
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Two-particle spectral function for disordered s-wave
superconductors: Local maps and collective modes
Abhisek Samanta, Amulya Ratnakar, Nandini Trivedi, and Rajdeep Sensarma

Phys. Rev. B 101, 024507 — Published 13 January 2020
DOI: 10.1103/PhysRevB.101.024507

http://dx.doi.org/10.1103/PhysRevB.101.024507


Two-particle spectral function for disordered s-wave superconductors:
local maps and collective modes

Abhisek Samanta1,∗ Amulya Ratnakar2, Nandini Trivedi3, and Rajdeep Sensarma1†

1. Department of Theoretical Physics, Tata Institute of Fundamental Research, Mumbai 400005, India.
2. UM-DAE Centre for Excellence in Basic Sciences, Mumbai University, Mumbai, India

3. Physics Department, The Ohio State University, Columbus, Ohio, USA 43201

We make the first testable predictions for the local two-particle spectral function of a disordered s-wave
superconductor, probed by scanning Josephson spectroscopy (sjs), providing complementary information to
scanning tunneling spectroscopy (sts). We show that sjs provides a direct map of the local superconducting order
parameter that is found to be anticorrelated with the gap map obtained by sts. Furthermore, this anticorrelation
increases with disorder. For the momentum resolved spectral function, we find the Higgs mode separates from
the continuum at arbitrarily small disorder and appears as a non-dispersive subgap feature at low momenta,
spectrally separated from phase modes for all disorder strengths. The amplitude-phase mixing remains small
at low momenta even when disorder is large. Remarkably, even for large disorder and high momenta, the
amplitude-phase mixing oscillates rapidly in frequency and hence does not significantly affect the purity of the
Higgs and phase dominated response functions.

I. INTRODUCTION

Superconductivity, characterized by a macroscopic com-
plex wavefunction of Cooper pairs, can be destroyed along
two distinct routes: (a) by reducing the amplitude of the wave-
function to zero, as observed in conventional clean supercon-
ductors at Tc, where Cooper pairs break apart, or (b) by disor-
dering the phase of the wavefunction, while keeping the pair-
ing amplitude finite, as seen in strongly interacting 1–3, or in
strongly disordered superconductors4–7.

There is strong experimental8–10 and theoretical 5–7,11,12 ev-
idence that the destruction of superconductivity in thin films
at high disorder 13–15 is driven by loss of phase coherence of
Cooper pairs, which continue to exist through the supercon-
ductor to insulator transition. The low energy excitations of
this system are the dynamical fluctuations of the amplitude
(Higgs) and phase (Goldstone mode) of the complex order pa-
rameter. While the Higgs mode plays an important role in the-
ory of fundamental particles, and has been observed in recent
experiments, in superconductors it has been studied experi-
mentally using optical16 and Raman17 spectroscopy. It has
also been studied in neutral ultracold atomic systems18. In
disordered superconductors, recent experiments10 have inter-
preted low energy optical absorption as indicative of absorp-
tion by Higgs modes.

While the claim of observing pure amplitude Higgs modes
in ultracold atoms is firmer, there are two main issues that pre-
vent current experiments on quantum materials from reaching
similar unambiguous conclusions: (a) The materials are in-
herently disordered, and it is not clear to what extent the low
energy absorption can be separated into pure phase and am-
plitude (Higgs) modes in systems with broken translational
symmetry. (b) The experiments currently do not have direct
access to a spatial map of the inhomogeneous superconduct-
ing order parameter in the disordered systems. In this paper,
we use a systematic study of the evolution of collective modes
with disorder to address these key questions.

In this work, we use a functional integral approach19 non-
perturbative in both interaction and disorder strength to trace

the evolution of the two-particle collective spectrum of a dis-
ordered attractive Fermi Hubbard model. We present for the
first time the full momentum and frequency dependence of the
disorder averaged spectral function as well as spectral func-
tion maps in real space for a particular disorder realization.
Our spectral function maps at large disorder show strong cor-
relation between superconducting patches and regions with
large low energy pair spectral weight, which are found to be
anti-correlated with regions of large local single particle gap.
We thus make testable predictions for scanning tunneling20

and scanning Josephson spectroscopies22.

Our theoretical approach allows us to separate the con-
tribution of the amplitude (Higgs) modes, phase modes and
the amplitude-phase mixing. We find that the local re-
sponse is dominated by the phase modes, while the Higgs
and amplitude-phase mixing contributions play a subdomi-
nant role. An intriguing feature of the spatial maps of the
amplitude-phase mixing contribution is its oscillatory nature
over length scales much shorter than the superconducting
patches. Since local probes average the response over a few
lattice spacings, we expect the mixing not to be important in
determining experimental quantities.

The momentum-dependent spectral functions show two
features important for understanding experiments: (a) At arbi-
trarily low disorder, the Higgs mode at zero momentum shifts
from its clean case value at the threshold of the two particle
continuum to a value within the two particle gap. The shift
in the energy of the Higgs mode is non-perturbative in disor-
der, while the spectral weight in this subgap mode vanishes
smoothly in the clean limit. At low momenta, this mode is
non-dispersive and spectrally separated from the phase modes.
Disorder thus makes the Higgs mode visible to experiments.
(b) The amplitude-phase mixing at higher momenta show a
dramatic evolution with disorder. At low disorder it is pre-
dominantly of one sign, while at larger disorder, it oscillates
and changes sign rapidly with frequency. Thus, at high dis-
order, temperature or finite resolution broadening of spectro-
scopic probes will wash-out the effects of amplitude-phase
mixing, a result that is rather counter-intuitive. Our work
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makes testable predictions for experiments and provides a
bridge between microscopic models that start with fermionic
degrees of freedom5,6 and effective bosonic models4,23.

The paper is organized in the following way: In section II,
we describe the model Hamiltonian used to study disordered
superconductors and our functional integral based approach
to calculate the two particle spectral functions. Section III de-
scribes the features of the local pair spectral function maps
while Section IV describes the features of the disorder aver-
aged spectral function in momentum space, before we con-
clude in Section V with the key features of our calculations.

II. MODEL AND METHODS

We analyze the behavior of the disordered attractive Hub-
bard model on a square lattice using an inhomogeneous self-
consistent functional integral approach. The Hamiltonian is
given by:

H = −t
∑
〈rr′〉σ

c†rσcr′σ−U
∑
r

nr↑nr↓+
∑
r

(vr−µ)nr (1)

where c†rσ(crσ) is the creation (annihilation) operator for elec-
trons with spin σ on site r, and µ is the chemical poten-

tial. t is the nearest-neighbour hopping, and U is the at-
tractive interaction leading to Cooper pairing. Here, vr is
a random potential, drawn independently for each site from
a uniform distribution of zero mean and width V , where V
sets the scale of disorder. This model has been studied ear-
lier within a spatially inhomogeneous Bogoliubov de-Gennes
(BdG) mean field theory5, which introduces the static local
Cooper pairing field ∆0(r) = −U〈c†r↑c

†
r↓〉 and the Hartree

shift ξ0(r) = U〈c†rσcrσ〉. This inhomogeneous mean field
theory treats disorder exactly and obtains a large number of
site-dependent mean fields self-consistently. The BdG theory
also yielded the earliest indications that the single particle gap
remains finite through the superfluid-insulator transition.

Here, we work in the functional integral formalism, where
the BdG mean field theory can be obtained as a static but spa-
tially inhomogeneous saddle point of the system. The par-
tition function can be written in terms of the fermion fields
(f̄σ(r, τ), fσ(r, τ)) as

Z =

∫
D[f̄σ, fσ]e−S[f̄σ,fσ], (2)

with the imaginary time (τ ) action

S =

∫ β

0

dτ
∑
rr′,σ

f̄σ(r, τ)
[
∂τδrr′ +H0

rr′
]
fσ(r′, τ)− U

∑
r

f̄↑(r, τ)f̄↓(r, τ)f↓(r, τ)f↑(r, τ) (3)

where β = 1/T , T being the temperature of the system and
H0
rr′ = −tδ〈rr′〉− (µ−vr)δrr′ . Using Hubbard-Stratanovich

auxiliary fields ∆(r, τ) coupling to f̄↑(r, τ)f̄↓(r, τ) and
ξ(r, τ) coupling to f̄(r, τ)f(r, τ), and introducing the Nambu

spinors ψ†(r, τ) = {f̄↑(r, τ), f↓(r, τ)}, we get

Z =

∫
D[f̄σ, fσ]D[∆∗,∆]D[ξ]e−Seff [f̄σ,fσ,∆

∗,∆,ξ], (4)

with

Seff =

∫ β

0

dτ
∑
r

|∆(r, τ)|2 + |ξ(r, τ)|2

U
−
∫
dτdτ

′∑
rr′

ψ†(r, τ)G−1(r, τ ; r′, τ
′
)ψ(r′, τ

′
), (5)

and G−1(r, τ ; r′, τ
′
) = δ(τ − τ

′
)

(
−(∂τ − µ(r, τ))δrr′ + tδ〈rr′〉 −∆(r, τ)δrr′

−∆∗(r, τ)δrr′ −(∂τ + µ(r, τ))δrr′ − tδ〈rr′〉

)
,

where µ(r, τ) = µ − v(r) + ξ(r, τ). The static but spa-
tially dependent saddle point profile, ∆(r, τ) = ∆0(r) and
ξ(r, τ) = ξ0(r) to write the saddle point action S0. This
reproduce the BdG mean field theory, with the saddle point
equations δS0/δ∆0(r) = 0 and δS0/δξ0(r) = 0, giving the
BdG self-consistency equations at T = 0 (See Appendix A

for details),

∆0(r) = |U |
∑
n

un(r)v∗n(r), (6)

ξ0(r) = |U |
∑
n

|vn(r)|2 and 〈n〉 =
2

Ns

∑
n,r

|vn(r)|2, (7)

where S0 is the saddle point action. 〈n〉 is the average
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density of electrons in the system with Ns number of sites.
Here [un(r), vn(r)] are the eigenvector of G−1(r, r′, ω) cor-
responding to eigenvalue ω−En and n runs over only positive
eigenvalues (En > 0).

The main goal of this work is to understand the evolution
of the quantum fluctuations in the system with disorder, with
a focus on the low energy collective modes of the system. We
first solve the BdG self-consistency equations (Eqn. 6 and
7) on a 24 × 24 square lattice with an interaction strength
U/t = 3 and at an average fermion density ρ = 0.875. We
also consider 15 disorder realizations for each disorder value.
This provides the inhomogeneous saddle point of the disor-
dered system.

Going beyond the saddle point approximation, we include
(in Eqn. 5) the spatio-temporal fluctuations of the ∆ field i.e.

∆(r, τ) = (∆0(r) + η(r, τ))eiθ(r,τ), (8)

where η(r, τ) is the amplitude and θ(r, τ) is the phase fluctu-
ation around the saddle point solution. Now we use a gauge
transformation to get rid of the fluctuating phase of the ∆ field
(in Eqn. 5). This is achieved by transforming to a new fermion
co-ordinate given by ψ̃(r, τ) = U†(r, τ)ψ(r, τ), where

U(r, τ) = cos

(
θ(r, τ)

2

)
I + i sin

(
θ(r, τ)

2

)
σz. (9)

In this co-ordinate, the inverse of Nambu Green’s function is
given by G̃−1 = U†G−1U , which can be written as

G̃−1(r, τ ; r′, τ
′
) = G−1

0 (r, τ ; r′, τ
′
) +K(r, τ ; r′, τ

′
) (10)

where G−1
0 is the saddle point inverse Green’s function with

∆(r, τ) = ∆0(r) and the fluctuations are encoded inK, given
by

K(r, τ ; r′, τ
′
) = δ(τ − τ

′
)
[{−i

2
∂τθ(r, τ)δrr′ + t

[
cos

(
∇θ(r, r′, τ)

2

)
− 1

]
δ〈rr′〉

}
σz

−it sin

(
∇θ(r, r′, τ)

2

)
δ〈rr′〉I− η(r, τ)δrr′σ

x
]

(11)

where the lattice derivative for two nearest neighbour sites r
and r′ is given by ∇θ(r, r′, τ) = θ(r, τ)− θ(r′, τ).

Since the functional integral is quadratic in fermion fields,
the fermions can now be integrated out (Eqn. 4) to obtain a
nonlinear action written in terms of ∆0(r), η(r, τ) and θ(r, τ),

S = S0 +
1

U

∫
dτ
∑
r

η(r, τ)2 +
2

U

∫
dτ
∑
r

∆0(r)η(r, τ)−
∫
dτdτ

′
Tr ln[1 +G0K] (12)

where S0 is the saddle point action and the Trace is over both
Nambu and site indices. The resulting action is expanded upto

quadratic order in η and θ to obtain the Gaussian action for the
amplitude and phase fluctuations,

SG =
∑
rr′

∑
ωm

(
η(r, ωm) θ(r, ωm)

)( D−1
11(r, r′, ωm) D−1

12(r, r′, ωm)
D−1

21(r, r′, ωm) D−1
22(r, r′, ωm)

)(
η(r′,−ωm)
θ(r′,−ωm)

)
. (13)

where ωm = (2m)π/β is the Bosonic Matsubara frequency.
We work in the amplitude and phase degrees of freedom rather
than the “Cartesian” co-ordinates which mix these degrees of
freedom, so that we can cleanly talk about Higgs and phase
modes. The inverse propagator matrix D−1 is analytically

continued to real frequencies. We note that we work directly
in real frequencies and do not need to do numerical analytic
continuation. Working at T = 0, here we present the formulae
for the real frequency retarded inverse fluctuation propagators
D−1

αβ(i, j, ω) in terms of BdG eigenvalues and eigenfunc-
tions.
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D−1
11(r, r′, ω) =

1

U
δrr′ +

1

2
lim

iωm→ω+i0+

∑
ωn

TrN [G0(r, r′, ωn)σxG0(r′, r, ωn + ωm)σx]

=
1

U
δrr′ +

1

2

∑
En,n′>0

f1
nn′(r)f

1
nn′(r

′)χnn′(ω) (14)

where TrN corresponds to Trace in Nambu space, and

f1
nn′(r) = [un(r)un′(r)− vn(r)vn′(r)] and

χnn′(ω) =
1

(ω + i0+ − En − En′)
− 1

(ω + i0+ + En + En′)
. (15)

D−1
12(r, r′, ω) =

i

4
lim

iωm→ω+i0+
(iωm)

∑
ωn

TrN [G0(r, r′, ωn)σzG0(r′, r, ωn + ωm)σx]

= − iω
4

∑
En,n′>0

f1
nn′(r)f

2
nn′(r

′)χnn′(ω) (16)

where f2
nn′(r) = [un(r)vn′(r) + vn(r)un′(r)].

D−1
22 (r, r′, ω) = D̃dia(r, r′) + ω2κ(r, r′, ω) + Λ(r, r′, ω) (17)

where the diamagnetic piece D̃dia = 2
∑
〈rr1〉 S(r, r1) for r = r′, D̃dia = −2S(r, r′) when r and r′ are nearest neighbours,

and 0 otherwise, where S(r, r′) = t
8

∑
ωn
TrN [G0(r, r′, ωn)σz] = t

4

∑
En>0 vn(r)vn(r′). The compressibility κ is given by,

κ(r, r′, ω) =
1

8
lim

iωm→ω+i0+

∑
ωn

TrN [G0(r, r′, ωn)σzG0(r′, r, ωn + ωm)σz]

=
1

8

∑
En,n′>0

f2
nn′(r)f

2
nn′(r

′)χnn′(ω) (18)

and the paramagnetic current-current correlator on the lattice, Λ(r, r′, ω) is given by the expression,

Λ(r, r′, ω) =
∑

〈rr1〉〈r′r2〉

J(r, r1, r
′, r2, ω)− J(r, r1, r2, r

′, ω)− J(r1, r, r
′, r2, ω) + J(r1, r, r2, r

′, ω)

where J(r, r1, r
′, r2, ω) = − t

2

8
lim

iωm→ω+i0+

∑
ωn

TrN [G0(r2, r, ωn)G0(r1, r
′, ωn + ωm)]

= − t
2

8

∑
Enn′>0

f3
nn′(r, r1)f3

nn′(r2, r
′)χnn′(ω)

where f3
nn′(r, r

′) = [un(r)vn′(r
′)− vn(r)un′(r

′)].

We construct the inverse propagators in real space (contin-
ued to real frequency), invert the matrix to obtain the prop-
agators Dαβ(r, r′, ω). This leads to the spectral functions,
Pαβ(r, r′, ω) = − 1

π ImDαβ(r, r′, ω), where

P11(r, r′, ω) = − 1

π
Im〈η(r, ω + i0+)η(r′,−ω + i0+)〉

P12(r, r′, ω) = − 1

π
Im〈η(r, ω + i0+)θ(r′,−ω + i0+)〉

P22(r, r′, ω) = − 1

π
Im〈θ(r, ω + i0+)θ(r′,−ω + i0+)〉

(19)

i.e. P11 is the spectral density of amplitude fluctuations, P22

that of phase fluctuations and P12 is the amplitude-phase mix-
ing term24.

While η and θ are the natural choice of fluctuation co-
ordinates, experimental probes couple to the fermion den-
sity or current, i.e. to ∆0(r)eiθ(r,τ) ∼ i∆0(r)θ(r, τ); e.g.
Josephson spectroscopy can be understood in terms of coher-
ent tunneling of Cooper pairs across a barrier. The standard
formulation of Josephson current only considers the current
carried by the condensate of Cooper pairs and hence is re-
lated to the square of the 1-particle anomalous Green’s func-
tions. However, when current carried by collective fluctua-
tions is considered, the differential conductance (dI/dV ) of
Josephson spectroscopy has an additional term proportional
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FIG. 1. Spatial maps for a particular disorder configuration at V/t = 6 showing strong correlation between (a) the local superconducting order
parameter ∆0(r) and (b) the frequency-integrated local 2-particle spectral weight F (r). (c) Spatial map of the corresponding single particle
gap E(r) obtained from the local 1-particle density of states [See Appendix C for details]. Notice the strong anti-correlation between (c)
and (b). (d) Covariance between F (r) and E(r), averaged over disorder realizations, as a function of disorder strength. The anti-correlation
increases with disorder. (e): A bar map showing the relative weights of the Higgs (amplitude) and Goldstone (phase) modes in the two-particle
spectral weight F (r) shown in (b). The spectral weight at large disorder is dominated by the phase modes. (f) The integrated amplitude-phase
cross-correlator F12(r) + F21(r) corresponding to the configuration shown in (b). The mixing contribution shows regions with positive and
negative values on a scale much smaller than the superconducting coherence length. Here, we present data with U/t = 3 on a 24 × 24 lattice,
at an average fermion density ρ = 0.875.

to the spectral function of the Cooper pairs (2-particle spec-
tral function)25. This is analogous to the STM (where elec-
trons tunnel) measuring the electronic density of states. In
strongly disordered superconductors, the current carried by
collective fluctuations can be as large as the condensate con-
tribution. The contribution of the fluctuations to the volt-
age derivative of the Josephson current is proportional to
the pair spectral function P (r, r′, ω) =

∑
αβ Pαβ(r, r′, ω),

where P11 = P11, P12(r, r′, ω) = ∆0(r)P12(r, r′, ω),
P21(r, r′, ω) = ∆0(r′)P21(r, r′, ω) and P22(r, r′ω) =
∆0(r)∆0(r′)P22(r, r′, ω).

We construct the pair correlation functions Pαβ for each
disorder realization. We note that for a given realization
of disorder, translational symmetry is broken and the spec-
tral function does depend on two co-ordinates r and r′; i.e.
P (r, r′, ω). We can rewrite this in relative and center of
mass co-ordinates, P (d,R, ω) where d = r − r′ and R =
(r + r′)/2. Now, on averaging the data over disorder real-
izations, translational symmetry is restored. We then aver-
age over the center of mass co-ordinate R (which now gives
a trivial volume factor) and express the disorder averaged
spectral function as a function of relative coordinate only

P (d, ω) = 1/N〈
∑
R P (d,R, ω)〉, where N is the number of

sites and 〈〉 indicates disorder average. Since this is a func-
tion of d only, momentum is a good quantum number for the
disorder averaged pair spectral function. P (q, ω) is then the
Fourier transform of P (d, ω). We note that in our formalism,
the disorder averaging is done after calculating the relevant
correlation function, and not at any intermediate stage.

We note that while the gaussian approximation provides a
description of collective modes, it ignores the vortex excita-
tions which finally drive the superfluid-insulator transition.
The present formulation is inadequate very close to the tran-
sition, specially for quantities like superfluid stiffness, speed
of sound, value of critical disorder. However, the gaussian ap-
proximation continues to provide an upper bound and captures
the qualitative trends, which are the focus of this paper.

We will next study the evolution of pair spectral function,
P both real and momentum space with disorder.
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III. LOCAL PAIR SPECTRAL FUNCTION

At intermediate and large disorder, the system breaks up
into superconducting and insulating islands5. STM measure-
ments show evidence of strong spatial electronic inhomogene-
ity20,21. However, a direct access to the inhomogeneous su-
perconducting order parameter is missing in these systems.
We predict that the superconducting regions have large pair
spectral weight and small single particle gaps. Our prediction
can be experimentally tested by combining scanning tunnel-
ing with scanning Josephson spectroscopy data22.

To study the spatial variation of the two particle spectral
function P (r, r′, ω), we consider its local part and integrate
upto two particle continuum (2Egap). We note that while
Egap is the gap to the single particle fermionic excitations,
2Egap is the threshold for the continuum of 2-particle excita-
tions. We restrict the integral to just below 2Egap so that only
contribution of collective modes is considered.

F (r) = 1/(2Egap)

∫ 2Egap

0

dωP (r, r, ω). (20)

In Fig. 1(a) and (b), we show the local order parameter ∆0(r)
and the integrated local 2-particle spectral weight, F (r) for
a typical configuration at large disorder (V/t = 6). We no-
tice the strong spatial correlation between regions with large
∆0(r) and large F (r). Although regions with small ∆0(r)
have small phase stiffness, these phase fluctuations do not
contribute to the pair spectral function as ∆0(r) is small in
these regions. The integrated spectral weight can thus be used
to experimentally map out the superconducting regions in the
system. In Fig. 1(c), we plot the local single particle gapE(r),
obtained from peaks in the local one particle density of states
for the same configuration [See Appendix C for details]. The
maps in Fig. 1 (a) and (b) show strong spatial anti-correlation
between regions with large ∆0(r) or F (r) and regions with
large E(r), i.e., large single particle gaps map out the insu-
lating regions in the system. To track the evolution of this
strong anti-correlation between F (r) and E(r), in Fig. 1(d),
we plot the covariance of these quantities [See Appendix D
for details], averaged over disorder configurations, as a func-
tion of V/t. The negative correlations increase with disor-
der, as the system breaks up into superconducting and non-
superconducting regions.

The relative contribution of the Higgs channel (P11), phase
channel (P22), and the amplitude-phase mixing (P12 + P21)
to the 2-particle spectral function is a key question of interest,
especially in light of papers with contradictory claims on this
topic8,11,26,27. To understand whether the spectral function is
dominated by amplitude or phase fluctuations, in Fig. 1(e), we
plot a bar on each site of the square lattice, the height of the
bar being proportional to the integrated spectral weight on that
site. For a visual representation, the phase and amplitude con-
tributions are marked by different colours in each bar. We see
that the local 2-particle spectral weight is dominated by the
phase fluctuations, with the amplitude playing a sub-leading
role. The mixing contribution, F12 + F21 is plotted as a map
in Fig. 1(f). P12 and P21 do not have the interpretation of

a spectral weight and changes from positive to negative even
within a single superconducting patch. Thus, although mixing
contributions are similar in magnitude to Higgs contributions,
we expect it to have a minimal impact on spatially-averaged
responses.

IV. MOMENTUM AND ENERGY DEPENDENCE OF
COLLECTIVE MODES

We now consider the Fourier transform of the
disorder averaged spectral functions, Pαβ(q, ω) =∑
rr′ e

iq·(r−r′)Pαβ(r, r′, ω), to study the behaviour of
the collective modes. In the optical conductivity the pair
spectral function contributes to loop corrections, hence
their effect cannot be spectrally resolved. A more direct
momentum and frequency resolved measurement is possible
with the recently developed M-EELS techniques28.

First we study the amplitude contribution to the two par-
ticle spectral function in q − ω space. Fig. 2(a) -(d) shows
the Higgs spectral function P11(q, ω) with increasing disor-
der. For V/t = 0, a Goldstone mode exists, but the Higgs
contribution to the spectral weight vanishes as q → [0, 0]. The
picture changes dramatically even in presence of a very weak
disorder, V/t ∼ 0.05. Here we show data for a weak disorder
V/t = 0.1 in Fig. 2(b), where, in addition to the collective
mode seen in the clean case, the Higgs spectral function de-
velops an additional tail with finite weight at the zone center
at an energy well below the two-particle continuum threshold.
We emphasize that the location of the Higgs peak shifts by
a finite amount from its value of 2Egap in the clean case for
an arbitrarily small disorder (Fig. 2(b)); this shift is therefore
non-perturbative in the disorder strength, while the spectral
weight in this subgap mode smoothly increases with disorder.
The relatively flat dispersion of the Higgs peak suggests that
these excitations gain energy by transforming from a propa-
gating to a localized mode, and are pulled down from the edge
of the two particle continuum.

To study the evolution of the Higgs mode, in Fig. 2(b)-(d)
we plot the Higgs spectral function for increasing disorder,
for V/t = 0.1(b), V/t = 1.0 (c) and V/t = 3.0 (d). The
Higgs spectral function flattens and broadens with increas-
ing disorder. We define the Higgs gap, ωhiggs as the lower
threshold frequency at q = 0 where the Higgs mode appears
and below which there is no Higgs spectral weight. We plot
ωhiggs as a function of disorder and we find that it decreases
monotonically with disorder (Fig. 2(i)) and becomes zero at
a sufficiently strong disorder V/t ∼ 5.5. We also observe a
pile-up of low energy weight at the commensurate M point
([π, π]) at intermediate disorder of V/t = 1.0, indicating fluc-
tuating pair-density waves, although there is no zero energy
weight and static order is absent in the mean-field theory. We
note that in presence of strong disorder, the collective mode
structure in the amplitude sector is completely lost and it is
dominated by the appearance of disorder induced flat modes
(Fig. 2 (c) and (d)).

We now focus on the phase contribution to the spectral
function P22(q, ω) (Fig. 2 (e)-(h)). In a clean superconduc-
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FIG. 2. (a)-(d): Density plot of Higgs spectral function P11(q, ω) with increasing disorder: (a) V/t = 0 showing no weight at q = 0; (b) weak
disorder V/t = 0.1 starts showing finite q = 0 weight of the Higgs mode; (c) V/t = 1 and (d) V/t = 3. (e)-(h): Density plot of Goldstone
or phase spectral function P22(q, ω) for (e) V/t = 0, (f) V/t = 0.1, (g) V/t = 3, and (h) V/t = 6. Note the stability of dispersive modes
up to large disorder strength. For V/t = 0.1, note the absence of phase spectral weight in the region where additional Higgs spectral weight
is present. (i): The Higgs threshold ωhiggs, the speed of sound cs and the two particle continuum threshold 2Egap (pair-breaking scale) as a
function of V/t. (j)-(l): The density plot of amplitude-phase cross-correlator P12 + P21 for (j) V/t = 1, (k) V/t = 3, and (l) V/t = 6. The
mixing term grows in magnitude but oscillates in sign more rapidly as disorder is increased leading to cancellations in measurable response
functions. Here, we present data with U/t = 3 on a 24 × 24 lattice, at an average fermion density ρ = 0.875, and averaged over 15 disorder
realizations.

tor, there is a single collective mode in the system. While the
eigenfunction is a pure phase mode at q = 0, it has a mixture
of amplitude (Higgs) and phase components at finite q. This is
also seen from Fig. 2(a) and (e) for the clean case (V/t = 0).
However, the maximum fraction of the Higgs mode for any
q at U = 3 is only ∼ 2%, which is very small. We first
note that at weak disorder (V/t = 0.1) in Fig. 2 (f), the
phase mode does not have any weight near q = [0, 0] around
ω/t ∼ 1.0, where the Higgs mode has substantial weight.
The linearly dispersing collective mode (the Goldstone mode)
at low q broadens with disorder, and the dispersion becomes

flatter. But unlike the amplitude sector, the dispersive mode
can be identified even for large disorder V/t ≈ 5. The speed
of sound, extracted from the slope of the dispersion (Fig. 2 (i))
decreases with disorder, going to zero near V/t ≈ 5.5. It is
also evident from the color-scales that phase fluctuations dom-
inate over amplitude fluctuations in the entire disorder range.

Finally, in Fig. 2 (j)-(l), we plot the mixing term P12(q, ω)+
P21(q, ω) for increasing disorder. With increasing disorder
the mixing term rapidly oscillates in sign as a function of fre-
quency, thereby contributing only small corrections to the pair
spectral function.
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FIG. 3. Energy dependence of the spectral function at low q, (a)-(c): P (q = [0, 0], ω) and (d)-(f): P (q = [π/12, 0], ω) for increasing disorder
V/t = 1, V/t = 3, and V/t = 6. The decomposition of the contributions from the Higgs mode P11, phase mode P22 and the mixing
P12 + P21 is also shown. Note the negligible mixing contributions, and the spectral separation of Higgs and phase contributions. The mixing
term is weaker than the Higgs weight, and both are much smaller than the weight in the phase mode. Here, we present data with U/t = 3 on a
24 × 24 lattice, at an average fermion density ρ = 0.875.

In case of the frequency integrated local spectral function
(Fig. 1 (e)), we have shown that it is dominated by the phase
fluctuations. On the other hand, in q− ω space also, the spec-
tral function is seen to be dominated by the phase mode for
most of the q and ω values (Fig. 2 (a)-(h)). The clear dom-
inance of the phase modes over Higgs modes leads to the
question whether the interesting features of the Higgs spec-
tral function can be visible in experiments. Fortunately, the
features of the Higgs and the phase spectral functions are well
separated in energy at low q and hence probes which couple
to the spatially averaged pair spectral function in a energy re-
solved manner should see these features clearly. In Fig. 3 (a)-
(c), we plot P (q = [0, 0], ω) as a function of ω and we show
that for all disorder the Higgs spectral weight is well sepa-
rated from the low energy phase pile-up. We also present data
for the smallest possible q value, i.e. q = [π/12, 0] in Fig. 3
(d)-(f) and we show that the above features are not special
for q = 0, but they are also true for small q values. Hence,
we conclude that the probes which couple to the spatially av-
eraged pair spectral function in an energy resolved manner
should see these features clearly.

This spectral separation is a feature of low q response and is
not present in the local response we investigated in the previ-
ous section. In contrast, in Ref. 11, the q = 0 spectral weight
in Higgs and phase modes were found to overlap in energy.
The difference arises as low energy density fluctuations are in-
tegrated out in Ref. 11 within a modified Random Phase Ap-
proximation (RPA), which leads to broadening of the Higgs
spectral function. We also note that the spectral separation of

the Higgs weight from phase is not special to q = 0, and holds
true for low momenta (e.g. q = [π/12, 0] shown in Fig. 3 (d)-
(f)).

We also find that the amplitude-phase mixing term has neg-
ligible contribution at all frequencies near q = 0, and the
relative contribution decreases with disorder, contrary to the
popular belief that they are the dominant force in shaping the
collective spectrum. This can be understood from the fact
that the mixing contribution varies from positive to negative
values in space, as seen in Fig. 1 (f), and hence averages to
zero when one looks at low q response of the system. Our
results provide guidance for momentum and energy resolved
M-EELS measurements28 to observe the Higgs and Goldstone
modes as well as for scanning Josephson spectroscopy to ob-
serve the local superconducting order parameter in disordered
superconductors close to the quantum phase transition.

V. CONCLUSION

We have investigated the evolution of collective modes in
a disordered s-wave superconductor starting from a micro-
scopic description. In presence of disorder, the single particle
fermionic spectrum remains gapped and hence the fluctuations
of the local superconducting order parameter (the phase or
Goldstone mode and the amplitude or Higgs mode) are the key
low energy excitations which drive the superfluid-insulator
transition (SIT). We investigate the behavior of these excita-
tions both in real and in momentum space thereby providing
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complimentary information relevant for different experimen-
tal probes. We find that the local low energy 2-particle spectral
weight is strongly correlated with the superconducting regions
and strongly anti-correlated with regions of high one particle
spectral gap. The anti-correlation increases with disorder. The
pair response is dominated by the phase mode, but the Higgs
mode shows interesting features at low q which are spectrally
separated from the phase mode contributions. The amplitude-
phase mixing term oscillates with rapid change of sign both in
space and in frequency, and hence its contribution is expected
to play a subdominant role in most experiments which coarse
grain either over space or over frequency.
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Appendix A: Connection between saddle point and BdG

To see the connection between the saddle point of the
fermionic action (Eqn. 3) and BdG theory, it is instructive to
note that in the Matsubara frequency domain (iωn = 2πi/β)
the saddle point inverse Green’s functionG−1

0 is related to the
BdG Hamiltonian5, HBdG through

G−1
0 (r, r′, ωn) = iωnI−HBdG. (A1)

Let Γ be the unitary transform that diagonalizes the BdG ma-
trix. If the eigenvalues of the matrix are given by Eα and
corresponding eigenvectors are [uα(r), vα(r)], then

Γ†HBdGΓ = Eαδαγ (A2)

where the matrix Γ is formed by the column of eigenvectors,
i.e. Γrα = uα(r) if r < Ns and Γrα = vα(r) if r ≥ Ns. The
particle-hole symmetry of the BdG Hamiltonian implies that
eigenvalues come in pairs of (Eα,−Eα) and if [uα(r), vα(r)]
is the eigenvector corresponding to Eα, the eigenvector corre-
sponding to −Eα is given by [−v∗α(r), u∗α(r)].

To obtain the saddle point equation, we integrate out the
fermions to obtain the saddle point action (S0), which is given
by

S0 =
β

U
(|∆0(r)|2+ξ0(r)

2
)−
∑
ωn

TrlnG−1
0 (r, r′, ωn) (A3)

where the Trace is over Nambu and site indices. Using

∂S0/∂∆∗0(r) = 0, we get

∆0(r) =
U

β

∑
ωn

Tr

[
G0(ωn)

∂G−1
0 (ωn)

∂∆∗0(r)

]

=
U

β

∑
ωn

Tr

[
Γ†G0(ωn)ΓΓ†

∂G−1
0 (ωn)

∂∆∗0(r)
Γ

]

=
U

β

∑
ωn

∑
α

[
Γ†

∂G−1
0 (ωn)

∂∆∗0(r) Γ
]
αα

rωn − Eα
(A4)

where we have used the fact that trace is invariant under uni-
tary transforms. Using ∂G−1

0 (ωn)/∂∆∗0(r) = −δrr′σ− , we
get the numerator to be −Γ†r,αΓr+Ns,α = −u∗α(r)vα(r). So
we get

∆0(r) = −U
β

∑
α

∑
ωn

u∗α(r)vα(r)

iωn − Eα

= −U
∑
α

u∗α(r)vα(r)nF (Eα)

= U
∑
Eα>0

u∗α(r)vα(r) tanh(Eα/2T ). (A5)

where nF (Eα) is the Fermi distribution function at tempera-
ture T . At T = 0, we get back the self-consistency equation
for ∆0(r) (Eqn. 6). Similarly we can also derive the self-
consistency equation for ξ0(r) (Eqn. 7) from δS0/δξ0(r) = 0.

Appendix B: Comparison of our method with other approaches

We now discuss our method in the context of other ap-
proaches used to study strongly disordered superconductors.
The BdG inhomogeneous mean field theory shows evidence
for formation of superconducting and non-superconducting
patches in a strongly disordered superconductor5. At the
expense of numerically solving a large number of self-
consistency equations, this method treats disorder exactly.
This forms the starting point of our calculation.

The gaussian fluctuations around the inhomogeneous sad-
dle point has been studied previously in Ref.11 with a focus
on the q = 0 spectral function. However, there is a key tech-
nical difference between Ref.11 and our work. In both ap-
proaches, the action is expanded to quadratic order in fluctu-
ations around the saddle point; however, in Ref.11, the fluc-
tuations of the local density field ξ(r, τ) is considered as an
independent field, leading to a 3 × 3 fluctuation propagator.
The ξ fields are then integrated out to obtain a renormalized
2×2 propagator. Here the density and phase fields are treated
independently, even though, in principle, these fields should
be related by the number-phase uncertainty relation. Another
reason to question the validity of integrating out density fluc-
tuations is that, unlike the gapped fermions, the density fluctu-
ations have low energy weight in the same range as the Higgs
and the phase fluctuations, and integrating them out while
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FIG. 4. (a): LDOS as a function of ω for a particular site. The locations of ωp and ωm are indicated in the figure. (b)-(c): Covariance between
two particle spectral function (F ) and local single particle gap (E) where F is defined as (b) F (r) = 1

0.8×2Egap

∫ 2Egap
0.2×2Egap

dωP (r, r, ω) and

(c) F (r) = 1
0.7×2Egap

∫ 2Egap
0.3×2Egap

dωP (r, r, ω).

keeping the Higgs and phase fluctuations is an uncontrolled
procedure. The direct consequence of integrating out the soft
modes is a strong broadening of the Higgs spectral function
in Ref. 11, resulting in the overlap of the Higgs and phase
spectral weights. In contrast, our approach fixes the ξ fields
to their saddle point value that results in spectrally separated
Higgs and phase modes at q = 0.

Finally the superconductor-insulator transition has also
been studied with Monte Carlo techniques6, which include
the vortex excitations missed in calculations that retain only
Gaussian fluctuations. However, QMC is limited to small
lattice sizes, requires analytic continuation to obtain real fre-
quency response, and even so only provides the total response
without being able to separate them into amplitude and phase
components.

Appendix C: Local Single Particle Gap

In this section we provide the details of our method to
obtain the local gap map, which is also used to show anti-
correlation between one particle gap and two particle spec-
tral weight in the system. The local single particle density of
states (LDOS) for each site i, calculated from BdG MF theory,
is given by

Nω(r) =
1

Ns

∑
n

u2
n(r)δ(ω−En) +v2

n(r)δ(ω+En). (C1)

The local single particle gap E(r) for each site r is obtained
from E(r) =

ωp(r)−ωm(r)
2 , where ωp(r) is the location of the

lowest energy peak in LDOS for ω > 0 and ωm(r) is the
location of the highest energy peak in LDOS for ω < 0. In
Fig. 4(a) we have shown a sample LDOS for a particular site.
The figure also shows the location of ωp(r) and ωm(r) for this
site and the corresponding local gap E(r) obtained from this
LDOS.
Appendix D: Covariance between Single Particle Gap and Two

Particle Spectral Function

To understand the spatial variation for the local two parti-
cle spectral function (P (r, r, ω)), we consider the integrated
spectral weight of P , F (r) = 1

2Egap

∫ 2Egap
0

dωP (r, r, ω). We
calculate the covariance between two experimentally observ-
able quantities namely two particle spectral function (F ) and
local single particle gap (E) as

cov(F,E) = 〈FE〉 − 〈F 〉〈E〉. (D1)

In Fig. 4 (b) and (c) we show the covariance be-
tween F and E as a function of disorder, where
F has been calculated with different integration limits,
F (r) = 1

0.8×2Egap

∫ 2Egap
0.2×2Egap

dωP (r, r, ω) and F (r) =

1
0.7×2Egap

∫ 2Egap
0.3×2Egap

dωP (r, r, ω) respectively. We find that
with increasing the lower cut-off of the integration the anti-
correlation between F and E at large disorder persists but it
becomes weaker.
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