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We study the Holstein model of spinless fermions, which at half-filling exhibits a quantum phase
transition from a metallic Tomonaga-Luttinger liquid phase to an insulating charge-density-wave
(CDW) phase at a critical electron-phonon coupling strength. In our work, we focus on the real-
time evolution starting from two different types of initial states that are CDW ordered: (i) ideal
CDW states with and without additional phonons in the system and (ii) correlated ground states in
the CDW phase. We identify the mechanism for CDW melting in the ensuing real-time dynamics
and show that it strongly depends on the type of initial state. We focus on the far-from-equilibrium
regime and emphasize the role of electron-phonon coupling rather than dominant electronic corre-
lations, thus complementing a previous study of photo-induced CDW melting [H. Hashimoto and
S. Ishihara, Phys. Rev. B 96, 035154 (2017)]. The numerical simulations are performed by means
of matrix-product-state based methods with a local basis optimization (LBO). Within these tech-
niques, one rotates the local (bosonic) Hilbert spaces adaptively into an optimized basis that can
then be truncated while still maintaining a high precision. In this work, we extend the time-evolving
block decimation (TEBD) algorithm with LBO, previously applied to single-polaron dynamics, to a
half-filled system. We demonstrate that in some parameter regimes, a conventional TEBD method
without LBO would fail. Furthermore, we introduce and use a ground-state density-matrix renormal-
ization group method for electron-phonon systems using local basis optimization. In our examples,
we account for up to Mph = 40 bare phonons per site by working with O(10) optimal phonon modes.

I. INTRODUCTION

Pump-probe experiments have become a popular setup
to study ultrafast dynamics in solids (in, e.g., [1–11]). In
these experiments, photoinduced phase transitions be-
tween metallic and insulating states [4], melting of CDW
or antiferromagnetic order [1–3], or accessing metastable
states [5] were investigated. A prominent example are
the observations of Ref. 6 that were interpreted as photo-
induced enhanced superconductivity. In the interpreta-
tion of experiments on ultrafast dynamics, the whole sys-
tem is often treated as a collection of coupled subsys-
tems [8]. These include the electronic subsystem, lattice
degrees of freedom (phonons) and possibly spin degrees
of freedom. In the experiments, first electrons are op-
tically excited into empty states and then their relax-
ation dynamics is monitored. Relaxation can occur via
electronic interactions or via a coupling to bosons, i.e.,
either phonons or spin excitations. Theoretical support
is needed to understand the time scales, the bottlenecks
for relaxation and to determine which bosonic excitations
are relevant. In general, it is unclear whether the subsys-
tems first relax and thermalize separately before reach-
ing global equilibrium or whether all degrees of freedom
are out-of-equilibrium throughout the transient dynam-
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ics. Moreover, the strength of phonon mediated interac-
tions could be affected in the transient dynamics [12, 13].
Thus, a major task for theory is to understand such ques-
tions in simplified yet paradigmatic models. Many stud-
ies focussed solely on electronic degrees of freedom (see,
e.g., [14–21]), yet from the above it is clear that phonons
need to be modelled as well [22–24].

The Holstein model of spinless fermions in one dimen-
sion is a prototypical model to study electron-phonon
coupled systems. It hosts a variety of different phe-
nomena driven by the electron-phonon coupling, espe-
cially polaron formation and a phase transition between
a metallic and a charge-density-wave phase [25, 26].
The rich phenomena present in the Holstein model and,
in particular, its nonequilibrium dynamics are still ac-
tively discussed. Studies of the latter in electron-phonon
coupled systems are often restricted to single electrons
(Holstein-polaron problem) [27–32]. However, having
more than one electron in the system can lead to inter-
esting collective phenomena already in equilibrium. One
of the most prominent examples is the Peierls instabil-
ity leading to an insulating charge-density-wave ordered
state in a half-filled electron band coupled to phonons.
Despite the challenges, efforts were made to study the
real-time dynamics in the Holstein model at half filling
[22, 33–37].

Perturbative approaches can give reliable results in the
vicinity of the atomic limit, where the bandwidth of the
electrons is much smaller than all other energy scales in
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FIG. 1. (a) Sketch of the different terms in the Holstein
model Eq. (1). The fermions can hop from site to site with
an amplitude t0. If a fermion is on a particular site it can cre-
ate or destroy phonon excitations at that site with a coupling
strength γ. Every phononic excitation costs an energy ω0. (b)
Sketch of the phase diagram of the half-filled Holstein model
[38, 39]. As the electron-phonon coupling γ increases there
is a phase transition from a metallic Tomonaga-Luttinger liq-
uid phase (TLL) to an insulating charge-density-wave phase
(CDW). The arrows represent the different quenches that
we will investigate in Sec. IV C, i.e., frequency and coupling
quench (FQ and CQ, respectively).

the system [26] and also in the limit of small phonon
energies [40]. For the intermediate regime, the so-called
momentum average approach developed by Berciu and
collaborators [41–46] is argued to provide reliable ana-
lytical results for the Holstein-polaron problem in equi-
librium.

A variety of different quantum Monte Carlo meth-
ods have been developed to investigate the Holstein
model [26, 39, 46–51]. For wave-function based meth-
ods, such as exact diagonalization (ED) or the density-
matrix renormalization group (DMRG), electron-phonon
systems are computationally very demanding. These
methods require that the local Hilbert space has a fi-
nite dimension which is not the case for electron-phonon
coupled systems. The bosonic nature of the phonons and
the fact that their number is not conserved makes the
Hilbert space infinite-dimensional, irrespective of the sys-
tem size. Therefore, one has to introduce an ad-hoc cutoff
that limits the number of phonons per site. This cutoff
has to be chosen in such way that it does not affect the
physics of the system and the quantitative reliability of
the results. Depending on the task at hand, this can
render the problem unfeasible or at least very hard for
wave-function based methods.

Several strategies were suggested to overcome the prob-
lem of large local Hilbert spaces [52]. In the context of
DMRG [53], one can map the Holstein model to a lat-
tice including pseudo sites for the phononic degrees of
freedom where every pseudo site can host one phonon
excitation [54, 55]. As a result, the local Hilbert-space
dimension is reduced, however, one introduces long-range
hopping into the system. Weiße and Fehske [56] used an
inhomogeneous modified variational Lang-Firsov trans-
formation to obtain an effective Hamiltonian including
variational parameters that can be solved in a self con-
sistency loop including a Lanczos diagonalization [57]. In
other approaches, one chooses basis states in such a way
that the Hilbert space is not too big but still the essential
physics is captured. For instance, Bonča et al. [58] intro-
duced diagonalization in a limited functional space. In
this approach, a set of dynamically important basis states
is constructed by repeatedly applying parts of the Hamil-
tonian to an initial state. This method takes advantage
of the spatial correlations of electrons and phonons and
is therefore especially well suited for studying single elec-
trons on a periodic or infinite lattice [27, 29, 31, 59–63].

In this work, we will use an approach called local ba-
sis optimization (LBO) introduced by Zhang et al. [64].
This approach is very flexible since it adaptively chooses
the most important local basis states (called optimal
modes) during the simulation by diagonalization of the
single-site reduced density matrix. The ideas of Zhang
et al. [64] were first used in combination with exact-
diagonalization techniques [64–68] and also with DMRG
in its original formulation [69–76].

Here, we will combine LBO with a time-dependent
DMRG algorithm as well as with a ground-state DMRG
algorithm in the matrix-product-state (MPS) formula-
tion. In these DMRG implementations, we choose the
optimized basis in an unbiased way and fully adaptive
to system size, system parameters and boundary condi-
tions. The time-dependent version is based on the work
by Brockt et al. [77] to simulate the real-time evolution
in the Holstein-polaron problem (see also Ref. [78, 79]).
In this work, we extend this algorithm to the Holstein
model at half filling. Our ground-state DMRG method
combines the algorithm implemented by Guo et al. [80]
for spin-boson models (see also [81–83]) with the sub-
space expansion introduced by Hubig et al. [84]. The
algorithm can be applied to arbitrary one-dimensional
electron- or spin-phonon problems with local electron- or
spin-phonon coupling. Here, we use this algorithm to
study the half-filled Holstein model.

In the first setup, we prepare the system in a product
state where every second site is occupied by an electron
and no phonons are present in the initial state. We then
perform a real-time evolution of this state for different pa-
rameter sets. As we increase the coupling to the phonons
we observe a transition from dynamics that is dominated
by the electron hopping to dynamics that is strongly in-
fluenced by the coupling to the phonons. This includes a
temporal self trapping of the electrons for large electron-
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phonon coupling. In the second setup, we prepare the
system in a product state of small onsite polarons that
form the CDW. In this case, the real-time evolution can
be understood by considering the renormalized hopping-
matrix elements of the quasiparticles. As a consequence,
the dynamics at strong coupling is so slow that the ini-
tial state hardly changes over our accessible simulation
times. In the last setup, we prepare the system in the
ground state of the CDW phase and then we perform
quenches to the metallic phase. We observe that the
short-time dynamics is dominated by the phonons when
we decrease the coupling between electrons and phonons
only. However, if we decrease the phonon frequency com-
pared to the electron bandwidth the short-time dynamics
is dominated by the electron hopping, while the phonons
respond very slowly to the quench.

The melting of charge-density-wave states in a one-
dimensional electron-phonon coupled system was previ-
ously studied by Hashimoto and Ishihara [37] using time-
dependent DMRG simulations with a fixed cut-off in the
local phonon number basis of Mph ≤ 8. They study
a Holstein model with an electronic interaction of the
form Hint = V

∑
l nlnl+1 (nl = c†l cl, cl: fermionic an-

nihilation operator at site l) and drive the system out
of equilibrium by applying a pulse. Starting from the
uncoupled limit of a vanishing electron-phonon coupling
[γ = 0, cf. Fig. 1(a)], they demonstrate that the CDW
order parameter decays exponentially for V > t0 [where
t0 is the electron hopping parameter, cf. Fig. 1(a)]. Turn-
ing on electron-phonon interactions causes a slower decay
due to the formation of polarons and thus a mass renor-
malization of the electrons. The excess energies pumped
into the system that were considered in [37] are of the
order of ∆E . 0.1t0N above the ground-state energy,
where N is the number of fermions in the system. In
our work, we consider different initial states and we de-
liberately work in the regime of large quench energies
0.1t0N . ∆E . 8t0N to exemplify the capabilities of
our local basis-approximation method.

The paper is organized as follows. In Sec. II, we will
revisit the Holstein model and its phase diagram at half
filling. In Sec. III, we describe the different numerical
methods used throughout this paper. In Sec. IV, we
present the results of our numerical simulations and in
Sec. V, we give a summary.

II. HOLSTEIN MODEL OF SPINLESS
FERMIONS

The Holstein model [85, 86] of spinless fermions de-
scribes a spin-polarized gas of electrons that locally cou-
ples to harmonic oscillators via the density of the elec-
trons. The harmonic oscillators model dispersionless
phonons. The Hamiltonian on a one-dimensional (1D)
lattice can be written as:

HHol = Hkin +Hph +Hel−ph , (1)

where Hkin is the electron kinetic energy, i.e.:

Hkin = −t0
L−1∑
l=1

(c†l cl+1 + h.c.) . (2)

Here the cl [c†l ] are annihilation [creation] operators for
spinless fermions and t0 is the hopping parameter. Hph

is the purely phononic part defined as:

Hph = ω0

L∑
l=1

b†l bl , (3)

where bl [b†l ] are bosonic annihilation [creation] operators
for phonons and ω0 is the phonon frequency. Hel−ph is
the electron-phonon coupling part:

Hel−ph = −γ
L∑
l=1

nl(b
†
l + bl) , (4)

where nl = c†l cl is the on-site density of the electrons and
γ is the electron-phonon coupling strength. The different
parts of the Holstein Hamiltonian Eq. (1) are sketched in

Fig. 1(a). The total number of fermions N =
∑L
l=1〈nl〉

is conserved in the system while the number of phonons
is not, as is evident from Eq. (4). Throughout this pa-
per, we express energies and times in units of the hopping
parameter t0 and 1/t0, respectively. Open boundary con-
ditions are used within our numerical simulations.

In Fig. 1(b), we sketch the ground-state phase dia-
gram of the half-filled Holstein model that was obtained
by a combination of perturbative approaches, quantum
Monte-Carlo and DMRG methods [26, 38, 39, 47]. For
small values of the coupling parameter γ/ω0 � 1, the sys-
tem is in a (metallic) Tomonaga-Luttinger liquid phase
(TLL) while for increasing coupling strength γ/ω0, there
is a phase transition to a charge-density-wave phase
(CDW) for all values of the hopping parameter t0 > 0.
The order parameter in the latter can be defined as the
staggered density of the fermions in the system:

OCDW =
1

N

L∑
l=1

(−1)l〈nl〉 . (5)

In the metallic TLL phase, the density is homogenous
〈nl〉 = 0.5 = const. and therefore, the order parame-
ter vanishes. On the other hand, OCDW 6= 0 indicates
the onset of the CDW phase, with a maximum value of
OCDW = ±1 in the limit γ/t0 →∞. This is strictly true
in the thermodynamic limit, yet we will break the sym-
metry here by the choice of initial conditions or system
size and boundary conditions.

A subtlety that emerges from using small odd system
sizes is that the order parameter OCDW can be zero al-
though the density is not completely uniform. This arises
because there is one more odd site than there are even
sites. However, this should not be concerning. Consider
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free spinless fermions on a lattice with odd system size L
and open boundary conditions. The number of fermions
is N = (L − 1)/2. Then, in the ground state, the N
lowest single-particle eigenstates are occupied which also
leads to a density profile that is not flat but has exactly
OCDW = 0. This effect becomes less pronounced as the
system size is increased.

In the atomic limit t0 = 0, the Holstein model can be
diagonalized by performing a Lang-Firsov transformation
[87]. In the ground state, fermions are localized at single
sites and are accompanied by coherent states of phonons.
All other sites that do not contain a fermion are free of
any phonon. For every fermion in the system, one gets a
binding energy:

εb =
γ2

ω0
, (6)

and the ground-state energy is therefore E0 = −Nεb.
The ground state in this limit is highly degenerate since
one can distribute the fermions arbitrarily in the system.
It takes the form of a product state:

|ψ0〉 ∝

 ∏
l∈{locc}

c†l e
γ
ω0
b†l

 |∅〉el|∅〉ph , (7)

where |∅〉el[ph] is the vacuum state of the electrons
[phonons] and {locc} is the set of sites that are occupied.

Close to the atomic limit t0 � γ, ω0 one can un-
derstand the phase transition from second-order pertur-
bation theory [26]. One obtains an effective polaron
hopping-matrix element:

t̃0 = t0e
−γ2/ω2

0 (8)

and an effective nearest-neighbour repulsion:

Ṽ = 2
t̃20
ω0

∫ γ2

2ω2
0

0

dg
e4g − 1

g
. (9)

The effective model can then be mapped to the spin-
1/2 XXZ Hamiltonian and the phase transition at the

isotropic Heisenberg point is reached at Ṽc/2t̃0 = 1 [26].

III. NUMERICAL METHODS

A. Ground-state DMRG with local basis
optimization

To calculate ground states of the half-filled Holstein
model we use a single-site DMRG algorithm and com-
bine this with a local basis optimization (LBO) [64]. In
the first efforts to combine LBO with DMRG, the op-
timal modes were computed from small systems using
exact diagonalization and then fed into larger systems
(see, e.g., [69, 70, 72]) or the optimal modes were com-
puted from units larger than a single site (see, e.g., [75]).

The algorithm presented in [73] uses the original DMRG
formulation [88] and is the closest to our implementation
and the one of [80], yet uses different environment-block
DMRG basis dimensions depending on whether optimal-
phonon mode optimizations takes place or not.

The algorithm used in this work is an adaptation of
the method described in [80] to electron-phonon sys-
tems combined with the subspace-expansion method
(DMRG3S) [84]. Therefore, we use the abbreviation
DMRG3S+LBO when referring to the method used in
this work.

Consider a pure quantum state of a lattice system
|ψ〉 that can be expanded in a product-state basis of d-
dimensional local Hilbert spaces. We start out by writing
this state as a matrix-product state (MPS) in the stan-
dard fashion following Ref. 89:

|ψ〉 =
∑
{σl}

aσ1...σL |σ1...σL〉 =
∑
{σl}

Mσ1 ...MσL |σ1...σL〉 ,

(10)

where the σl label the state in the local Hilbert space and
Mσl are matrices such that the matrix product yields
Mσ1 ...MσL = aσ1...σL(actually, the first matrix Mσ1 and
the last matrix MσL have to be a row and column vector,
respectively, for the matrix product to yield a scalar).
The sum runs over all possible values of σ1, ..., σL. The
full many-body Hilbert space has dimension dim(H) =
dL.

In principle, the dimension of the matrices Mσl - the
so-called bond dimension - also grows exponentially with
the system size L except at the edges of the system. The
success of MPS-based methods relies on the fact that
ground states of short-range Hamiltonians in one dimen-
sion that have a gap to the excitation spectrum can be
efficiently represented with matrices of a limited dimen-
sion that does not depend on the system size L [89–92].
This can be understood in the following way: divide the
system into two parts and consider the reduced density
matrix of one of these subsystems. If the spectrum of the
reduced density matrix of the subsystems falls off fast
enough, the state can be efficiently and accurately rep-
resented by considering just a limited part of the states
in either one of the subsystems. The area law of en-
tanglement for the ground state of gapped short range
Hamiltonians in one dimension ensures a fast algebraic
decay of the spectrum [92]. Therefore, it is enough to
consider a finite dimension of the matrices Mσl [89].

Following Ref. 64, we now consider a special bipartition
where we only look at one site. The local reduced density
matrix at site l is given by:

ρl = tr
σm
m 6=l

(|ψ〉 〈ψ|) , (11)

where the trace runs over all local degrees of freedom σm
that are not on site l. Diagonalizing this local density
matrix we obtain:

ρl = UlΛlU
†
l , (12)
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where Λl is a diagonal matrix with the eigenvalues of the
local density matrix on the diagonal and Ul is a local
basis transformation from the original basis (in practice,
this will most often be an occupation number basis) to
the eigenbasis of the local reduced density matrix.

If the spectrum of the local reduced density matrix falls
off fast enough it is advisable to rotate the original Mσl of
our MPS into the new σ̃l eigenbasis of the local reduced
density matrix. It is then sufficient to only keep that
part of the eigenbasis with the largest eigenvalues of the
local reduced density matrix without loosing much of the
information of the state [64]. Therefore, we introduce a
truncated basis transformation Rσ̃lσl that has dimension
do × d where do < d. R is identical to U† just that we
got rid of the d− do rows of the matrix that correspond
to the smallest eigenvalues of ρl. We then write the MPS
as:

|ψ̃〉 =
∑
{σl}

(M̃ σ̃1Rσ̃1σ1)...(M̃ σ̃LRσ̃LσL) |σ1...σL〉 , (13)

where:

M̃ σ̃l = MσlR†σlσ̃l . (14)

The rotation into an optimized local basis is motivated
by the observation that the Holstein model Eq. (1) can
be diagonalized in the atomic limit t0 = 0 via a Lang-
Firsov transformation as discussed in Sec. II. The ground
state of the model will then take the form Eq. (7) where
the sites that are occupied by an electron also contain
a coherent state of phonons. In order to represent this
state accurately, large phonon occupations need to be
accounted for such that the Hilbert space in the phonon
occupation basis has to have a large dimension. On the
other hand, in the Lang-Firsov basis, a two-dimensional
local Hilbert space is enough to represent the ground
state: one state for a site occupied by an electron and one
for an empty site. That is, in the atomic limit keeping
only one state per fermion occupation sector is sufficient
to represent the ground state exactly. Away from the
atomic limit, keeping only do � d states is still sufficient
to accurately represent the ground state [64, 65] as we
will see in the following. In fact, Zhang et al. found nu-
merical evidence that the spectrum of the local reduced
density matrix falls off exponentially in ground-states
[64, 93], which seems to hold also in time-evolved states
of the Holstein polaron model [31]. Diagonalizing the lo-
cal density matrix automatically finds the optimal basis
to represent the state. Manipulations on the MPS ma-
trices M σ̃l that we have to do during the DMRG sweeps
become cheaper because of the reduced dimensionality
when using the optimized local basis. We stress that the
outlined ansatz finds the optimized basis at every site
adapted to the system parameters, boundary conditions
and also time during a time evolution.

We will now explain the basic steps of our algorithm.
We consider an MPS in mixed canonical form where the

FIG. 2. Different steps of the DMRG3S+LBO update. (a)
Shift of the focus to the basis transformation tensor and op-
timization. (b) Shift of the focus back to the site tensor and
truncation. (c) Transformation of the local part of the Hamil-
tonian MPO into the optimized basis (see also [80])

MPS matrices are transformed into an optimal basis:

|ψ〉 =
∑
{σl}

Ãσ̃1
a0a1R

σ̃1σ1 ...Ãσ̃i−1
ai−2ai−1

Rσ̃i−1σi−1M̃ σ̃i
ai−1aiR

σ̃iσi

×B̃σ̃i+1
aiai+1

Rσ̃i+1σi+1 ...B̃σ̃LaL−1aLR
σ̃LσL |σ1...σL〉 .

(15)

Here and for the rest of the section a summation over all
indices that appear twice is implied. The indices a0 and
aL are fixed dummy indices to standardize notation. The
Ãσ̃lal−1al

and B̃σ̃lal−1al
are left- and right-normalized MPS

tensors, respectively:

Ã†σ̃lalal−1
Ãσ̃lal−1a′l

= δala′l (16)

B̃σ̃la′l−1al
B̃†σ̃lalal−1

= δa′l−1al−1
(17)
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such that the local reduced density matrix at site i in the
optimized basis can be written as:

(ρi)
σ̃′iσ̃i = M̃

σ̃′i
ai−1aiM̃

†σ̃i
aiai−1

. (18)

The first step is to shift the focus of the state which is
currently on the M̃ σ̃i tensor to the basis transformation
tensor Rσ̃iσi such that the local reduced density matrix
can be written in terms of only the Rσ̃iσi tensor instead
of the M̃ σ̃i tensor. The different tensor manipulations
that are necessary are depicted in Fig. 2(a). We perform

a singular value decomposition (SVD) of M̃ σ̃i :

M̃ σ̃i
ai−1ai = Xτ

ai−1aiΛ
ττ ′Y τ

′σ̃i . (19)

Now the local reduced density matrix can be written as:

(ρi)
σ̃′iσ̃i = Λττ

′
Y τ
′σ̃′iY †σ̃iτ

′′
Λτ
′′τ . (20)

We then perform a DMRG optimization step on R̃τσi =
Λττ

′
Y τ
′σ̃iRσ̃iσi using a Lanczos optimization scheme.

This step optimizes the local basis for the current MPS.
The next step is to shift the focus back to the local

site tensor [Fig. 2(b)]. We again perform an SVD, now

on the optimized R̃τσi tensor and in the process truncate
the new optimized basis to the desired size:

R̃τσi = X̃τσ̃′iΛ̃σ̃
′
iσ̃i Ỹ σ̃iσi . (21)

We set the Ỹ σ̃iσi as our new local basis transformation
matrix and our new site tensor is:

M̃ σ̃i
ai−1ai = Xτ

ai−1aiX̃
τσ̃′iΛ̃σ̃

′
iσ̃i . (22)

The third step is to perform a single-site DMRG op-
timization on the new M̃ σ̃i

ai−1ai tensor using the local
Hamiltonian in matrix-product operator form. The lo-
cal Hamiltonian can be transformed into the optimized
basis using the updated tensor Rσ̃iσi [Fig. 2(c)].

In principle, these three steps can be repeated sev-
eral times until no further improvements can be detected.
However, in the implementation used for this work we fix
the number of iterations to just one or two.

When we shift the focus to the next site we perform
a subspace expansion as explained in Ref. 84 to avoid
getting stuck in local minima in the energy landscape.

The first two steps of the local optimization described
above can be combined with any DMRG algorithm. How-
ever, using single-site DMRG is especially beneficial here
since such an algorithm scales better with the local (opti-
mal) basis dimension. For example, for spinless fermions
or the Fermi-Hubbard model, the local dimension is d = 2
or d = 4, respectively. Utilizing symmetry sectors (e.g.,
particle-number conservation), the effective local dimen-
sion of every symmetry block can be reduced down to
deff = 1. As a consequence, the local Hilbert-space di-
mension is more or less irrelevant for the performance of
the algorithm (the runtime scales at most linearly with
the number of symmetry blocks). Therefore, single-site

0 5 10 15 20
×103 sweeps

10 10

10 9

10 8

10 7

10 6
L = 4, 0/t0 = 2,

/t0 = 4
do = 5
do = 8

Mph = 20
Mph = 30

FIG. 3. Relative error ∆ε of the ground-state energy ob-
tained with the DMRG3S+LBO algorithm calculated for
L = 4, ω0/t0 = 2 and γ/t0 = 4 (crosses: data calculated
with do = 5, diamonds: do = 8). Red symbols were calcu-
lated with Mph = 20 and blue symbols with Mph = 30. The
discarded weight for the bond dimension is 10−10. The thin
black dotted line marks ∆ε = 10−10.

DMRG algorithms have no major performance benefit
over a two-site DMRG algorithm. However, for systems
such as the Holstein model, where some degrees of free-
dom are not conserved (i.e., the number of phonons),
the scaling of the algorithm with the local dimension be-
comes substantial. Away from the atomic limit, t0 6= 0,
the local dimension is do > 1 in the different symme-
try blocks and, as a consequence, an efficient single-site
DMRG algorithm is desirable.

In the implementation used for this work, we utilize the
fermion number conservation of the Hamiltonian Eq. (1).
This means that the local basis transformation tensors R
consist of two symmetry blocks. In our algorithm, we fix
a maximal dimension do of the blocks. In the truncation
process [Fig. 2(b)] we take the singular values of both

blocks of Λ̃, sort them by size and then start filling the
blocks starting with the largest singular value. We stop
as soon as one of the blocks has reached the maximal
dimension do.

In order to test the validity of our approach, we com-
pare the DMRG3S+LBO results with Lanczos diagonal-
ization that produces numerically exact results [94]. As
already mentioned in the introduction, the unbounded
Hilbert space of the bosonic phonon degrees of freedom
requires an ad-hoc cutoff in order to be feasible for exact
wave-function based methods. In Fig. 3, we show the
relative error of the ground-state energy, i.e.,

∆ε =
EDMRG − ELz

|ELz|
, (23)

where EDMRG[ELz] stands for the ground-state energy
obtained with DMRG3S+LBO [Lanczos]. In order to
compare with Lanczos diagonalization, we investigate a
small system of L = 4 in the CDW phase (ω0/t0 = 2 and
γ/t0 = 4). In the Lanczos approach, we use MLz = 400
Lanczos steps and Mph = 30 phonons per site, which
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yields a Hilbert space of dim(H) ' 5 · 106 at half-filling.
In the DMRG3S+LBO ground-state search, we fix the
discarded weight in the bond dimension to 10−10. We
present ∆ε for different maximal phonon numbers per
site Mph as different colors and different maximal num-
bers of optimal modes per fermion sector do as different
symbols in Fig. 3.

It is evident from the presented results that one needs
to converge in both the number of optimal modes do and
the maximal local phonon number Mph to get an accu-
rate result. One can see that a maximum number of
optimal modes of do = 5 or a maximum local phonon
number of Mph = 20 is not enough to get an energy with
an error of the same order as the discarded weight 10−10

(thin black dotted line in Fig. 3). To converge the energy
difference ∆ε to the same order of magnitude as the dis-
carded weight, a minimum number of phonons per site of
Mph = 30 and a minimum number of optimal modes of
do = 8 is required. Comparing the convergence behavior
for different parameter sets (not shown here), we observe
that our DMRG3S+LBO method is especially well suited
for the region where t0 ∼ ω0.

As mentioned above, we use a subspace expansion to
avoid local minima in the energy landscape when con-
verging to the ground state [84]. Within this scheme, a
mixing factor is introduced that controls the MPS-basis
enrichment process. As pointed out in Ref. 84, it is a del-
icate task to choose this mixing factor in such a way that
one avoids local minima while still converging in energy.
This seems to be especially hard when working with a
fixed discarded weight in the bond dimension. To check
convergence of the algorithm, it is advisable to not only
monitor the ground state energy during the runs but also
the variance of the energy σ2

E = 〈ψ|H2|ψ〉 − 〈ψ|H|ψ〉2.
The variance can be taken as a measure of how close a
given state is to an eigenstate of the Hamiltonian.

In the present work, the DMRG3S+LBO algorithm
will be used for comparatively small system sizes since
these are constrained by what can be handled with the
following time-evolution method. A more extensive dis-
cussion of the DMRG3S+LBO method and a bench-
mark against other state-of-the-art DMRG methods for
electron-phonon systems such as the pseudo-site method
[55] and the method introduced in Ref. [32] will be pre-
sented elsewhere.

B. TEBD with local basis optimization

As discussed in the previous section, rotating the local
basis into an optimized basis can be beneficial for MPS-
based numerical methods. For the time evolution used in
this work, we therefore employ the same strategy. We use
the time-evolving block-decimation algorithm pioneered
by Vidal [95, 96] and combine it with local basis optimiza-
tion [64]. The algorithm used here is based on Ref. [77],
where single-electron problems are studied, and applies
this method to finite electron densities. In the following,

FIG. 4. (a) General structure of a TEBD algorithm [89, 95].
(b) Different steps in the application of a single local time-
evolution operator in the TEBD-LBO algorithm [77].

we will outline the different steps in this time-evolution
approach.

The time-evolving block-decimation relies on the Trot-
ter decomposition of the Hamiltonian. Consider the
Hamiltonian HNN of a one-dimensional lattice system
with at most nearest-neighbor interaction. Then HNN

can be split into two sums:

HNN =

L∑
l=1

hl =
∑
l odd

hl +
∑
l even

hl = Hodd +Heven ,

(24)

where all local summands hl in Heven and Hodd com-
mute with each other. The corresponding time-evolution
operator can be written in a second-order Trotter decom-
position as:

e−iHNN∆t = e−iHodd∆t/2e−iHeven∆te−iHodd∆t/2

+O((∆t)3)

=
∏
l odd

e−ihl∆t/2
∏
l even

e−ihl∆t
∏
l odd

e−ihl∆t/2

+O((∆t)3) . (25)

The individual local time-evolution operators Ul =
e−ihl∆t only act on two adjacent sites. In the MPS algo-
rithm, these Ul operators take the form of gates that are
applied to the MPS [Fig. 4(a)].



8

Consider a generic MPS in Vidal’s notation [96] where
on every site, there is an additional basis transformation
tensor R as in Eq. (15):

|ψ〉 =
∑
{σl}

Γ̃σ̃1
a0a1R

σ̃1σ1Λ
[1]
a1a′1

Γ̃σ̃2

a′1a2
Rσ̃2σ2Λ

[2]
a2a′2

...

Λ
[L−1]
aL−1a′L−1

Γσ̃La′L−1aL
Rσ̃LσL |σ1...σL〉 . (26)

The first step in the time evolution is to contract the
local basis transformation from one side to the local time
evolution operators Ul while the other side stays in the
original basis [Fig. 4(b)]:

Rσ̃lσlRσ̃l+1σl+1U
σlσl+1σ

′
lσ
′
l+1

l = Ũ
σ̃lσ̃l+1σ

′
lσ
′
l+1

l . (27)

With this modified time-evolution operator Ũl we act on
the bond tensor Φ [Fig. 4(b)]:

Φ
σ̃lσ̃l+1

al−1a′l+1
= Λ

[l−1]
al−1a′l−1

Γσ̃la′l−1al
Λ

[l]
ala′l

Γ
σ̃l+1

a′lal+1
Λ

[l+1]
al+1a′l+1

(28)

Ψ
σ′lσ
′
l+1

al−1a′l+1
= Φ

σ̃lσ̃l+1

al−1a′l+1
Ũ
σ̃lσ̃l+1σ

′
lσ
′
l+1

l . (29)

Note that the updated bond tensor Ψ is now in the orig-
inal basis. This is important to ensure that during the
time evolution, the full local Hilbert space can be ex-
plored and also the optimal modes can change from be-
fore to after the application of the time-evolution oper-
ator. Next, we transform the time-evolved bond tensor
Ψ to the optimized basis. For that we calculate the local
reduced density matrix on the sites l and l + 1:

ρσ
′
lσ
′′
l = Ψ

σ′lσ
′
l+1

al−1a′l+1
Ψ
†σ′l+1σ

′′
l

a′l+1al−1
(30)

ρσ
′
l+1σ

′′
l+1 = Ψ

σ′lσ
′
l+1

al−1a′l+1
Ψ
†σ′′l+1σ

′
l

a′l+1al−1
. (31)

Next, we diagonalize the local reduced density matri-
ces to obtain the local basis transformation matrices U†.
Each of them can then be truncated to the desired op-
timal dimension do to obtain the basis transformation
matrices Rl and Rl+1. For the time evolution, we ac-
tually define a local discarded weight ∆loc which is the
maximum weight that is discarded from the spectrum of
the local density matrix. We keep this local discarded
weight fixed rather than the optimal dimension through-
out one simulation. By applying the inverse of R on the
new bond tensor Ψ, we get the bond tensor in the op-
timal basis Ψ̃. We then go back to the original Vidal
notation by performing an SVD of the Ψ̃ = USV † and
contracting the inverse of Λ[l−1] from the left to U and
the inverse of Λ[l+1] from the right to V † to obtain Γσ̃l ,
Λ[l] and Γσ̃l+1 .

In a conventional time-dependent DMRG method, one
has the discarded weight in the bond dimension ∆tr and
the time-step size δt as simulation parameters. In the
TEBD-LBO algorithm, one additionally gets the maxi-
mal local phonon number Mph and the local discarded
weight ∆loc as simulation parameters. For all of the re-
sults presented in Sec. IV, we made sure that the total

FIG. 5. Comparison between TEBD-LBO data (open black
symbols) and Lanczos time-evolution data (small blue sym-
bols) of the decay of the charge-density-wave order parameter
OCDW starting from the bare CDW state |BCDW〉 Eq. (32).
Calculations are done for system size L = 4, phonon frequency
ω0/t0 = 2 and different coupling strengths γ/t0 = 1, 3, 4
(squares, diamonds and circles, respectively). In the TEBD-
LBO time evolution, we use a local phonon cutoff Mph =
10, 30, 40, respectively. The local discarded weight is set to
∆loc = 10−8. For clarity, we only show every fourth data
point that was computed in TEBD-LBO and every twentieth
data point from the Lanczos time evolution.

error originating from δt, Mph, ∆tr, and ∆loc is smaller
than the symbol size (as a consequence, the error-bars
are omitted in all figures). This is achieved by setting
∆tr,∆loc ≤ 10−7 throughout the paper and choosing
δt t0 ≤ 0.05. As opposed to the method used by Brockt
et al. [77], where the maximum number of phonons per
site can grow during the time evolution, we work with a
fixed maximal phonon number Mph per site.

Let us now test the accuracy of the TEBD-LBO algo-
rithm. In Fig. 5, we present the decay of OCDW start-
ing from a CDW state without phonons, i.e., |ψ(τ =
0)〉 = |0101〉el|∅〉ph (with |∅〉ph as the vacuum state of
the phonons, see also Sec. IV A for details) as calculated
with TEBD-LBO and Lanczos time evolution for system
size L = 4. The time evolution within the latter is car-
ried out with a time step of δt t0 = 10−2 and MLz = 20
Lanczos steps. It is evident from the presented data that,
similarly to DMRG3S+LBO, the TEBD-LBO algorithm
perfectly reproduces the Lanczos data for all considered
values of the coupling strength γ. Furthermore, we have
checked (not shown) that the time evolution from other
initial states (discussed in Sec. IV B and Sec. IV C) is in
full agreement with the Lanczos results.

IV. RESULTS FOR THE REAL TIME
EVOLUTION

In this section, we present the main findings of our
work: a study of the melting of CDW order during the
time evolution from initial product states (see Sec. IV A
and IV B) and after quenches from correlated ground
states (see Sec. IV C). In order to get a non-zero value
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FIG. 6. Sketch of the initial states: (a) |BCDW〉 Eq. (32)
and (b) |DCDW〉 Eq. (34).

of the CDW order parameter OCDW in the correlated
ground state, we work with an odd number of sites L.
As a consequence, we are not exactly at half filling but
rather N = (L − 1)/2. For consistency, we also use odd
system sizes L in Secs. IV A and IV B.

A. Bare CDW melting

As a first example of charge-density-wave melting in
the Holstein model we prepare the system in a product
state where every second site is occupied by a fermion
and no phonons are present in the system:

|BCDW〉 =

(L−1)/2∏
l=1

c†2l

 |∅〉el|∅〉ph . (32)

|∅〉el[ph] is the vacuum state of the electrons [phonons].
We call this state a bare charge-density wave (BCDW).
The structure of the state in real space is sketched in
Fig. 6(a). Next, we time evolve this state

|BCDW(t)〉 = e−iHHolt|BCDW〉 (33)

with the Hamiltonian Eq. (1) of the Holstein model for
different parameter sets.

In Fig. 7(a), we plot the time evolution of the CDW or-
der parameterOCDW when starting from the bare charge-
density-wave state for L = 13, ω0/t0 = 2 and coupling
strengths γ/t0 = 1, 3, 4. These parameter sets correspond
to the TLL phase, the transition region and the CDW
phase, respectively [38, 39]. As expected for small values
of γ/t0 = 1, the order parameter decays towards zero
and oscillates around this value with an amplitude that
slowly dies out. In the same figure, we compare the be-
havior at γ/t0 = 1 to the behavior at γ = 0 for which the
time evolution of OCDW can be calculated analytically in
the thermodynamic limit, i.e., OCDW,γ=0(t) = J0(4tt0),
where J0 is the zeroth-order Bessel function of the first
kind (see, e.g.[97]). From this comparison, it is evident
that the frequency of the oscillations is controlled by the
hopping parameter t0. However, in contrast to the case
of γ = 0 where the oscillations are very long lived and
the amplitude decays algebraically, at γ/t0 = 1 the am-
plitude of the oscillations is strongly damped.

On the contrary, for the large coupling strength γ/t0 =
4, the order parameter, after an initial fast drop, is
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FIG. 7. Time evolution of (a) the decay of the charge-
density-wave order parameter OCDW and (b) the phonon
number per fermionNph/N when starting from the bare CDW
state |BCDW〉 Eq. (32). The small black dots in panel (a)
are exact analytical results for γ = 0 in the thermodynamic
limit [97]. The dashed horizontal lines in panel (b) represent
the phonon number in the ground state at the respective pa-
rameters. Simulations are performed for L = 13, ω0/t0 = 2
and different coupling strengths γ/t0 = 1, 3, 4. In the time
evolution, we use a local phonon cutoff Mph = 10, 30, 40, re-
spectively. The local discarded weight is set to ∆loc = 10−8.
For clarity, we only show every fifth data point that was com-
puted.

temporarily stuck at OCDW ≈ 0.6 between tt0 ≈ 1
and tt0 ≈ 2.5 before it eventually decays towards zero.
Such a plateau is also clearly visible at coupling strength
γ/t0 = 3. This behavior of the order parameter at strong
coupling can be understood as follows. When starting
from the bare charge-density-wave state the fermions are
free to move around. By tunneling into empty sites, the
fermions reduce the order imprinted in the initial state.
However, at large couplings the fermions have a strong
tendency to form heavy polarons, i.e., many phonons are
created as can be seen in Fig. 7(b) where we plot the
time evolution of the number of phonons per fermion in

the system Nph/N = (1/N)
∑L
l=1〈b

†
l bl〉. These phonons

surrounding the fermions drastically change their effec-
tive mass and they form heavy and therefore immobile
polarons. As their movement is impeded, the order pa-
rameter does not change for a time span of ≈ 1.5/t0. This
self-trapping effect is, however, only temporary. The sys-
tem coherently oscillates between a state with a large
and a small amount of phonons and the order parameter
decays further as soon as the phonons are re-emitted, al-
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FIG. 8. Time evolution of (a) the decay of the charge-
density-wave order parameter OCDW and (b) the phonon
number per fermion Nph/N when starting from the bare
CDW state |BCDW〉 Eq. (32). Simulations are performed
for L = 13, ω0/t0 = 10 and different coupling strengths
γ/t0 = 5, 15, 20. In the time evolution, we use a local phonon
cutoff Mph = 10, 30, 40, respectively, and the local discarded
weight is set to ∆loc = 10−8. For clarity, we only show every
twentyfifth data point that was computed.

lowing the electron to move again into empty sites. The
phonon oscillation period can clearly be seen in the time
evolution of the phonon density in the system shown in
Fig. 7(b). The phonon number Nph/N oscillates with a
period of 2π/ω0 and the length of the plateaus in OCDW

at γ/t0 = 3, 4 is controlled by this phonon oscillation
period.

If one further increases the phonon frequency ω0/t0,
several plateaus can be observed before the order pa-
rameter OCDW relaxes towards zero. Such a behavior
can be seen in Fig. 8(a) where we plot the time evolu-
tion of OCDW for the same initial state |BCDW〉 but for
ω0/t0 = 10. The step-like structure in the decay of the
order parameter is evident in the data for γ/t0 = 15, 20
and the length of the plateaus coincides well with the
phonon oscillation period 2π/ω0 [see Fig. 8(b) for the
time dependence of the phonon density Nph/N in the
system]. Similar to the case at ω0/t0 = 2, for the weaker
coupling γ/t0 = 5, we observe a decay of the order pa-
rameter towards zero with damped oscillations with a
frequency controlled by the hopping parameter t0. These
oscillations are superimposed with oscillations that have
a frequency controlled by the phonon frequency ω0.

In Fig. 9, we plot the kinetic energy Ekin = 〈Hkin〉 of
the fermions as a function of time for L = 13, ω0/t0 = 2
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FIG. 9. Time evolution of the kinetic energy per fermion
Ekin/N when starting from the bare CDW state |BCDW〉
Eq. (32). The dashed horizontal lines represent the kinetic
energy in the ground state at the respective parameters. Sim-
ulations are performed for L = 13, ω0/t0 = 2 and different
coupling strengths γ/t0 = 1, 3, 4. In the time evolution, we
use a local phonon cutoff Mph = 10, 30, 40, respectively. The
local discarded weight is set to ∆loc = 10−8. For clarity, we
only show every fifth data point that was computed.

and different coupling strengths γ/t0 = 1, 3, 4 (i.e., the
same parameters as in Fig. 7). It is not surprising that
the initial drop in kinetic energy gets steeper as the cou-
pling strength γ/t0 is increased. However, for longer
times the energy loss from the electronic system decreases
with increasing coupling strength. This trend follows
the trend of the ground-state kinetic energy plotted as
dashed horizontal lines in Fig. 9. The electrons get more
and more localized in the ground state as γ/t0 increases
and therefore, the kinetic energy grows. The time evolu-
tion of the kinetic energy at the different couplings fol-
lows this overall trend. Yet, we emphasize here that dur-
ing the time evolution we do not drift towards the ground
state since energy is conserved throughout the time evo-
lution. Quite on the contrary, we remain in a high-energy
state. An open question left for future work is a compar-
ison to finite-temperature equilibrium expectation values
of the same observables.

In order to illustrate the capabilities of the TEBD-LBO
method, we compare such a simulation that is converged
for a given local and global discarded weight for L = 13
sites (ω0/t0 = 2, γ/t0 = 4) with a resulting do = 12
(and an Mph = 40) to a simulation with Mph = 10 and
Mph = 20, which is shown in Fig. 10. Clearly, the simu-
lation with Mph = 10 cannot correctly produce even the
dynamics for t > 1/t0 and fails to capture the intermedi-
ate plateau formation for 1 . tt0 . 2.5. The simulation
with Mph = 20 is able to capture the plateau forma-
tion but evidently is not converged. This shows that the
TEBD-LBO is not only more accurate on a quantitative
level but is also capable to access parameter regimes that
are out of reach for conventional simulations with a small
Mph using the phonon-number basis.
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FIG. 10. Time evolution of (a) the decay of the charge-
density-wave order parameter OCDW and (b) the phonon
number per fermion Nph/N when starting from the bare
CDW state |BCDW〉 Eq. (32). Simulations are performed
for L = 13, ω0/t0 = 2 and coupling strengths γ/t0 = 4.
In the time evolution, we use different local phonon cutoffs
Mph = 10, 20, 40 to illustrate convergence in this parameter.
The local discarded weight is set to ∆loc = 10−7. For clarity,
we only show every fifth data point that was computed.

B. Dressed CDW melting

In the second example, we start from the ground state
in the atomic limit t0 = 0. As discussed in Sec. II, the
ground state takes the form Eq. (7) and we prepare it
in such a way that OCDW = 1. This is done by setting
the hopping parameter t0 = 0 and performing an imagi-
nary time evolution of the bare charge-density-wave state
|BCDW〉 to reach the ground state. This results in the
state:

|DCDW〉 = e
− (L−1)γ2

4ω2
0

(L−1)/2∏
l=1

c†2l e
γ
ω0
b†2l

 |∅〉el|∅〉ph ,

(34)

up to machine precision. We will refer to this state as a
dressed charge-density wave (DCDW) and its structure
in real space is sketched in Fig. 6(b).

In Fig. 11(a), we plot the order parameter OCDW

as a function of time when starting from the DCDW
state. We set the phonon frequency to ω0/t0 = 2 during
the time evolution and use different coupling strengths
γ/t0 = 1, 3, 4 (the same as for the BCDW state in Fig. 7
and Fig. 9). For the strongest coupling γ/t0 = 4, the ini-
tial state is close to the ground state and therefore, the
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FIG. 11. Time evolution of (a) the decay of the charge-
density-wave order parameter OCDW and (b) the phonon
number per fermion Nph/N when starting from the dressed
CDW state |DCDW〉 Eq. (34). The small black dots in panel
(a) are exact analytical results for γ = 0 when starting from
the |BCDW〉 state in the thermodynamic limit [97]. The
dashed horizontal lines in panel (b) represent the number of
phonons per fermion in the ground states at the respective
parameters. Simulations are performed for L = 13, ω0/t0 = 2
and different coupling strengths γ/t0 = 1, 3, 4. In the time
evolution, we use a local phonon cutoff Mph = 20, 30, 40, re-
spectively. The local discarded weight is set to ∆loc = 10−8.
For clarity, we only show every fifth data point that was com-
puted.

order parameter decays very slowly. This resemblance
is also reflected in the time dependence of the phonon
number plotted in Fig. 11(b). For the strong coupling
γ/t0 = 4, the phonon number barely changes over time
and stays close to the value in the ground state plotted
as dashed horizontal line. On the other hand, for the
small coupling γ/t0 = 1, the initial state is far from the
ground state and, as a consequence, the order decays fast
towards zero and oscillates around this value. Again, the
frequency of the oscillations is controlled by the hopping
parameter t0 as is evident from the comparison to the
exact analytical curve at γ = 0 [97] [small black dots in
Fig. 11(a)]. Furthermore, for γ/t0 = 1, the phonon num-
ber increases by a factor of two within tt0 ≈ 1.5. For the
intermediate coupling of γ/t0 = 3, the order parameter
slowly and steadily decays to zero and the phonon num-
ber in the system changes moderately compared to the
other two cases.

The different time scales of the dynamics in Fig. 11(a)
can also be understood in terms of decreasing effective
hopping matrix elements for the polarons for increasing
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FIG. 12. Time evolution of the decay of the charge-density-
wave order parameter OCDW when starting from the dressed
CDW state |DCDW〉 Eq. (34). Here, the time axis is in units
of the effective hopping matrix element t̃0 Eq. (8) (system size
L = 13, phonon frequency ω0/t0 = 2 and data for different
coupling strengths γ/t0 = 1, 3, 4). In the time evolution, we
use a local phonon cutoff Mph = 20, 30, 40, respectively. The
local discarded weight is set to ∆loc = 10−8. For clarity, we
only show every fifth [every twentieth] data point that was
computed for γ/t0 = 3 [γ/t0 = 4].

coupling strength γ/t0. In Fig. 12, we plot the order
parameter OCDW as a function of time where time is
expressed in units of the inverse effective hopping matrix
element t̃0, Eq. (8), from the small t0 perturbation theory
[26]. This does not produce a complete collapse of the
data sets since we are already far away from the small
t0 limit. Nevertheless, the decay of the order parameter
now happens on comparable time scales for the different
coupling strengths.

Another feature that is noticeable in Fig. 11(a) are
peaks in OCDW around tt0 ≈ 3.1 and tt0 ≈ 6.3 for
γ/t0 = 4. The first peak is also visible for γ/t0 = 3. The
positions in time of these features coincide with multi-
ples of the phonon period 2π/ω0. This becomes evident
when comparing data for different phonon frequencies
ω0/t0 (not shown here). These features are also very
prominent in Fig. 13 where we plot the kinetic energy
as a function of time when starting from the DCDW
state. For the strong coupling γ/t0 = 4, the kinetic en-
ergy relaxes to the ground-state value (dashed red line
in Fig. 13) after tt0 ≈ 0.5 and fluctuates around it.
Around tt0 ≈ 3.1, a peak appears that corresponds to
the one seen in Fig. 11(a). After tt0 ≈ 3.5, the kinetic
energy again fluctuates around the ground-state value
before the second peak appears around tt0 ≈ 6.3. In
contrast, the kinetic energy at γ/t0 = 1 slowly decays to
Ekin/(t0N) ≈ −0.7 and only shows very slow fluctuations
around that value. It is worth noting that this value is
still far above the ground-state kinetic energy (horizontal
dashed green line in Fig. 13). The latter is not surprising
since the initial DCDW state is far away from the ground
state at these parameters.

Comparing the time evolution of the BCDW state and
the DCDW state, one notices that the behavior at the
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FIG. 13. Time evolution of the kinetic energy per fermion
Ekin/N when starting from the dressed CDW state |DCDW〉
Eq. (34). The dashed horizontal lines represent the kinetic en-
ergy in the ground states at the respective parameters. Sim-
ulations are performed for L = 13, ω0/t0 = 2 and different
coupling strengths γ/t0 = 1, 3, 4. In the time evolution, we
use a local phonon cutoff Mph = 20, 30, 40, respectively. The
local discarded weight is set to ∆loc = 10−8. For clarity, we
only show every fifth data point that was computed.

weak coupling γ/t0 = 1 in the two cases is very simi-
lar. The order parameter decays towards zero very fast
and oscillates with a frequency controlled by the hopping
parameter t0. In contrast, the behavior for the stronger
couplings γ/t0 = 3, 4 is quite different for the two differ-
ent initial states. When starting from the BCDW state
the initial movement of the fermions is not affected much
by the coupling to the phonons and only after a tran-
sient time, when phonons are emitted by the fermions
and the polarons are formed, the fermions become very
slow. However, this slowing down of the movement is
only temporary and after the phonons are reabsorbed
the dynamics of the fermions speeds up again. In con-
trast, the DCDW state at γ/t0 = 3, 4 already contains
very heavy polarons and the movement of the fermions is
slow right from the beginning. A closely related behav-
ior has been seen in a recent work by Kloss et al. [32] in
the expansion of a single particle injected into an empty
Holstein lattice. When the particle is initially dressed by
phonons, the expansion is strongly suppressed as the cou-
pling strength is increased. In the opposite case of a bare
electron, a repeated temporal suppression of the dynam-
ics over time intervals of one phonon period is observed.
We find both these phenomena in the time evolution of
the dressed and bare CDW state, respectively.

TABLE I. Energy difference between the ground states and
the initial states ∆EBCDW[DCDW] = EBCDW[DCDW] − Egs for
the BCDW [DCDW] state with L = 13 and ω0/t0 = 2.

γ/t0 ∆EBCDW/(t0N) ∆EDCDW/(t0N)
1 1.674 1.174
3 4.877 0.377
4 8.153 0.153
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Another aspect is that the BCDW state as initial state
is increasingly further away from the ground state as
γ/ω0 increases (cf. Table I). On the other hand, in
the case of the DCDW state the opposite is true. The
stronger the coupling γ/ω0 the closer the initial state is
to the ground state in terms of energy. This explains the
slower relaxation due to the smaller fraction of interme-
diate states available in the many-body spectrum.

C. Quench from CDW to metallic phase

In contrast to the initial CDW product states discussed
in the previous sections, we now start from a fully corre-
lated CDW state, i.e., the many-body ground state. The
quench protocol is as follows. We prepare the system
in the ground state for parameters in the CDW phase.
Then, at time t = 0, we quench the phonon frequency
ω0/t0 and the electron-phonon coupling parameter γ/t0
such that for the resulting parameter set, the system is
in the metallic TLL phase. The quenches considered
here are illustrated in the sketch of the phase diagram
in Fig. 1(b) as arrows. The horizontal arrow (FQ) illus-
trates the quench of both the phonon frequency ω0/t0
and the coupling strength γ/ω0 in such a way that γ/ω0

stays constant, while the vertical arrow (CQ) illustrates
the quench of only the coupling γ/t0. As mentioned ear-
lier, we use an odd system size L to pin the charge-density
wave and get a non-zero value for the order parameter
OCDW in the initial ground state. The number of parti-
cles in the system is then N = (L− 1)/2.

In Tab. II, we list the quench energies ∆Equ = Einit−
Egs in the two quenches, which is the difference be-
tween the energy of the state after the quench Einit

and the ground-state energy Egs for these parameters.
Furthermore, we list the kinetic and phonon quench en-
ergy ∆Equ

kin = Einit
kin − E

gs
kin and ∆Equ

ph = Einit
ph − E

gs
ph re-

spectively, where Eα = 〈Hα〉. The kinetic part of the
quench energy is very similar in the two quenches while
the phononic part is not. In the frequency quench, we re-
duce the energy of individual phonons with respect to the
bandwidth and therefore, ∆Equ

ph becomes quite small. In
comparison, in the coupling quench the ratio of phonon
energy and bandwidth stays fixed and ∆Equ

ph dominates
∆Equ. This explains why in the frequency quench, ∆Equ

is smaller than in the coupling quench.

TABLE II. Total quench energies ∆Equ and the contributions
from the kinetic part ∆Equ

kin and the phononic part ∆Equ
ph .

∆Equ/(t0N) ∆Equ
kin/(t0N) ∆Equ

ph/(t0N)

FQ 0.987 1.007 0.197
CQ 5.190 0.952 7.398
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FIG. 14. Time evolution of (a) the decay of the charge-
density-wave order parameter OCDW and (b) the staggered
displacement Odisp Eq. (35) in a quench from the CDW phase
to the TLL phase. Circles: Quench from ω0,init/t0 = 2 and
γ/t0 = 4 to ω0/t0 = 0.1 and γ/t0 = 0.2 (frequency quench,
FQ). Diamonds: Quench from γinit/t0 = 4 to γ/t0 = 1 while
ω0/t0 = 2 is kept fixed (coupling quench, CQ). The small
black dots in panel (a) are exact analytical results in the ther-
modynamic limit for |BCDW〉 as initial state and no coupling
to phonons [97]. The dashed horizontal lines in panel (b) rep-
resent the value of Odisp in the respective ground states. The
system size is L = 13, local phonon cutoff Mph = 40 and the
local discarded weight is set to ∆loc = 10−8. For clarity, we
only plot every second [fourth] data point that was computed
in the FQ [CQ].

1. Frequency quench

We first consider the frequency quench, starting from
the ground state at ω0,init/t0 = 2 and γinit/t0 = 4 which
is in the CDW phase. At t = 0, we quench the phonon
frequency to ω0/t0 = 0.1 and the coupling strength to
γ/t0 = 0.2 with γ/ω0 = 2 =const. The time evolution of
the order parameter is shown in Fig. 14(a) as circles. The
order quickly decays towards zero and oscillates around
a value slightly bigger than zero. The comparison to the
exact analytical results for relaxation from the BCDW
state with γ = 0 [97] [small black dots in Fig. 14(a)] re-
veals that the frequency of the oscillations are controlled
by the hopping parameter t0. Moreover, the electrons
clearly move into the previously empty sites.

Instead of the phonon number, we discuss the stag-
gered displacement to characterize the dynamics in the



14

0 1 2 3 4 5 6
t t0

1.25

1.00

0.75

0.50

0.25

0.00
E k

in
/(t

0N
)

L = 13 FQ
CQ
ground state

FIG. 15. Time evolution of the kinetic energy per fermion
Ekin/N in a quench from the CDW phase to the TLL phase.
Circles: Quench from ω0,init/t0 = 2 and γ/t0 = 4 to
ω0/t0 = 0.1 and γ/t0 = 0.2 (frequency quench, FQ). Dia-
monds: Quench from γinit/t0 = 4 to γ/t0 = 1 while ω0/t0 = 2
is kept fixed (coupling quench, CQ). The dashed horizontal
lines represent the kinetic energy per fermion Ekin/N in the
respective ground states. The system size is L = 13, local
phonon cutoff Mph = 40 and the local discarded weight is set
to ∆loc = 10−8. For clarity, we only plot every second [fourth]
data point that was computed in the FQ [CQ].

phonon sector:

Odisp =
1

N

L∑
l=1

(−1)l〈b†l + bl〉 . (35)

〈b†l + bl〉 is the expectation value of the displacement of
the harmonic oscillator on site l. In equilibrium, a non-
zero value of the fermion CDW order parameter OCDW

is accompanied by a non-zero value of the staggered dis-
placement Odisp. We plot the staggered displacement
in Fig. 14(b). For the FQ, it remains positive during
the simulation window and decreases only slightly. To
qualitatively understand the nonequilibrium phenomena
investigated here it is helpful to adapt a mean-field like
picture. The displacements of the harmonic oscillators
can be viewed as a potential landscape for the electrons
when we replace the displacement operators in Eq. (4)
by their expectation values.

In the case of the frequency quench, the staggered dis-
placement Odisp changes very slowly as a function of time
since the phonon period 2π/ω0 is very large. As a con-
sequence, at the end of our simulation time, there is still
a background potential landscape. The electrons move
in this background potential and therefore, their order
remains larger than in the free case γ = 0. This also
means that although the electron CDW order parame-
ter OCDW exhibits a fast dynamics and only shows small
oscillations, the entire system is still very far from equili-
bration since the phonons remain in a spatially inhomo-
geneous state. In order to observe the relaxation of the
whole system towards a stationary state one would have
to simulate to much longer times than what is currently
feasible with our method. Finally, in Fig. 15 we present

the kinetic energy after the frequency quench. It relaxes
towards an almost stationary value after tt0 ≈ 1.5 with
only small oscillations with a similar frequency as in the
time evolution of OCDW.

2. Coupling quench

In the second quench scenario, we fix the phonon fre-
quency to ω0/t0 = 2 and quench only the coupling
strength from γinit/t0 = 4 to γ/t0 = 1. The time evolu-
tion of the order parameter OCDW is plotted as diamonds
in Fig. 14(a). In contrast to the frequency quench, the
order parameter in the coupling quench shows large slow
oscillations with an amplitude that barely decreases on
the time scales that are accessible here. In Fig. 14(b), we
plot the staggered displacement Odisp in this quench as
diamonds. One can see that the staggered displacement
oscillates with a period of 2π/ω0 between positive and
negative values, i.e., the phonons, once released from the
polaron start to undergo a nonequilibrium dynamics with
oscillating displacement. Note that the phonon density
itself also remains largely concentrated on the even sites
(data not shown here). For the effective potential land-
scape this means that the fermions are attracted to their
initial places when Odisp is positive and are pushed away
from these sites when Odisp is negative. Therefore, the
oscillations in OCDW and Odisp are locked to one another
and the frequencies are comparable. Similar to the FQ,
the spatially inhomogeneous nonequilibrium distribution
of the phonons remains stable.

This locking effect also explains the oscillations in the
kinetic energy plotted as diamonds in Fig. 15. The ki-
netic energy has a maximum whenever Odisp has a max-
imum or a minimum. This occurs when the fermions
are localized on the even or odd sites, respectively. On
the other hand, when the potential landscape is closer
to being flat and Odisp is close to zero, the fermions hop
around and the kinetic energy has a minimum.

In summary, the quenches again exhibit strong depen-
dencies on the initial state and on the final-state pa-
rameters in the transient dynamics. As in the relax-
ation dynamics of the BCDW and DCDW states, the
phonons primarily slow down the electronic dynamics.
For the postquench parameters in the TLL phase consid-
ered here, the electrons can move but the phonon distri-
bution relaxes much slower, resulting in a slowly decay-
ing inhomogeneous nonequilibrium distribution. It would
be very interesting to extend the analysis to the case
of dispersive phonons to study whether this can speed
up both the electronic relaxation and the dissolving of
spatially inhomogeneous phonon distributions. From a
broader perspective, this leads to the topic of energy
transport, which in the Holstein model can only occur via
electronic quasi-particle motion while dispersive phonons
could carry an energy current themselves. These ques-
tions are left for future studies.
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V. SUMMARY

To summarize, we studied the melting of CDW or-
der by means of real-time simulations of the half-filled
Holstein model of spinless fermions in one dimension.
To this end, we investigated relaxation dynamics that is
dominated by electron-phonon coupling in the far-from-
equilibrium regime, complementary to the case studied
in [37] where strong electron interactions were present.
We find a strong dependence of the transient dynamics
on the precise initial state and on the model parameters.
As discussed in previous work [29, 32, 34, 37, 98], a main
effect of an electron-phonon coupling is the slowing down
of the dynamics of the electrons compared to a purely
electronic system. This is attributed to the formation of
polarons which renormalizes the mass of the charge car-
riers. For weak coupling the movement of the electrons is
comparable to the dynamics of free particles with small
corrections. In the case of strong coupling, the dynamics
on transient time scales can be altered more drastically,
which is exemplified by the temporal self trapping of the
electrons observed here.

Furthermore, we often find very different time scales
for the relaxation in the electron and the phonon sector
as is most clearly evident in the quenches from correlated
ground states. In these situations, we observe that the
initial spatially inhomogeneous phonon distribution per-
sists and forms a potential background for the electron
relaxation. As a result, inhomogeneities remain in the
spatial electron distribution as well. A question for fur-
ther studies is how this picture changes when introducing
a dispersion of the phonons. It remains as an open ques-
tion whether regimes can be found where the presence
of phonons actually accelerates the full relaxation of the
electronic system. This connects our work to the ques-
tion of how inhomogeneities in the phonon sector of an
electron-phonon coupled system relax and, more gener-
ally, how different channels of energy and charge trans-
port compete in such systems (in the context of the SSH
model, such questions were discussed in, e.g. [98]).

Our work demonstrates the capabilities of combining
LBO with MPS-based numerical methods when applied
to electron-phonon coupled systems. The TEBD-LBO
algorithm gives access to regimes far from equilibrium
that are out of reach for conventional MPS-based tech-
niques. We postpone the question of a benchmark of our
DMRG3S+LBO algorithm against other state-of-the-art
ground-state DMRG algorithms that were developed for
electron-phonon coupled systems (such as the pseudo site
method [55]) to future studies.
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Appendix A: Finite-size dependence
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FIG. 16. Time evolution of the charge-density-wave order
parameter OCDW when starting from the bare CDW state
|BCDW〉 Eq. (32). Comparison between different system sizes
L = 5 (open black symbols), L = 9 (open colored symbols)
and L = 13 (filled symbols). The phonon frequency is ω0/t0 =
2 while in panel (a) γ/t0 = 1, in panel (b) γ/t0 = 3 and in
panel (c) γ/t0 = 4. In the time evolution, we use a local
phonon cutoff Mph = 10, 30, 40, respectively, and the local
discarded weight is set to ∆loc = 10−8. For clarity, we only
show every fifth data point that was computed.

In Figs. 16, 17 and 18, we compare time-evolution data
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produced with our TEBD-LBO method (cf. Sec. III B)
for different system sizes L = 5, 9, 13.

In Fig. 16, the initial state is the bare CDW state and
the phonon frequency is set to ω0/t0 = 2 as in Sec. IV A.
The largest finite-size effects are seen for γ/t0 = 1 in
Fig. 16(a). This is expected since because of the weak
coupling, the dynamics is the fastest here. Nevertheless,
there are no big qualitative differences between the differ-
ent system sizes. Finite-size effects are even smaller for
the larger couplings γ/t0 = 3 [Fig. 16(b)] and γ/t0 = 4
[Fig. 16(c)] where until tt0 ≈ 2.8, the data of the differ-
ent system sizes lie on top of each other and only small
deviations are seen for larger times.

The picture is similar for the dressed CDW state as
the initial state as in Sec. IV B. In Fig. 17, we compare
the time evolution of OCDW at ω0/t0 = 2 for the system
sizes L = 5, 9, 13. Again, the largest finite-size effects are
seen in panel (a) of Fig. 17 for γ/t0 = 1. For γ/t0 =
3 [Fig. 17(b)] small finite-size effects are observable for
tt0 & 4, while for γ/t0 = 4 [Fig. 17(c)] the data for the
different system sizes lie on top of each other for the full
simulation time. This is a manifestation of the very slow
dynamics and the proximity to the ground state of the
dressed CDW state at large γ/t0.

In Fig. 18, we compare different system size data
for the quenches discussed in Sec. IV C. In Fig. 18(a),
the phonon frequency and coupling strength is quenched
from ω0,init/t0 = 2 and γinit/t0 = 4 to ω0/t0 = 0.1 and
γ/t0 = 0.2. Here, we can observe large boundary effects
for L = 5 after tt0 ≈ 3 and for L = 9 after tt0 ≈ 4.7.
This is not surprising since the dynamics is dominated
by the hopping parameter t0 in this case as discussed in
Sec. IV C. The largest velocity in the system is therefore
vmax ≈ 2t0 and hence the fastest excitations had time to
travel across the entire system and bounce back from the
boundary.

The situation is different in Fig. 18(b) for the quench
of the coupling strength γinit/t0 = 4 to γ/t0 = 1 while
the phonon frequency is fixed to ω0/t0 = 2. In this case,
the finite-size effects seen are very small which is evidence
for the fact that the dynamics in the system is not dom-
inated by the free movement of the electrons. Instead,
the presence of the phonons from the CDW initial state
plays the key role in the dynamics.

Overall, the Figs. 16, 17 and 18 show that the key
features in the time evolution ofOCDW that are described
in Sec. IV are robust against finite-size effects and are not
just an effect of the small system sizes considered in this
work.
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FIG. 17. Time evolution of the charge-density-wave order
parameter OCDW when starting from the dressed CDW state
|DCDW〉 Eq. (34). Comparison between different system sizes
L = 5 (open black symbols), L = 9 (open colored symbols)
and L = 13 (filled symbols). The phonon frequency is ω0/t0 =
2 while in panel (a) γ/t0 = 1, in panel (b) γ/t0 = 3 and in
panel (c) γ/t0 = 4. In the time evolution, we use a local
phonon cutoff Mph = 20, 30, 40, respectively, and the local
discarded weight is set to ∆loc = 10−8. For clarity, we only
show every fifth data point that was computed
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FIG. 18. Time evolution of the charge-density-wave order
parameter OCDW for different system sizes L = 5 (open black
symbols), L = 9 (open colored symbols) and L = 13 (filled
symbols). Panel (a): quench from ω0,init/t0 = 2 and γ/t0 = 4
to ω0/t0 = 0.1 and γ/t0 = 0.2 (frequency quench). Panel
(b): quench from γinit/t0 = 4 to γ/t0 = 1 while ω0/t0 = 2
is kept fixed (coupling quench). The local phonon cutoff is
Mph = 40 and the local discarded weight is set to ∆loc = 10−8.
For clarity, we only plot every second data point that was
computed in panel (a) and every fourth data point that was
computed in panel (b).
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J. Bonča, G. Cerullo, and C. Giannetti, Snapshots of the
retarded interaction of charge carriers with ultrafast fluc-
tuations in cuprates, Nat. Phys. 11, 421 (2015).

[8] C. Giannetti, M. Capone, D. Fausti, M. Fabrizio,
F. Parmigiani, and D. Mihailovic, Ultrafast optical
spectroscopy of strongly correlated materials and high-
temperature superconductors: a non-equilibrium ap-
proach, Adv. Phys. 65, 58 (2016).

[9] S. Vogelgesang, G. Storeck, J. Horstmann, T. Diekmann,
M. Sivis, S. Schramm, K. Rossnagel, S. Schäfer, and
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