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We develop a theory to derive effective Floquet Hamiltonians in the weak drive and low-frequency
regime. We construct the theory in analogy with band theory for electrons in a spatially-periodic
and weak potential, such as occurs in some crystalline materials. As a prototypical example, we
apply this theory to graphene driven by circularly polarized light of low intensity. We find an ana-
lytic expression for the effective Floquet Hamiltonian in the low-frequency regime which accurately
predicts the quasienergy spectrum and the Floquet states. Furthermore, we identify self-consistency
as the crucial feature effective Hamiltonians in this regime need to satisfy to achieve high accuracy.
The method is useful in providing a realistic description of off-resonant drives for multi-band solid
state systems where light-induced topological band structure changes are sought.

Introduction. Recent years have seen rapid develop-
ments in our understanding of systems out of equilib-
rium. Experimental advances in ultra-fast spectroscopy
have lead to the observation of Floquet side bands [1, 2],
the discovery of light-induced superconductivity [3, 4],
and light-induced anomalous Hall effect in graphene [5],
just to name a few of the most striking examples. On
the theory side, efforts have lead to the prediction of new
phases of matter without equilibrium counterparts–and
in some cases subsequent experimental observations. Ex-
amples are Floquet time crystals [6–10], and anomalous
Anderson insulators [11]. Additionally, the potential in
situ manipulation of topological phases by tuning the
properties of the drive has lead to plethora of motivating
predictions [12–30].

In a periodically-driven system, we can distinguish
three regimes as a function of the drive frequency Ω com-
pared with the bandwidth of the system W : the high,
mid (or resonant), and low-frequency regimes. In the
high-frequency regime Ω > W , several theoretical ap-
proaches have been developed and are now widely ap-
plied in the field to derive effective Floquet Hamiltonians
capable of capturing the dominant effects of the periodic
drives [31–36]. This is highly desirable since it allows one
to employ many equilibrium techniques to study systems
of interest. In the resonant and low-frequency regimes,
Ω . W , the high-frequency expansions break down and
one generally needs to resort to numerical approaches.
More recently, efforts to understand the mid and low-
frequency regimes have led to the use of rotating frames
[37, 38], the development of adiabatic perturbation the-
ories [39, 40], low-frequency perturbation theories in the
extended Floquet-Hilbert space [41–43], and renormal-
ization group-like flow equation schemes [44, 45]. De-
spite this progress, a systematic theory to derive effec-
tive Hamiltonians valid in the low-frequency regime is
still missing.

In this paper, we derive effective Floquet Hamiltoni-
ans in the low-frequency regime characterized by Ω .W .
This regime is relevant for many experiments, since the
use of low-frequency and low-power drives can reduce
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FIG. 1: (Color online.) Visual schematic of zone folding
scheme. In the upper row we see a schematic of how the dif-
ferent Brillouin zones are cut apart vertically and all shifted
to the first Brillouin zone. In the lower row we see how the
band structure of graphene needs to be cut along the horizon-
tal direction to find the zeroth approximation Floquet bands
in the first Floquet zone.

unwanted heating effects in interacting systems. Addi-
tionally, it has been predicted that this regime hosts in-
triguing unique phenomena [46–48].

Our approach is general, and allows one to obtain
analytic insight into periodically driven systems and
provides a quantitative description. In analogy with
a system periodic in space, we first employ an empty
lattice-type approximation to gain insight into the pos-
sible effects of weak periodic drives in the first Flo-
quet zone (−Ω/2,Ω/2]. Resonances at the Floquet zone
center (ε/Ω = 0) and edge (ε/Ω = 1/2) can be re-
solved by employing a continued fraction approximation
scheme [49, 50]. Here ε is the quasi-energy.
Model. Specifically, to demonstrate our method, we

consider graphene weakly driven with circularly polarized
light, with a time-dependent Hamiltonian of the form
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H(t) =
∫
BZ

dk/(2π)2ĉ†kh(k, t)ĉk where the integration
over crystal momentum is defined over the Brillouin zone

(BZ), ĉ†k is the creation operator, and

h(k, t) =

(
0 f(k, t)

f∗(k, t) 0

)
, (1)

f(k, t) = e
ik̃x(t)

2 − i
2

√
3k̃y(t) + e

ik̃x(t)
2 + i

2

√
3k̃y(t) + e−ik̃x(t) is

the kernel in the plane-wave basis. Circularly polar-
ized light with field strength A is introduced via mini-
mal substitution as k̃x(t) = kx − A cos(Ωt), and k̃y(t) =
ky − A sin(Ωt) where we work in natural units ~ = c =
e = 1. The exact dynamics can be obtained by solving
the Floquet-Schrödinger equation [h(k, t)−i∂t]φ±(k, t) =
±ε(k)φ±(k, t) for the steady-states φ±(k, t) = φ±(k, t +
2π/Ω), and quasienergy ±ε(k) in the first Floquet
zone (−Ω/2,Ω/2], using the Floquet evolution operator

U(k, 2π/Ω) = T exp{−i
∫ 2π/Ω

0
h(k, s)ds}.

Alternatively, we can exploit the periodicity
of the steady states to define the Fourier series
φ±(k, t) =

∑
n e

inΩtφ±n (k), where φ±n (k) are the
steady-state Fourier modes. Replacing this in the
Floquet-Schrödinger equation, we obtain the equation∑
m

(
h(n−m) +mΩδn,m

)
φ±m(k) = ±ε(k)φ±n (k), defined

in the extended Floquet Hilbert space F = H⊗ I, where
H is the Hilbert space for h(k, t), and I is spanned
by a set of bounded periodic function defined over the
interval t ∈ [0, 2π/Ω).

Time analog of the empty lattice picture. To under-
stand how weak periodic drives of arbitrary frequency
impact quantum systems let us first recall the analogous
spatially periodic case. For a Hamiltonian that is time-
independent and periodic in space, H(r) = H(r+R), it is
commonly observed [51–53] that even weak periodic po-
tentials lead to the complicated collection of band struc-
tures common in solid state physics. If we treat inter-
actions with the lattice as infinitesimally weak, the only
effect of a periodic potential is that momentum space
breaks up into periodically repeating sections called Bril-
louin zones (BZs).

The BZs have shapes that are determined by the lat-
tice geometry in real space. In each BZ one has repeated
a copy of the energy band of a free electron. These dif-
ferent copies of the bands from various BZ overlap. The
shape of the BZs then determine where different copies of
the electron bands start and therefore in which way they
overlap. This ultimately leads to a complicated collec-
tion of band structures that is determined by the spatial
geometry.

Instead of overlapping different copies of the electron
band structure from different BZ, the same effect is pro-
duced if one takes only one free electron band centered
in the first Brillouin zone–and no copies in the others–
and then moves the content of the other BZ into the
first zone similar to what is shown in Fig.1. While this
approximation–dubbed the empty lattice approximation
because the spatially periodic potential is set to zero and
only symmetry properties are kept–is quite crude, it is a
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FIG. 2: (Color online) Plot of the Floquet quasienergy band
structure along a high symmetry path in the graphene BZ at
Ω = 1 and A = 0.1. Black dashed we see the exact solution
found by diagonalizing i log(U(k, T ))/T numerically, where
U(k, T ) is the propagator at time T . In red we see the the
zero driving Floquet approximation.

good first-order estimate. Indeed, aluminum is a material
where the empty lattice approximation reproduces band
structures quite well (see Ref.[54] for a band structure
that can be compared to the empty lattice approxima-
tion result).

For the time-periodic Hamiltonians, an analogous sit-
uation occurs. One finds multiple copies of the band
structure along the quasienergy axis. These copies could
overlap if the drive frequency Ω is low enough (lower then
the system bandwidth W ). Similar to the spatially peri-
odic case, reproducing the effects of multiple intersecting
Floquet zones can be done easily. It is sufficient to apply
a shifted modulo function, defined as Mod(E,Ω,−Ω/2),
to the energies to find the spectrum in the first Floquet
zone. The effects of both cases, spatially and time pe-
riodic, are displayed in Fig. 1. One can clearly observe
the development of more complicated structures in both
cases compared with the uniform cases. It is also impor-
tant to notice that quite generically this type of folding
leads to band-crossings. Only specific properties of a pe-
riodic perturbation can lift the band crossings.

Let us now analyze how well this approximation cap-
tures the quasi-energy band structure for graphene driven
by circularly polarized light. In Fig.2 we compare the
empty-lattice-type approximation to the exact quasi-
energy bands. One finds that the results are accurate
in many parts of the Brillouin zone, but important band
gap openings are not reproduced. It is the subject of
the rest of this work to study how to obtain the correct
bandgap openings due time-reversal symmetry breaking
in graphene irradiated with circularly polarized light.
Quasienergies. For a monochromatic drive, or for a

general drive in the weak-drive limit, characterized by
A � 1, the time-dependent Hamiltonian takes the gen-
eral form

h(t) = h0 + Pe−iΩt + P†eiΩt, (2)

where h0 is the static Hamiltonian, and P the first-
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harmonic operator. In the extended Floquet-Hilbert
(Sambe) space, the Floquet-Schrödinger equation can be
written as [43, 49, 50, 55–58]

. . .
...

...
...

...
...

· · · P † h0 − Ω P 0 0 · · ·
· · · 0 P † h0 P 0 · · ·
· · · 0 0 P † h0 + Ω P · · ·

...
...

...
...

...
. . .





...
φ−1

φ0

φ1

...

 (3)

= ε



...
φ−1

φ0

φ1

...

 . (4)

This equation can be decoupled [49, 50] into an equa-
tion for the first Floquet mode φ0 only. The result is the
continued fraction

heff = h0 + P
1

ε− h0 − Ω− P 1
ε−h0−2Ω−···P

†P
†

+ P †
1

ε− h0 + Ω− P † 1
ε−h0+2Ω−···P

P.

(5)

For weak driving, the continued fraction can be trun-
cated to linear order in P , such that

heff ≈ h0 + P
1

ε− h0 − Ω
P † + P †

1

ε− h0 + Ω
P. (6)

For graphene driven by a weak field, defined by A� 1
(a0eA/~ � 1 in physical units) of circularly polarized
light, the Hamiltonian to first order in field strength A is
monochromatic with the same structure as Eq.(2). We
find that

P † =

(
0 p+

p− 0

)
,

p± = ±1

2
ie∓ikx

(
1± 2e±

3ikx
2 sin

(
1

6

(
3
√

3ky ∓ π
)))

.

(7)
Therefore, Eq.(6) can be used to find an effective en-
ergy dependent Hamiltonian heff(ε) that reproduces the
quasienergy spectrum in the first Floquet zone,

heff(ε) = h0 +A2 (M+ +M−) , (8)

where

M± =
1

(ε± Ω)2 − |f |2

(
|p∓|2(ε± Ω) f∗p∗−p+

fp−p
∗
+ |p±|2(ε± Ω).

)
(9)

Equation (8) is the main result of this work, which
corresponds to an analytic expression for the effective
Floquet Hamiltonian valid in the low-frequency limit.
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FIG. 3: (Color online.) Plot of the Floquet quasienergy band
structure along a high symmetry path in the graphene BZ
at Ω = 1 and A = 0.1. Quasienergies are outside the first
Floquet zone and describe only one unfolded Floquet zone.

In order to determine the quasi-energy spectrum and
steady-state mode φ0, we self-consistently solve the
Schrödinger eigenvalue equation (heff(ε)− ε)φ0 = 0.
We remark that by self-consistency we mean that the
Schrödinger equation above is solved for a fixed value of
ε and new eigenvalues ε are found that are then rein-
serted into the Hamiltonian as fixed ε. This procedure
is repeated until self-consistency for ε is reached. The
self-consistency is crucial, since a first order iterative
approach yields divergences and is therefore unphysical.
The results from such a self-consistent solution are shown
in Fig. (3).

We first notice that the band structure has disconti-
nuities that correspond to the bandgap opening at the
edges of the first Floquet zone. This becomes clear when
we apply the modulo function to fold the quasienergy
bands into the first Floquet zone, as shown in Fig. 4. We
stress that the folding procedure used to arrive at this
plot is important especially for when we later calculate
Chern numbers - simply solving for φ0 with the Hamilto-
nian (6) is not enough. At the Γ point, the quasienergies
are given by ε = Mod

[
±3,Ω,−Ω

2

]
. Then, Γ-point gap

closings at the Floquet zone center and edge occur at
drive frequencies Ω = 6/(2n) and Ω = 6/(2n+ 1) respec-
tively, independent of the details of the drive. At the K
(and also K ′, by symmetry), the quasienergy bandgap

is given by ∆K =
√

9A2 + Ω2 − Ω. This result is non-
perturbative, and even correctly gives the high frequency
result ∆K = 9A2/(2Ω).

A few remarks are in order. This exercise allowed
us to identify key ingredients an effective Hamiltonian
needs to accurately describe the low frequency regime.
Importantly, such a Hamiltonian necessarily needs to be
quasienergy dependent because this is what allows the
occurrence of discontinuities in the quasienergy band.
These are needed because they can lead to bandgap open-
ings at the edges of the first Floquet zone–otherwise ap-
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FIG. 4: (Color online.) Plot of the Floquet quasi-energy
band structure along a path between high symmetry points
for graphene at Ω = 1 and A = 0.1. Dashed in black we
plotted the numerically exact result that is found by diago-
nalizing i log(U(k, T ))/T , where U(k, T ) is the propagator at
time T .In red we plotted our approximate result.

plying Mod
[
ε,Ω,−Ω

2

]
to ε would lead to cusps rather

than bandgaps. These types of jumps are non-analytic
in momentum and therefore cannot be captured by finite
range tight binding models. We therefore cannot expect
the Magnus expansion or similar expansions to capture
this type of behavior at any finite order.

Wavefunctions. When studying topological proper-
ties of Floquet systems, it is crucial to find an accurate
approximation for all the components φn of a Floquet
steady-states φ. Now, we outline the procedure to build
the steady-states from φ0. Following Ref.[49, 50] this can
be done by making use of the recursion relation

(ε+mΩ− h0)φm = P †φm−1 + Pφm+1. (10)

All components of φ can thus be obtained from φ0.
Therefore it is sufficient to check if φ0 is well approx-
imated over the Brillouin zone. This is done in Fig.5,
where Eq.(4) is numerically solved for 20 Floquet modes,
necessary to reach convergence.
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FIG. 5: (Color online.) Overlap between the numeric solution
of φ0 for Eq.(4) with Ω = 1 and A = 0.1 solved for 20 Flo-
quet modes and our approximate result plotted along a high
symmetry point in the Brillouin zone.

The overlap is almost unity across the whole BZ. It
is useful to realize that Eq.(10) can for weak driving i.e.
small P be approximated as

φn =
1

ε+ nΩ− h0
P †φn−1

φ−n =
1

ε− nΩ− h0
Pφ−n+1

, (11)

which is consistent with the rest of our approximation
and which we use in the following section to find φ.

In Fig. 6 we plot the overlap between φ0 (for (4) trun-
cated at 16 Fourier modes) and its approximate version.
The results were averaged over a the high-symmetry path
Γ→ K → M → Γ to be able to plot them as a function
of driving frequency Ω. This plot allows to estimate how
low frequencies can be discussed without losing accuracy
for the approximate wave functions.
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FIG. 6: (Color online.) Overlap between our approximate re-
sult and the numeric solution of φ0 for Eq.(4) with A = 0.2
solved for 16 Floquet modes (enough for numerical conver-
gence) and averaged over 300 points along the high-symmetry
path Γ→ K →M → Γ.
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FIG. 7: (Color online.) The Berry curvature F for the lower
band in the first Floquet zone with Ω = 3.5, A = 0.2 and
using 212 points in k space to obtain the plot. The plot shows
the result obtained via our approximate method, which is
visually indistinguishable from the result obtained by solving
Eq.(4) for three Floquet modes i.e. for φ3, ..., φ−3. In the inset
we see the numeric result for the Chern number plotted as a
function of k−points. The black dashed curve hereby is the
extended space result and the red curve the result obtained
via our approximation.

From the figure one may see that the approximation
allows us to reach very small frequencies that are slightly
smaller than the small driving strength A before the ap-
proximation begins to deteriorate.

Berry curvature and Chern number. We next focus on
the lower of the two Floquet bands in the first Floquet
zone. Appropriate care must be taken to ensure that φ0

is restricted this lower band. The proper procedure to
fold the spectrum see Fig. 1 is crucial. Regardless one
may then use the standard approach described in Ref.[59]
to calculate the Berry curvature and Chern number, seen
in Fig.7.

In the plots we see that both our approximation and
the result obtained using the extended space method
yield C = 3. We may therefore state that the effective
Floquet Hamiltonian here derived not just approximates
quasi-energies well but is accurate enough to reliably pre-
dict topological properties, such as the Chern numbers.
While C is experimentally observable as stated by [23],

it is not the topological invariant that defines the bulk-
boundary correspondence in Floquet systems. More de-
tailed discussions of this fact from an experimental per-
spective can be found in [60, 61] and theoretical discus-
sions are found in [13, 62, 63]. The appropriate invari-
ants, which predict the number of edge states in a system
with open boundary conditions, can be determined by
following the procedure discussed by [13] and an efficient
algorithm for its calculation can be found in [64]. Also
it is worth mentioning that the slow convergence of C
is due to the small band-gap - indeed if we increase the
band gap by using larger A the quantity converges faster.

Relevance to experiments. The theory presented here
is defined in the limit of weak drives and low-frequencies.
In the linear regime, the ultrafast response of the sys-
tem is usually linearly proportional to the applied flu-
ence. In principle, there is no lower-limit threshold for
the amplitude strength, and experiments are limited by
the detectable signal-to-noise ratio. Highly specialized
high-sensitivity techniques can allow one to work with
fluence as low as µJ/cm2. With respect to the drive fre-
quency, current experimental techniques allow one to use
frequencies as low as 0.5 THz. In the case of far-infrared
pulses, 65 meV can be achieved. These experimentally-
accessible frequencies allow one to study many materials
in the low-frequency, weak drive regime. For example,
monolayer transition metal dichalcogenide (TMDs), of
interest for valleytronic applications, have typical band-
gaps of the order of 1−2 eV [65]. Additionally, spin-orbit
effects lead to valence and conduction band splittings in
the order of 100 meV and 10 meV respectively [66]. The
drive frequencies required for the low-frequency regime
are well in experimental reach.

The weak-drive regime is also within reach. For ex-
ample, the typical lattice constant for TMDs is a0 ∼ 3
Å. Then, a laser fluence f of the order of µJ/cm2,
drive frequency ∼ 15.8 THz (∼ 65 meV), and laser
pulse duration τ = 0.1 ps in a pump-probe setting gives
a0eA/~ = a0eE/(~Ω) = 0.25 < 1, well within the reach
of current experimental capabilities. Therefore, we ex-
pect that the method introduced here to derive effective
Floquet Hamiltonians will support the prediction and in-
terpretation of experimentally-relevant Floquet systems.
Furthermore, this work can form the foundation for fur-
ther theoretical studies in the physics of low-frequency
Floquet systems, particularly those involving interactions
and coupling to auxiliary degrees of freedom, such as
phonons and magnons.
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