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We utilize Langevin molecular dynamics simulations to study dynamical critical behavior of mag-
netic flux lines near the depinning transition in type-II superconductors subject to randomly dis-
tributed attractive point defects. We employ a coarse-grained elastic line Hamiltonian for the
mutually repulsive vortices and purely relaxational kinetics. In order to infer the stationary-state
critical exponents for the continuous non-equilibrium depinning transition at zero temperature T = 0
and at the critical driving current density jc, we explore two-parameter scaling laws for the flux
lines’ gyration radius and mean velocity as functions of the two relevant scaling fields T and j − jc.
We also investigate critical aging scaling for the two-time height auto-correlation function in the
early-time non-equilibrium relaxation regime to independently measure critical exponents. We pro-
vide numerical exponent values for the distinct universality classes of non-interacting and repulsive
vortices.

I. INTRODUCTION

The flow of magnetic flux lines in type-II supercon-
ductors in the presence of fixed attractive pinning cen-
ters represents a paradigmatic example of coherent struc-
tures driven through disordered media. Such systems
are of prime interest from a theoretical point of view
since they exhibit a rich variety of both thermodynamic
phases and non-equilibrium steady states that result from
the competing energy scales associated with the intrin-
sic elastic rigidity, mutual interactions, quenched disor-
der, thermal fluctuations, and external driving current.
From an experimental/technological standpoint they are
of paramount importance as well, since they emerge in
a highly diverse array of physical scenarios, e.g. in di-
rected polymers, magnetic flux vortices, charge density
waves (CDWs), magnetic domain walls, moving Wigner
crystals, and driven membrane sheets1. Indeed, the non-
linear dynamics of vortex motion in disordered type-II
superconductors has been studied extensively2–8 through
numerical simulations but also analytically by means of
functional renormalization group techniques9–12. Fisher
in 1985 via phenomenological arguments posited that the
depinning of sliding CDWs may be regarded as a dy-
namic critical phenomenon where driving force acts as
the control parameter and velocity as the associated or-
der parameter13, an idea that has since been successfully
extended to several domains beyond CDWs9,14–19. Am-
ple evidence for elastic critical depinning has been found
both in experiments20–27 and in numerical studies28–37,
which all observed clear signatures for a continuous
(second-order) dynamical phase transition at a critical
value of the external drive.

To mention only a few important recent investigations
of the critical depinning of vortices in disordered type-II

superconductors, Luo and Hu utilized molecular dynam-
ics simulations to study the dynamical scaling of velocity-
force curves for flux lines in a three-dimensional embed-
ded space (d = 3), obtaining the critical exponents β and
δ in both the weak and strong pinning regimes38. Fily
et al. studied depinning for two-dimensional vortex lat-
tices (d = 2), and determined β and δ for the scaling
relation that governs the velocity-force behavior near the
depinning transition1. Di Scala et al. computed criti-
cal scaling exponents including the growth exponent ν
for the elastic depinning of vortices in two dimensions39.
Bag et al. recently determined critical scaling exponents
from experimental data they obtained for 2H-NbS2 sin-
gle crystals40. The two-dimensional critical depinning
dynamics, including non-equilibrium relaxation and ag-
ing scaling, of skyrmion topological defects in disordered
magnetic films has been investigated by Xiong et al.41

For a comprehensive up-to-date (until 2016) review arti-
cle on depinning and non-equilibrium phases in various
systems, we refer to Ref. [42].

In this present work, we employ an elastic line model
to study critical behavior near the depinning transition
for vortices in the presence of weak attractive random
quenched disorder (point defects) in a three-dimensional
system (d = 3) with a two-dimensional displacement vec-
tor (N = 2)43–48. We perform finite-temperature scal-
ing on both steady-state velocity and radius of gyration
data and thereby obtain the stationary critical scaling
exponents β, δ, and ν that characterize the depinning
process as a continuous second-order phase transition
at zero temperature, finding β to be in good agreement
with experimental values. In addition, we probe the non-
equilibrium aging dynamics in the system by quenching
vortices from the high-drive moving lattice state to the
critical depinning regime and studying the ensuing two-
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time vortex line displacement auto-correlations to com-
pute the aging exponent b, dynamic exponent z, auto-
correlation exponent λC , and roughness exponent ζ in
the system.

II. MODEL AND SIMULATION DESCRIPTION

We model magnetic flux lines in type-II superconduc-
tors as mutually repulsive elastic lines in the extreme
London limit49,50 with the effective Hamiltonian or free
energy functional

H[ri] =

N∑
i=1

∫ L

0

dz

[
ε̃1
2

∣∣∣∣dri(z)dz

∣∣∣∣2 + UD(ri(z))

+
1

2

N∑
j 6=i

V (|ri(z)− rj(z)|)− Fd · ri(z)

]
.

(1)

Here ri(z) represents the xy position of the ith flux line
(one of N = 16), at height z. Model parameters have
been chosen to closely match the material properties
of YBCO. The elastic line stiffness or local tilt mod-
ulus is given by ε̃1 ≈ Γ−2ε0 ln(λab/ξab) where Γ−2 =
Mab/Mc = 1/25 denotes the anisotropy parameter and
ε0 ≈ 1.92 · 10−6erg/cm is the elastic line energy per unit
length. λab ≈ 1200Å is the London penetration depth
and ξab ≈ 10.5Å is the coherence length, in the ab crys-
tallographic plane. The in-plane repulsive interaction be-
tween any two flux lines is given by V (r) = 2ε0K0(r/λab),
where K0 denotes the zeroth-order modified Bessel func-
tion. It effectively serves as a logarithmic repulsion that
is exponentially screened at the scale λab. The pinning
sites are modeled as smooth potential wells UD(r, z) =

−
ND∑
α=1

b0
2
p

[
1− tanh

(
5
|r− rα| − b0

b0

)]
δ(z − zα), where

ND = 1116 indicates the number of pinning sites, p =
0.05ε0 is the pinning potential strength, b0 = 35Å is the
width of the potential well, while the vector rα and coor-
dinate zα respectively represent the in-plane and vertical
positions of pinning site α. The Lorentz force exerted
on the flux lines by an external electrical current density
j is modeled in the system as a tunable, spatially uni-
form drive Fd = |j × φ0B/B| in the x direction where
φ0 = hc/2e represents the magnetic flux quantum and
B/B is a unit vector pointing in the direction of the
magnetic flux. All lengths are expressed in units of b0
while energies are expressed in units of ε0b0.

We enforce periodic boundary conditions in the x and
y directions and free boundary conditions in the z direc-
tion. The system size isX×Y ×L = 314b0×272b0×100b0;
the ratio of X to Y is set to 2/

√
3 to ensure that the flux

lines equilibrate to a periodic hexagonal Abrikosov lattice
in the absence of defects.

We simulate the dynamics of the model by discretiz-
ing the Hamiltonian (1) into L = 100 layers along the
z direction and using it to obtain coupled overdamped

Langevin equations

η
∂ri(t, z)

∂t
= −δH[ri(t, z)]

δri(t, z)
+ fi(t, z) ,

which are subsequently solved numerically. Here η =
φ20/2πρnc

2ξ2ab denotes the Bardeen–Stephen viscous drag
parameter, where ρn ≈ 500µΩm represents the normal-
state resistivity of YBCO near Tc

6,51. This results in
the simulation time step being defined by the fundamen-
tal temporal unit t0 = ηb0/ε0 ≈ 18 ps. We model the
fast, microscopic degrees of freedom of the surrounding
medium as uncorrelated Gaussian white noise fi,z(t) with
vanishing mean 〈fi,z(t)〉 = 0. Furthermore, these stochas-
tic forces obey the Einstein relation 〈fi,z(t) · fj,z′(s)〉 =
4ηkBTδijδzz′δ(t − s) which ensures that the system re-
laxes to thermal equilibrium with a canonical probability
distribution P [ri,z] ∝ exp(−H[ri,z]/kBT ) in the absence
of any external current. The temperature in the simula-
tions is set to kBT/ε0b0 = 0.001 (T ≈ 5K) and lower.

III. MEASURED QUANTITIES

We directly measure four quantities of interest in
our model system: The mean radius of gyration rg =√
〈(ri(z)− 〈ri〉z)2〉 is the standard deviation of the lat-

eral positions ri(z) of the points constituting the ith flux
line, averaged over all the lines. Hence rg represents a
measure of the overall roughness of the vortex lines in the
sample. Here 〈. . .〉z indicates an average over all layers z
of a given flux line, while 〈. . .〉 denotes an average over
layers z, over all vortex lines i, and over different real-
izations of disorder and noise. The mean vortex velocity
in the direction of the drive (x direction) is given by the
x-component of the vector v = 〈dri(z)/dt〉. We obtain
rg and v as functions of drive Fd in the steady state by
randomly placing 16 straight flux lines in the system and
immediately subjecting them to thermal fluctuations at
temperature T and the desired drive strength Fd. The
lines are allowed to relax in this constant temperature-
drive bath for 100, 000t0, until a stationary regime is
reached (see Fig. 1 for snapshots). At this point, we
start measuring rg and v every 100 time steps, a duration
larger than the correlation times in the system. We per-
form 1, 000 such measurements and record their average
for each observable. We simulate 10 independent real-
izations and perform an ensemble average. Between the
temporal and ensemble averaging, each data point repre-
sents a combined mean over 10, 000 independent values.

The third set of quantities measured are normalized
two-time vortex “height”, i.e., transverse flux line dis-
placement auto-correlation functions

C(t, s) =

〈
(ri,z(t)− 〈ri,z(t)〉z)(ri,z(s)− 〈ri,z(s)〉z)

〉〈
(ri,z(s)− 〈ri,z(s)〉z)2

〉
that quantify how correlated the lateral positions ri,z of
the elements of a line relative to the mean lateral line
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FIG. 1. Simulation snapshots of the non-interacting flux
line system in the (a) pinned (Fd = 0ε0b0), (b) critical
(Fd = 0.0095ε0b0), and (c) moving (Fd = 0.03ε0b0) stationary
regimes at temperature T = 0.0009ε0b0/kB . The snapshots
represent a side view of the system, i.e., a projection of the
three-dimensional system onto the xz plane, with drive Fd

directed in the positive x direction.

position 〈ri,z〉z at the present time t are to their values
at a past time s; they measure the time evolution of lo-
cal transverse thermal vortex fluctuations. We use height
auto-correlations to investigate the existence and nature
of physical aging in our system. A system shows aging
when a dynamical two-time quantity displays slow relax-
ation and the breaking of time translation invariance52.
Additionally, in a simple aging scenario, the two-time
quantity satisfies dynamical scaling and obeys the gen-
eral scaling form

C(t, s) = s−bfC(t/s) , (2)

where fC is a scaling function that follows the asymptotic
power law fC(t/s) ∼ (t/s)−λC/z as t → ∞; b is called
the aging scaling exponent, λC the auto-correlation ex-
ponent, and z is the dynamical scaling exponent.

In this study, we measure height auto-correlations fol-
lowing drive quenches. A drive quench is performed by
first taking the system to a steady state (as described

FIG. 2. Velocity-temperature (v–T ) curves for repulsive vor-
tex lines taken for various values of the drive Fd, with the
curve at critical drive Fc = (0.013 ± 0.0005)ε0 indicated by a
solid line.

above) at some initial drive strength Fd followed by an
instantaneous change (quench) of the drive strength to
the desired final value. Following the quench, we wait
for some waiting time s before taking a snapshot of the
system and proceeding to measure C(t, s) with respect
to the snapshot at times t > s; this is repeated for sev-
eral waiting times. All results are averaged over at least
10, 000 realizations of disorder and noise.

Finally, we extract the characteristic system correla-
tion time τ by measuring the time taken for C(t, s) (for
arbitrary s) to fall from its value 1 at t = s to 0.5 at later
time t.

IV. STATIONARY CRITICAL SCALING

As vortex depinning from attractive point defects rep-
resents a zero-temperature non-equilibrium continuous
phase transition13, the critical scaling of the v–Fd curves
above but near the depinning threshold Fd = Fc should
be described by a power law v(T = 0, f > 0) ∼ fβ where
f = (Fd − Fc)/Fc is the reduced force. More generally,
the critical behavior in the (T, f) control parameter plane
is captured by the scaling ansatz

v(T, f) = T 1/δS(T−1/βδf) , (3)

where S(x) is a scaling function that satisfies the condi-
tions S(x → ∞) ∼ xβ and S(x = 0) = const1,13,38,53–55.
Taking the limit T → 0+ in (3) yields the prescribed
power law for v as function of f at zero temperature,
while setting f = 0 yields the algebraic temperature de-
pendence v(T > 0, f = 0) ∼ T 1/δ.

We argue that the radius of gyration rg plays the role of
the critical correlation length ξ in the system, and hence
upon approaching the transition f → 0+ should diverge
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FIG. 3. Steady-state (a, b) velocity v (in units of b0/t0) and
(c, d) radius of gyration rg (in units of b0) as functions of
driving force Fd (in units of ε0) for (a, c) non-interacting and
(b, d) interacting flux lines. Each quantity is measured at five
different temperatures T (values listed in units of ε0b0/kB).

according to rg(T = 0, f > 0) ∼ f−ν [56]. As with
the scaling of the v–f curves, we postulate the analogous
two-parameter scaling ansatz

rg(T, f) = T−ν/βδR(T−1/βδf) , (4)

with R(x → ∞) ∼ x−ν and R(x = 0) = const. Taking
T → 0+ yields the required v–f power-law and setting
f = 0 yields the scaling relation rg(T > 0, f = 0) ∼
T−ν/βδ. Finally, the correlation time τ is expected to
diverge as τ ∼ f−νz at T = 0 near the critical point
f → 0+ [56].

To numerically determine the reduced drive f , we first
find the zero-temperature critical drive Fc via Eq. (3):
v should exhibit power law behavior as a function of
T when f = 0 (Fd = Fc). Therefore, on a double-
logarithmic plot, the v–T curves for Fd < Fc are con-
cave, those for Fd > Fc in contrast are convex, and at
the critical drive Fc = (0.013 ± 0.0005)ε0 the curves are
approximately linear for the interacting system (shown
in Fig. 2). From the slope and via Eq. (3), we find δ =
5.6 ± 0.2. Identical inflection analysis of v–T curves for
non-interacting flux lines yields Fc = (0.015 ± 0.0005)ε0
and δ = 4.1± 0.1.

We show the steady-state velocity and radius of gy-
ration as a function of drive in Fig. 3. Note that Fc is
lower for the interacting system than the non-interacting
one; this is consistent with the enabling role played by
inter-vortex repulsions in the depinning process that fa-
cilitates collective unbinding of correlated flux line clus-
ters. With these estimated critical depinning forces Fc,
we calculate the reduced drives f and check if v and r
scale respectively as per Eqs. (3) and (4). Employing

FIG. 4. Steady-state data from Fig. 3 re-plotted by means
of the two-parameter scaling ansätze (3) and (4) with sta-
tionary critical exponents β, δ, and ν. Panels (a, c) show
results for non-interacting vortices, while (b, d) represent the
data for repulsively interacting flux lines. Panels (a, b) show
scaled velocities v for five different temperatures T (in units of
ε0b0/kB) as functions of scaled reduced drive f , and panels (c,
d) display scaled gyration radii rg for the same temperatures,
also as functions of f .

global optimization methods57,58, we have estimated the
ensuing numerical values for the stationary critical ex-
ponents β, δ, and ν that provide optimal scaling of the
temperature- and drive-dependent observables v and rg,
thereby facilitating convincing data collapse onto single
master curves as demonstrated in Fig. 4.

For the interacting vortex system, the optimal val-
ues of the exponents are found to be β = 0.43 ± 0.04,
δ = 5.6 ± 0.2, and ν = 0.98 ± 0.15 (Fig. 4b/d). Our β
value shows good agreement with experiment (Table I);
however, our estimate for δ markedly differs from the
value measured experimentally in Ref. [40]. In order to
ascertain that our numerical data properly pertain to the
asymptotic critical scaling regime, we have extracted the
value of the product βδ using two distinct, complemen-
tary methods: (i) by scaling the v–f curves for different
temperatures giving βδ = 2.41± 0.24, and (ii) by scaling
the rg–f curves yielding βδ = 2.5 ± 0.2; the two inde-
pendent estimates show excellent agreement within our
statistical and systematic error bars.

Likewise, we have evaluated the critical scaling ex-
ponents that yield excellent finite-temperature scaling
for the non-interacting system to be β = 0.33 ± 0.03,
δ = 4.1 ± 0.1, and ν = 0.74 ± 0.13 (Fig. 4a/c). The val-
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Source d βδ β δ ν

Luo and Hu38 (simulation) 3 1.0 ± 0.019 0.754 ± 0.010 1.326 ± 0.018

Fily et al.1 (simulation) 2 1.73 ± 0.27 1.30 ± 0.10 1.33 ± 0.18

Di Scala et al.39 (simulation) 2 1.04 ± 0.21 0.29 ± 0.03 3.57 ± 0.64 1.04 ± 0.04

Bag et al.40

(experiment; averaged results)
3 1.01 ± 0.06 0.41 ± 0.02 2.47 ± 0.08

This study: non-interacting 3 1.35 ± 0.11 0.33 ± 0.03 4.1 ± 0.10 0.74 ± 0.13
interacting 3 2.41 ± 0.24 0.43 ± 0.04 5.6 ± 0.20 0.98 ± 0.15

TABLE I. Stationary critical scaling exponents for vortex depinning observed in several available numerical simulation and
experimental studies.

b λC/z z λC ind ζind

Non-interacting vortices 0.56 ± 0.03 0.61 ± 0.02 1.39 ± 0.16 0.85 ± 0.10 0.65 ± 0.24

Interacting flux lines 0.29 ± 0.03 0.43 ± 0.03 1.43 ± 0.15 0.61 ± 0.08 0.98 ± 0.16

TABLE II. Critical aging and dynamical scaling exponents describing the non-equilibrium relaxation of vortices following
critical drive quenches.

ues of βδ estimated, respectively, from the v–f and rg–f
scaling are βδ = 1.35 ± 0.11 and βδ = 1.4 ± 0.1, which
also agree nicely within our numerical errors.

Consequently, in both the non-interacting and inter-
acting flux line systems, the fact that our estimates of
βδ for scaling the rg–f curves using the ansatz (4) are in
agreement with the values obtained by scaling the v–f
curves with the extensively verified Eq. (3), in conjunc-
tion with the quality of data collapse for both scaling
procedures, gives us confidence that we are properly ac-
cessing the asymptotic critical scaling regimes in either
system. The discrepancies of our critical exponent values
with those obtained in Ref. 38 might be caused by the
lower number of 20 layers along the magnetic field direc-
tion used in that study compared with our L = 100; per-
haps for that smaller simulation domain thickness, the
ultimate crossover to the two-dimensional scaling limit
masks the asymptotic exponent values.

V. CRITICAL DYNAMICS AND AGING
SCALING

In addition to finite-temperature critical scaling of one-
time quantities near the depinning transition, we have
studied the non-equilibrium relaxation of our flux line
model systems following a drive quench from the moving
state to the critical depinning regime. Investigating the
two-time vortex height or transverse displacement auto-
correlation function allows us to determine the associated
dynamical and aging scaling exponents.

We begin by identifying the drive strength Fm corre-
sponding to the maximum steady-state radius of gyration
for each temperature T (Fig. 3 c/d). As explored in the
preceding section, the gyration radius represents a good
proxy for correlation length in the system, and it is rea-

sonable to expect that its peak value must lie within the
depinning drive regime. For critical quenches, we ini-
tially prepare the system in a moving non-equilibrium
steady state at high drive Fd = 0.035ε0 at the desired
temperature T . Subsequently we suddenly switch to the
depinning crossover drive Fm(T ), and start measuring
two-time height auto-correlations C(t, s) as the system
relaxes from the quench over time. We perform these
critical quench measurements for five different temper-
atures: T = 0.0005, 0.0006, 0.0007, 0.0008, and 0.0009
(values listed in units of ε0b0/kB). When we plot the
height auto-correlations C(t, s) against the time differ-
ence t− s for different waiting times (s = 26t0, 27t0, and
28t0), we see clear breaking of time translation invariance
(Fig. 5a/b), the first indication of physical aging. The
data are found to dynamically scale (Fig. 5c/d) according
to the full-aging ansatz (2). The scaled auto-correlations
collapse on a master curve that appears to be linear on a
double-logarithmic scale when plotted against t/s. This
implies that the scaling function fC varies algebraically
with t/s, indicating that the flux lines undergo simple
aging after a critical quench. For long times, the master
curve ultimately decays as a power law (t/s)−λC/z where
λC , and z are respectively the auto-correlation and dy-
namic exponents.

We have obtained excellent dynamical scaling collapse
following critical drive quenches for our flux line system
with and without vortex interactions for all five tem-
peratures considered. Representative results for T =
0.0005ε0b0/kB are shown in Fig. 5. Both in the absence
or presence of repulsive interactions, the values of λC/z
and b were found to agree (within statistical and system-
atic error bars) across all temperatures as seen in panels
(e), (f), (g), and (h) of Fig. 5. Indeed, in the critical
scaling regime, at temperatures sufficiently close to zero
and for s� t, one expects the aging scaling exponents to
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FIG. 5. (a, b) Two-time flux line height auto-correlation func-
tions C(t, s) following critical quenches at T = 0.0005 ε0b0/kB
for waiting times s = 26t0, 27t0, and 28t0 as a functions of
t−s; (c, d) these auto-correlations scaled with sb as functions
t/s with b = 0.56±0.03 for (c) and 0.30±0.03 for (d). Panels
(a, c, e, g) and (b, d, f, h) represent the non-interacting and
repulsively interacting flux line systems, respectively. The
solid black line in (c, d) shows the power law dependence
of the scaled quantities for T = 0.0005ε0b0/kB on t/s with
λC/z = 0.61 ± 0.015 for (c) and 0.44 ± 0.03 for (d). Panels
(e, f) and (g, h) respectively show the exponents b and λC/z
estimated for critical quenches at five different temperatures
T = 0.0005, 0.0006, 0.0007, 0.0008, and 0.0009 (left to right,
in units of ε0b0/kB); the solid horizontal line in each panel
represents the mean value of the data points and the shaded
region indicates the error of the mean. The final mean expo-
nent values are stated in Table II.

FIG. 6. Correlation time τ of (a) non-interacting and (b) in-
teracting vortices as a function of drive f (double-logarithmic
scale) for six temperatures T (values listed in units of ε0b0/kB)
along with linear (power law) fits. The negative line slope for
a given T yields νz. In each panel, the inset shows the dy-
namic exponent z (obtained from the log τ–log f data) as a
function of T , along with a linear extrapolation to zero tem-
perature. (Each data point originates from 1000 independent
simulation runs.)

be universal59–64. The observed universality of the aging
scaling exponents for the temperatures considered here
thus further supports the hypothesis of vortex depinning
being a critical phenomenon (at zero temperature). Our
extracted exponent values, averaged over the five differ-
ent temperatures, are stated in Table II. Correlations for
interacting vortices decay slower (λC/z = 0.43 ± 0.03)
than they do for non-interacting, independent flux lines
(λC/z = 0.61 ± 0.02) indicating that repulsive vortex-
vortex interactions facilitate the formation of correlated
vortex regions, and slow down the temporal relaxation of
these collective deformations.

In order to obtain the dynamic critical exponent z,
we first attempted to use a finite-temperature scaling
ansatz as in our measurements of the static exponents
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β and ν. This approach failed, however, most likely on
account of our not being able to get sufficiently close to
the critical drive during the quenches. We then used an
alternative method to evaluate z which was to compute
finite-temperature values of z for multiple temperatures
(Fig. 6) in the following manner: For a given temper-
ature T , we quenched moving systems to several drives
f > 0 near f = 0 and computed the corresponding cor-
relation times τ ; i.e,. the half life of C(t, s = 128t0).
Since τ ∼ f−νz, and with ν previously determined, we
could thus infer z. We pursued this computation for six
temperatures T = 0.0005, 0.0006, 0.0007, 0.0008, 0.0009,
and 0.001 (in units of ε0b0/kB). We then performed a
linear extrapolation (Fig. 6 insets) to estimate the zero-
temperature dynamic exponent, yielding z = 1.39± 0.16
for non-interacting flux lines, and z = 1.43 ± 0.15 for
interacting vortices, indicating that the mutual repul-
sions induce slower critical relaxation. From the ra-
tio λC/z measured before, we may finally compute the
auto-correlation exponents λC = 0.85± 0.10 for the non-
interacting system, while λC = 0.61±0.08 for interacting
flux lines. All our results for the dynamical and aging
scaling exponents are summarized in Table II.

Hyperscaling relations connecting the growth exponent
ν, the order parameter exponent β, the roughness expo-
nent ζ, and the dynamic critical exponent z have been
derived, the latter using statistical tilt symmetry14,15,19:

ν = 1/(2− ζ) , β = (z − ζ)ν . (5)

Using our numerically obtained values of ν and β (Ta-
ble I), we can compute ζ = 2− 1/ν and z = ζ+β/ν. We
find ζ = 0.65 ± 0.24, z = 1.10 ± 0.36 for non-interacting
vortices, whereas ζ = 0.98 ± 0.16, z = 1.42 ± 0.25 with
repulsive interactions present. For the interacting vor-
tices, the value for the dynamical exponent from the hy-
perscaling relations (5) is thus fully consistent with our
direct numerical estimate listed in Table II; for the non-
interacting lines, we observe a larger deviation, but still
well within our error bars.

VI. CONCLUSIONS

In this detailed numerical study, we have employed
a coarse-grained three-dimensional elastic line model of

magnetic vortices and overdamped Langevin molecular
dynamics simulations to investigate the critical depin-
ning of flux lines from randomly distributed weak attrac-
tive point pinning centers. We have performed finite-
temperature scaling of one-time quantities, namely the
mean vortex velocity and flux line gyration radius, to ob-
tain consistent estimates of the stationary critical expo-
nents β, δ, and ν. Independent analyses of data collapse
for these observables confirm that we are properly access-
ing the asymptotic critical scaling regime in both systems
of non-interacting flux lines and mutually repulsive vor-
tices. Our estimate for the correlation length exponents
ν in three dimensions turns out remarkably close to, but
slightly smaller than the numerical result from Ref. 39 ob-
tained via finite-size scaling for a two-dimensional vortex
system. Our value for β is in very good agreement with
recent experimental results for 2H-NbS2 single crystals40.
However, our estimate for δ clearly deviates from the cor-
responding measured value.

Furthermore, we have investigated dynamic scaling
properties in the non-equilibrium relaxation regime fol-
lowing drive quenches from the moving vortex state into
the critical depinning regime, and thus determined the
aging scaling exponent b, auto-correlation exponent λC ,
and dynamic critical exponent z for the relaxation of the
system via the analysis of two-time flux line height auto-
correlation functions and the aid of hyperscaling rela-
tions between the static and dynamic exponents. We
found evidence for universal scaling near the depinning
threshold in the form of temperature independence of
the aging scaling exponents indicating that we are ac-
cessing the critical aging regime in the system, and pro-
viding further support for elastic depinning constituting
a dynamic critical phenomenon. Mutual repulsive inter-
actions collectively cage flux lines and hence slow down
the decay of correlations in the system as evidenced by
the smaller value of λC/z compared to the relaxation of
non-interacting vortices.

ACKNOWLEDGMENTS

This material is based upon work supported by the
U.S. Department of Energy, Office of Science, Office of
Basic Energy Sciences, Division of Materials Sciences and
Engineering under Award Number DE-SC0002308.

1 Y. Fily, E. Olive, N. Di Scala, and J. C. Soret, Phys. Rev.
B 82, 134519 (2010).

2 T. Nattermann, Phys. Rev. Lett. 64, 2454 (1990).
3 L. B. Ioffe and V. M. Vinokur, Journal of Physics C 20,

6149 (1987).
4 T. Nattermann, Europhysics Letters 4, 1241 (1987).
5 M. V. Feigel’man, V. B. Geshkenbein, A. I. Larkin, and

V. M. Vinokur, Phys. Rev. Lett. 63, 2303 (1989).

6 G. Blatter, M. V. Feigel’man, V. B. Geshkenbein, A. I.
Larkin, and V. M. Vinokur, Rev. Mod. Phys 66, 1125
(1994).
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