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The quantum-to-classical correspondence (QCC) in spin models is a puzzling phenomenon where
the static susceptibility of a quantum system agrees with its classical-system counterpart, at a
different corresponding temperature, within the systematic error at a sub-percent level. We employ
the bold diagrammatic Monte Carlo method to explore the universality of QCC by considering three
different two-dimensional spin-1/2 Heisenberg models. In particular, we reveal the existence of QCC
in two-parametric models.

I. INTRODUCTION

The quantum-to-classical correspondence (QCC) is a
recently discovered phenomenon where the static suscep-
tibility of a certain spin model (at any available temper-
ature TQ and lattice distance r) can be accurately repro-
duced, up to a global normalization factor, by its clas-
sical counterpart at the corresponding temperature TC .
The QCC was first revealed by Kulagin et al. in Ref. 1
for the square- and triangular-lattice spin-1/2 Heisen-
berg antiferromagnets.1 QCC was subsequently estab-
lished for the pyrochlore lattice Heisenberg antiferromag-
net in Ref. 2. Up to now, the origin of QCC still remains
unknown, which motivates us to further study the uni-
versal applicability of QCC in two-dimensional (2D) spin
systems.

In this article, we verify the existence of the QCC for
three 2D frustrated magnets: the kagome-lattice Heisen-
berg antiferromagnet (KLHA), the square-lattice J1−J2
model, and the spatially anisotropic triangular-lattice
Heisenberg antiferromagnet (ATLHA), all of which are
of great experimental and numerical interest.3–5 All con-
sidered Hamiltonians can be described as

H =
∑
〈ij〉

Jij Si · Sj , (1)

where 〈ij〉 stands for all pairs of interacting lattice sites
as illustrated for each model in Fig. 1, and Jij are the
corresponding coupling constants. For KLHA, Jij = J ,
while for the other two models Jij can take two differ-
ent values, J1 and J2. The only difference between the
quantum and classical models is that spin-1/2 operators
S are replaced with unit vectors.

(a)Kagome-lattice
model

(b)Square-lattice
J1 − J2 model

(c)Anisotropic
triangular-lattice

model

FIG. 1. Specifying interactions and primitive cells for three
spin models. In figure 1(a), all bonds have the same coupling
constant J. In figure 1(b) and 1(c), solid and dashed lines rep-
resent coupling constants J1 and J2 respectively, while dotted
lines define the primitive cells.

It is worth noting that the QCC only applies to the
static susceptibility expressed by the correlator

χ(r) ≡
∫ β

0

dτ χ(r, τ) =

∫ β

0

dτ 〈S(0, 0) · S(r, τ) 〉 , (2)

where S(r, τ) is the Matsubara spin-1/2 operator. The
equal-time correlation function, χ(r, τ = 0), while hav-
ing a qualitatively similar spatial profile, does not match
the classical correlation function. It is thus surpris-
ing to observe that the static quantum and classical
correlations, despite featuring a highly non-trivial and
model-dependent pattern of sign-alternating spatial fluc-
tuations, demonstrate perfect qualitative and extremely
accurate quantitative agreement (see Fig. 2 and Fig. 3).

On the one hand, it is believed that the quantum
KLHA is one of the most promising candidates for a
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FIG. 2. Accurate (within the accuracy bounds) match be-
tween the normalized quantum (dots connected by the dashed
line) and classical (open circles) correlation functions of the
kagome-lattice Heisenberg antiferromagnet at TQ = 1.0. The
sequence of labeled distances is illustrated in the top right
corner. The sign of the correlation function is indicated ex-
plicitly next to each point.

spin liquid ground state that does not break the spin-
rotation and lattice-translation symmetries.6–9 On the
other hand, it has been reported that the classical KLHA
is located at a tricritical point where three different
ordered states coexist.10 The proposed quantum and
classical ground states are, thus, dramatically different,
which apparently denies the existence of QCC at least
at low enough temperature. We verify that the QCC
remains valid at temperatures T/J ≥ 1/3. Unfortu-
nately, limitations of the bold diagrammatic Monte Carlo
method (BDMC) based on the G2W -expansion1 do not
allow us to access lower temperatures to ensure that the
ground-state properties are dominating in the correlation
function.11 Whether QCC is valid at much lower temper-
ature remains to be seen in the future.

The square-lattice J1 − J2 model enables us to explic-
itly check the validity of QCC in the different phases of
the same system. Numerous previous work has estab-
lished the rich ground-state phase diagram of this model
with respect to changing the J2/J1 ratio.4 Apart from the
spin liquid state predicted for 0.41 ≤ J2/J1 ≤ 0.62,12 it
also features three ordered states: ferromagnetic (FM),
Néel antiferromagnetic (NAF), and collinear antiferro-
magnetic (CAF). We choose the following parameter sets
in this work: (J1 = 1.0, J2 = 0.5) to address the mostly
frustrated case and (J1 = −1.0, J2 = 0.4) in the CAF
phase (notice the ferromagnetic sign of the nearest neigh-
bor interaction). Here and in what follows, we choose the
modulus of J1 as the unit of energy.

The ATLHA model is chosen specifically to study how
moderate anisotropy in the coupling constants effects the
QCC. In this case, we choose J2/J1 = 0.33, which is
the same as the ratio used to explain experimental data
in Cs2CuCl4.5 When the anisotropy is very strong, the
ATLHA model resembles decoupled 1D chains, for which
the QCC does not hold.1 It appears that observing the
crossover between the 1D and 2D behavior requires very

small ratios of the coupling constants, and the fascinating
QCC phenomenon is robust against anisotropy.
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FIG. 3. Accurate match of the normalized static quantum
(dots connected by the dashed line) and classical (open cir-
cles) correlation functions for the square-lattice J1−J2 model
at TQ = 1.0. The sequence of labeled distances is illustrated
in the top right corner. The sign of the correlation function
is indicated explicitly next to each point.

To obtain the static spin-spin correlation function for
quantum models we employ the BDMC method that al-
lows one to study any frustrated spin model in the coop-
erative paramagnetic regime at temperatures below the
exchange coupling constant J .1,2 The relative accuracy of
the converged BDMC results is ∼1% (the loss of conver-
gence is the prime reason preventing the method from
being used at very low temperature). All models were
simulated on lattices with periodic boundary conditions
and system sizes L × L = 16 × 16 in terms of primitive
cells. These system sizes are much larger than the corre-
lation length to ensure that finite-size corrections to pre-
sented results are negligible (the correlation functions de-
crease by about four orders of magnitude before reaching
distances L/4 along the primitive cell directions). The
primitive cells and sample geometry are showed in Fig.1.

Establishing QCC for single-parameter models boils
down to one-to-one correspondence between the tem-
peratures of quantum, TQ, and classical, TC , systems,
for which the difference between the normalized corre-
lation functions, χ(r)/χ(0), is minimized. This “one-
dimensional” TQ-to-TC mapping applies to KLHA. More
interesting results are obtained for the other two mod-
els, both of which feature an additional model parameter
J2. It turns out that not only the temperature but also
J2 need to be fine-tuned to obtain the best match be-
tween the quantum and classical correlation functions if
we choose to stay in the same model subspace. To be
more specific, we find that for the quantum model with

JQ2 6= 0 at temperature TQ, the matching classical coun-

terpart should be taken with JC2 6= JQ2 at temperature TC
(asymptotically, JC2 → JQ2 at high temperature). This

constitutes a “two-dimensional” (TQ,JQ2 )-(TC ,JC2 ) map-
ping.

In what follows, we establish that at all accessible tem-
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peratures all models demonstrate a perfect (within error
bars) match between the static quantum and classical
correlation functions. We discuss properties of the cor-
respondence mapping, and conclude with broader impli-
cations of this work, as well as perspectives for future
developments.

II. RESULTS

The precise protocol for establishing the QCC is as
follows. We first compute the static correlation func-
tion of the quantum system by the BDMC method.
The answer for its classical counterpart χC(r) was ob-
tained by the conventional single-spin flip Monte Carlo
method. Next, we normalize the quantum result to unity
at the origin [χC(r = 0) = 1 automatically], to obtain
f(r) = χ(r)/χ(0). Finally, we fine-tune classical system
parameters—which are, in our case, TC/J1 and JC2 —to
find the best fit to the f(r) curves. We repeat this process

at different temperatures TQ or values of JQ2 , to obtain
the correspondence curves.

Note that we have only one or two fitting parameters
to described the entire functional dependence of f on
distance, including numerous, and often irregular, sign
changes and an order of magnitude strong fluctuations.
Remarkably, all these features can be reproduced by the
classical model at all distances within the error bounds of
our calculations (often at the sub-percent level for several
closets sites). In Figs. 2 and 3, we show examples of
QCC for KLHA and the square-lattice J1 − J2 model at
TQ = 1.0. Absolute values of all results shown in both
plots are also presented in Table I because for most data
points the errorbars are smaller than symbol sizes. We
observe that an accurate match can be achieved, and
this holds at all temperatures accessible to us and for all
models studied in this work. As of now, no exception
from the QCC “rule” was found in dimensions d > 1.

The free parameters of the classical model, TC and JC2
are plotted in Fig. 4 as functions of the quantum model
temperature TQ, together with the high-temperature

asymptotic relations TC = (4/3)TQ and JC2 = JQ2 , which
can be easily verified by the high-temperature expansion.
The first relation merely reflects the difference between
〈S2 〉 = S(S + 1) = 3/4 and 〈n2 〉 = 1. (For models
with two parameters, the QCC represents a 2D map-

ping. If we keep JQ2 fixed, we can still present it as the
correspondence curves.) It is worth noting that JC2 of

the square-lattice J1−J2 model approaches JQ2 from dif-
ferent sides when we change the sign of J1. Mapping of
spin-spin correlation functions between the quantum and
classical models is rather standard and expected in two
limiting cases. At T/J � 1, it can be established ana-
lytically by looking at the lowest-order high-temperature
series expansion contribution capturing the weak short-
range correlations. At distances beyond the small corre-
lation length, both systems are described by the universal
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FIG. 4. Correspondence curves of all models. From top to the
bottom: KLHA; square-lattice CAF (J1 = −1.0, J2 = 0.4 );
square-lattice QSL (J2/J1 = 0.5); ATLHA (J2/J1 = 0.33).
The high-temperature asymptotic relations TC = (4/3)TQ

and JC
2 = JQ

2 are indicated by the dashed lines.

coarse-grained field statistics. The QCC in the coopera-
tive paramagnetic regime, T/J <∼ 1, is fundamentally dif-
ferent from these limiting cases: on the one hand, correla-
tions at short distance are strong and far from being accu-
rately described by the lowest-order high-temperature se-
ries expansion, on the other hand, the correlation length



4

TABLE I. Absolute values of quantum and classical correlation functions presented in Figs. 2 and 3, along with the error
bounds on the difference between the two. The error bounds are based on the 3σ-criterion for purely statistical Monte Carlo
fluctuations and the systematic error of the extrapolation to the infinite diagram order limit for quantum simulations. Accurate
QCC is observed for all points within the error bounds.

K
a
g
o
m

e

Space Label 1 2 3 4 5 6 7 8
Classical Correlator 1.000000 0.182995 0.034589 0.033010 0.012270 0.004932 0.006247 0.002195
Quantum Correlator 1.000000 0.183641 0.034820 0.033191 0.012339 0.005005 0.006291 0.002225
Correlator Difference 0.000000 0.000646 0.000231 0.000181 0.000069 0.000073 0.000044 0.000030

Errorbar 0.000000 0.000978 0.000342 0.000319 0.000148 0.000104 0.000069 0.000052
Space Label 9 10 11 12 13 14 15

Classical Correlator 0.000969 0.000681 0.000350 0.001175 0.000377 0.000129 0.000236
Quantum Correlator 0.000994 0.000703 0.000353 0.001174 0.000378 0.000141 0.000229
Correlator Difference 0.000025 0.000022 0.000003 0.000001 0.000001 0.000012 0.000007

Errorbar 0.000029 0.000024 0.000013 0.000025 0.000016 0.000012 0.000012

S
q
u
a
re

Space Label 1 2 3 4 5 6 7 8
Classical Correlator 1.000000 0.166453 0.042818 0.038162 0.017860 0.001943 0.009799 0.005713
Quantum Correlator 1.000000 0.166971 0.042386 0.038169 0.017840 0.002026 0.009810 0.005695
Correlator Difference 0.000000 0.000518 0.000432 0.000007 0.000020 0.000083 0.000011 0.000018

Errorbar 0.000000 0.002629 0.000448 0.000914 0.000219 0.000217 0.000299 0.000140
Space Label 9 10 11 12 13 14 15

Classical Correlator 0.000428 0.000320 0.002663 0.001741 0.000347 0.000073 0.000019
Quantum Correlator 0.000394 0.000327 0.002653 0.001731 0.000340 0.000078 0.000003
Correlator Difference 0.000034 0.000007 0.000010 0.000010 0.000007 0.000005 0.000016

Errorbar 0.000069 0.000046 0.000123 0.000083 0.000040 0.000046 0.000037

remains short and the coarse-grained description is not
applicable.

III. DISCUSSION

Using the BDMC technique we computed the static
spin-spin correlations as functions of distance for three
different frustrated spin models, including the coopera-
tive paramagnetic regime that, as far as we know, cannot
be addressed for large system sizes by any of the other
numerical methods. We found that all systems feature
the non-trivial quantum-to-classical correspondence. We
measured the correspondence curves for each model down
to temperatures below the exchange coupling constant
and verified that each curve follows the expected asymp-
totic behavior in the high-temperature limit.

Future numerical work with respect to QCC can fol-
low two different routes. (i) Extend the low-temperature
range for quantum systems. Our current implementa-
tion of the BDMC technique faces convergence problems
at temperature T � J and does not allow us to obtain
data at sufficiently low T for reliable extrapolation to the
ground state. Making predictions based on QCC with re-
gards to the spin liquid ground state is not possible under
these conditions. There exist numerous alternative for-
mulations of the diagrammatic expansion13 and ways of
regrouping and re-summing diagrammatic series; some of
them may prove helpful in extending the range of temper-
atures where the diagrammatic Monte Carlo technique

works. (ii) Expand the “family” of models demonstrat-
ing the QCC in dimensions d > 1, or find exceptions from
the “rule.” Without proper theoretical understanding of
its origin, it is worth exploring how other model features,
such as long-range coupling, effect QCC.

Other finite-temperature methods14–16 can, in prin-
ciple, address the T/J < 1 regime of the 2D Heisen-
berg models, but they all have important disadvantages
when compared with BDMC. Methods based on exact
diagonalization are limited to small system sizes; e.g.,
for KLHA the finite-temperature Lanczos method can
only deal with about 40 lattice sites leaving no space
for studies of spatial profiles at distances r � L/2.
Since static susceptibility χ(r) is not based on the cor-
relation function of conserved quantities—such as en-
ergy or uniform magnetization—it is not simulated by
high-temperature expansion methods due to prohibiting
computational complexity involved. New methods, such
as the infinite projected entangled pair states at finite
temperature17 have the potential of changing this situa-
tion in the future.
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