. The extra ω factor
for bosons in Eq. (A5) is introduced in order to avoid a
singularity of the kernel at ω = 0.

For a fixed value of β and ωmax, the IR basis func-
tions are defined through the singular value decomposi-
tion (SVD)

Kα(τ, ω) =

∞∑
l=0

Sαl U
α
l (τ)V αl (ω) (A6)

where one observes an exponential decay of the sin-
gular values Sαl (> 0) with increasing l. Ul(τ) and
Vl(ω) form an orthonormal system for τ ∈ [0, β] and
y ∈ [−ωmax, ωmax], respectively.

A Green’s function can be expanded as

Gα(τ) =

∞∑
l=0

Gαl U
α
l (τ), (A7)

Gαl = −Sαl ραl , (A8)

where

ραl ≡
∫ ωmax

−ωmax

dωρα(ω)V αl (ω). (A9)

If |ραl | does not grow, the exponential decay of Sαl en-
sures exponential convergence of Gαl . The accuracy of
the expansion can be controlled by applying a cut-off on
the singular values.

In calculations of realistic systems, one can set ωmax

large enough to capture the expected spectral width. The
basis functions change their shapes through the change of
the dimensionless quantity Λ = βωmax as temperature is
lowered. This leads to a logarithmic growth of the basis
size with respect to β.

The IR basis Ûαl (iωαn) does not compactly describe a
constant shift in Matsubara frequency which corresponds
to an unbounded spectrum. Thus, any constant term
must be subtracted beforehand particularly when ex-
panding the self-energy. Also, UB

l (τ) does not describe a
constant shift in imaginary time, corresponding to a zero-
energy mode. Such terms must be treated separately as
well [50].

The dimensionless form of the IR basis is defined as

Uαl (τ) =

√
2

β
uαl (x(τ)), (A10)

Ûαl (iωαn) =
√
βuαln

=

√
β

2

∫ 1

−1
dxeiπ{n+(1/2)δα,F}(x+1)uαl (x),

(A11)

where uαl (x) form an orthonormalized basis for x ∈
[−1, 1].

3. Practice differences of Chebychev and IR bases

In practice, the choice of the basis representation
(Chebyshev or IR) is largely application-dependent.
Compared to the numerical evaluated IR basis functions
with an additional control parameter Λ, the Chebyshev
polynomials are easy to compute, and have only one
precision-control parameter, i.e. the number of polyno-
mials N , due to the exponential convergence guaranteed
by the approximation theory [47]. However, the number
of the Chebyshev polynomials required to approximate
an imaginary-time Green’s function to desired precision
increases as O(β1/2) at low T , faster than the loga-
rithmic scaling of the IR basis [47, 50]. Therefore, for
systems with large energy scales or at low temperature,
with a reasonable choice of Λ the IR basis provides more
compact representation of the Green’s function, while at
smaller energy scale or higher temperature the Cheby-
shev may be favorable due to its simplicity.
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Appendix B: Sampling points and condition
numbers

1. Matsubara sampling points for Chebyshev

In the Chebyshev representation, we follow the same
heuristics as in the τ sampling by finding or approximat-
ing zeros of the next basis function T̂αN (iωαn). The follow-
ing properties can be shown using the recursion relation
developed in Ref. 47.

• T̂αl (iωαn) can be written as a polynomial Iαl (zn) =

T̂αl (z−1n ) with respect to the inverse frequency zn =
1/ωαn .

• In the fermionic case, IFl (z) has order l + 1. It has
l roots away from z = 0 when l is even, and l − 1
when l is odd.

• In the bosonic case, IBl (z) has order l. It has l − 1
roots away from z = 0 when l is odd, and l − 2
when l is even except for l = 0, where there is no
root.

Since zn → 0 implies ωαn going to infinity, we cannot
use z = 0 to define our sampling points. In order to
take full advantage of the root structure of Iαl (z) while
being able to have at least N sampling points, we put
the following restrictions on the basis size N , based on
whether fermionic or bosonic statistics is concerned.

In the fermionic case, we require that basis size N to
be even, such that IFN (z) has exactly N roots {zk} away

from z = 0. In general, z−1k do not coincide exactly with
Matsubara frequencies. We therefore approximate them
by choosing the sampling points ω̄F

k to be the closest

Matsubara frequency to z−1k .
In the bosonic case, even if we require N to be odd,

there still are only N − 1 roots away from z = 0 from
IBN (z). The zero bosonic frequency iωB

n = 0, which cor-
responds to a constant shift in τ , serves as a natural
complement. The sampling points ω̄B

k is therefore com-
posed of N − 1 non-zero frequencies from approximating
roots of IBl (z) and one zero-frequency point.

Following this algorithm, we are able to get exactly N
sampling points for either fermionic or bosonic statistics.

2. Condition numbers of transformation matrices

Every time Eqs. (6) and (7) are evaluated, numerical
errors, such as round-off error in floating point opera-
tions, may be amplified due to the (pseudo-)inversion
process. This error amplification can be quantified by
the condition number of the transformation matrices Fα
and F̂α, defined as the product of the 2-norms of the
matrix and its inverse. In Fig. 8 we show the behav-
iors of the condition numbers as a function of the basis
size N for Chebyshev and IR (left panel), and as a func-
tion of Λ for IR basis (right panel). We can see that up
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FIG. 8. Condition number of the transformation matrices.
Left panel shows the condition number of frequency trans-
formation matrices as a function of basis size N , for both
Chebyshev and IR. Right panel shows the condition number
of both τ and iωn transformation matrices with respect to
Λ for the fermionic IR basis. N is chosen to be the maxi-
mum number of coefficients with the same cutoff in singular,
provided in the irbasis library.

to a significant number of basis functions, the condition
numbers are < 104, which indicates well-conditioned in-
version problems. Since the values of N and Λ shown
in Fig. 8 cover most values used in the calculations for
this paper, the sparse sampling scheme guarantees stable
numerical routines to get accurate results.

We observe that the condition number scales as
O(N3/2) for Chebyshev, and O(N1/2) for IR. It also
shows O(Λ1/2) scaling for IR. Although the origin of the
condition number still requires further analysis, we be-
lieve that the algorithms we propose in this paper yield
stable and predictable numerical procedures.

Appendix C: Technical details of self-consistent
calculations using the sparse sampling method

1. Transforming between fermionic and bosonic
statistics

Besides the transformation matrices defined in Eqs. (8)
and (9), two additional matrices may be precomputed
to allow fast switching between fermionic and bosonic
representations in GW

[FF→B]kl = FF
l (τ̄Bk ) (C1)

[FB→F]kl = FB
l (τ̄Fk ). (C2)

Note that the inverse transform of those matrices are not
well defined in general, since sampling points generated
for one type of statistics usually do not serve as good
sampling points for the other.

2. Evaluation of total energy and density matrix

In the total energy evaluation (19), the frequency sum-
mation term can be rewritten using an auxiliary scalar
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quantity S such that

1

2β

∑
n

Tr [ ˆ̃Σ(iωF
n)Ĝ(iωF

n)] =
1

2β

∑
n

Ŝ(iωF
n)

=
1

2
S(0−) = −1

2
S(β) (C3)

where

Ŝ(iωF
n) = Tr [ ˆ̃Σ(iωF

n)Ĝ(iωF
n)]. (C4)

We first evaluate Ŝ(iω̄F
k ) on the frequency sampling

points iω̄F
k , which is then transformed to the basis repre-

sentation SF
l . The value of S(β) is now a straightforward

basis expansion at τ = β

S(β) =

N−1∑
l=0

SF
l F

F
l (β). (C5)

For the Chebyshev basis we simply have Tl(β) = 1. In
the case of IR basis, it is desirable to also tabulate the
values UF

l (β) along with the transformation matrices for
efficient evaluations of relevant quantities.

Similarly, the calculation of the density matrix ρ is a
straightforward evaluation at τ = β from GF

l . In calcula-
tions where the number of electrons is fixed, the chemical
potential µ needs to be adjusted in each self-consistent
iteration through a root finding procedure to conserve
particle number [25]. This step involves repeated density
evaluations and solutions of the Dyson equation using
the frequency-dependent self-energy, and sometimes be-
comes the bottleneck of the calculation. The sparse sam-
pling scheme massively reduces the number of frequency
points needed in this process, which leads to a significant
speedup over traditional approaches.
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