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We consider a one-dimensional spin chain system with quenched disorder and in the presence
of a local periodic drive. We study the time evolution of the system in the Floquet basis and
evaluate the fidelity susceptibility, which is a measure of how a given state changes under a small
perturbation, of states to a weak periodic drive. We demonstrate that the statistical properties
of the fidelity susceptibility over different disorder realizations can be used to identify two phases
of the system: (1) the many-body localized phase, in which the susceptibility exhibits long tails
while its average value decreases rapidly as disorder increases; and (2) the ergodic phase, in which
the susceptibility distribution is narrow and its average value weakly depends on disorder. This
distinction in the average value of the susceptibility between the two phases develops readily for
systems with ten or more spins. Therefore, recently built networks of qubits subject to a local drive
can simulate dynamics of a system in the many-body localization regime. We also show that the spin
accumulation speed is correlated with the fidelity susceptibility and can also be used to distinguish

the two phases.

I. INTRODUCTION

Studies of electron localization in disordered systems
have over half century history starting with the semi-
nal work by Anderson [1]. A system of non-interacting
electrons in one and two dimensions exhibit localization
at zero temperature as follows from the scaling consid-
erations [2]. The role of electron-electron interactions,
however, is ambiguous. The onset of localization, known
as weak localization [3], is destroyed by electron—electron
interaction at finite temperatures [1] as the interaction
results in dephasing of electron wave functions. At the
same time, electron—electron interactions give rise to the
Coulomb gap at the Fermi energy, driving the system
to localization [5]. Theory of many-body localization
(MBL) in disordered many-body system of interacting
electrons was put forward in the work of Basko, Aleiner
and Altshuler [6]. This paper proposed an infinite or-
der perturbation theory in the electron—electron interac-
tion and determined an energy threshold for localization.
Below the threshold, the interactions between electrons
cannot facilitate electron hopping between localized sin-
gle electron states and systems remain localized. As en-
ergy of the electron system increases above the thresh-
old value, a large phase space of the system allows elec-
trons to rearrange and form an extended many-electron
quantum state. This many-electron quantum state cor-
responds to dephasing in a single electron language.

Further focus of MBL studies was to understand inter-
acting many-body spin systems with random field. Inter-
acting electrons and spin-1/2 chains are closely related
models. The spinless electron system can be mapped
onto XXZ chain via Jordan-Wigner transformation [7].
The onsite energy in the fermionic system corresponds
to random z-field in the spin chain model.

Both fermionic systems and spin chains with disor-
der have been shown to exhibit MBL transition in Refs
[8-15]. This transition between localized and ergodic
regimes can be characterized via entropy growth [16, 17],

localization length [17], energy spectrum [18, 19], local
integrals of motion [20-24] and entanglement [16, 17, 25,

]. In the ergodic phase, the level statistics obeys a
level spacing similar to the Wigner-Dyson distribution
with level repulsion. The dynamic susceptibility is large.
In the localized phase, on the other hand, the Hamilto-
nian of the system shows localized behavior, as the level
spacing is characterized by a Poisson distribution with
high probability to find two levels with a small level sep-
aration, and the dynamic susceptibility vanishes [19, 27].
If a system is prepared in a product state, the entangle-
ment entropy for its subsystems gets saturated quickly
for ergodic regimes, and the saturation value is given by
the Page value, which is proportional to system size L
[28, 29]. However, in the MBL regime, the entanglement
entropy gets saturated in exponentially long time [16, 17]
but the saturation value still scales linearly with the sys-
tem size.

FIG. 1.  (Color online) Heisenberg spin-1/2 chain system
with quenched disorder {h;} in z-direction. {h;} is defined by
the uniform distribution within the interval |h;| < W. W is
the disorder strength and the interaction strength between the
nearest neighbors are given by the unitless parameter J = 1.
There is a local AC drive with strength f on the spin labeled
by ¢ = 1 in the z-y plane rotating with drive frequency w in
the anticlockwise direction.



The purpose of this paper is to evaluate an experimen-
tally accessible method to observe MBL phases by using
a local harmonic drive on one of the spin with period
T = 2m/w. We present our results for the short time
scales when the system may not have reached its satura-
tion value yet. We consider a one-dimensional Heisenberg
spin chain system with quenched disorder driven by a lo-
cal AC field. The static Heisenberg Hamiltonian with the
periodic boundary condition o“+t1) = o1 is given by

L
Hy = Z {JO'(Z)O'(H_D + hioD]. (1)
=1

Here, 0 is the vector of Pauli matrices for spin at site
[. The onsite fields h; are independent random fields,
uniformly distributed in the range [—W, W], where W is
the disorder strength of the system. At weak disorder,
W < 3J, the system is in the ergodic regime and has
several characteristics reminiscent of conduction phase
of a disordered metal. According to previous numerical
studies, the transition from the ergodic regime to the
localized regime takes place at W = W, ~ 3.J [3, 30]. We
use J as a fundamental unit and set J = 1 throughout
the rest of this paper.

The system with Hamiltonian (1) conserves the total
z-component of spin
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A transverse AC drive is applied to a single spin,
V(t) = fleos(wt)oll) + sin(wt)o V], (3)

which breaks the conservation of S,. Here, f denotes
the strength of the drive, w is the drive frequency and
7 = 27 /w is the period of the drive.

We investigate time evolution of the system described
by the time-dependent full Hamiltonian

H(t) = Hy+ V(t). (4)

We apply Floquet theory to analyze the system’s re-
sponse to the periodic drive. Periodic time-dependent
Hamiltonians were also studied in [22, 31-36] using Flo-
quet analysis. We use exact numerical diagonalization
and the time dynamics of the Hamiltonian for a system
size L < 18. Further increase of the system size requires
significant increase in computing power and memory re-
quirements. We perform analysis of fidelity susceptibility
[37] and change in system dynamics of total spin as the
strength of disorder changes from weak to strong. An
experimental platform to study these quantities could be
one of the available quantum hardware for quantum com-
puting, such as optical lattices [38] trapped ions [39], Ry-
dberg atoms [40], ultracold atoms [41], gmon system [412]
and fluxonium qubits [13].

In this paper, we study fidelity susceptibility as a
measure of overlap between the two quantum states

|(¢ =0l f0)|? that evolve with or without drive from

the same initial state |¢;), where (...) stands for the av-
erage over initial states |1;). For weak drive, the quan-
tum displacement is proportional to the fidelity suscep-
tibility. Evolution of an initial state may follow different
paths in the Hilbert space depending on the phase of
many-body systems. An important factor that defines
the quantum displacement between the two final states
is disorder. When the disorder is weak, the distance be-
tween the two final states is large. However, for strong
disorder, localization occurs and the distance vanishes.

The local drive (3) breaks S,-conservation law. Fi-
delity susceptibility was previously used to study phase
transition [11-18]. We show that spin accumulation
in response to the drive could be a viable experimen-
tal method to distinguish between localized and ergodic
regimes. The variance of operator S, with respect to an
arbitrary quantum state |¢(¢)) of the system at time ¢ is

§S2(t) = (S2(t) — (S:(1))*, (5)

where, (A(t)) is defined as (A(t)) = (Y(t)|A|Y(t)). We
perform analysis of statistical properties of the spin ac-
cumulation §52(t) over disorder realizations. We study
average of §S2(t) as a function of time t = nr, where
n is the number of periods. The statistics of spin ac-
cumulation is significantly different for the ergodic and
MBL regimes and the difference between the spin accu-
mulation over time can be used to distinguish between
the two regimes. The change in §52(¢) after one period
can be identified as the total spin diffusion coefficient.
We compare the quantum displacement at one period
with the diffusion coefficient §52(7) and show that they
have similar behavior. We analyze the distribution of
the diffusion coefficient for different disorder strengths.
The distributions are different for the MBL and ergodic
regimes. The diffusion coefficient is large and the distri-
bution is narrow for weak disorder, whereas the diffusion
coefficient is small and the distribution is wide and have
long tail for the strong disorder.

The paper is organized as follows. In Sec. II, we first
introduce the model and derive a formalism that can be
used to analyze the AC driving scenario for the model
within Floquet theory. In Sec. III, we study the response
of the quantum system by evaluating the quantum dis-
placement between the evolution of the system with and
without an AC drive. Then in Sec. IV, we provide the
numerical results for the statistical properties of the fi-
delity susceptibility and compare with our analytical esti-
mations. Finally, in Sec. V, we study time dynamics and
statistical properties of total spin in z-direction. That
provides an experimentally feasible way to distinguish
between ergodic and MBL phases.



II. EVOLUTION IN THE FLOQUET
REPRESENTATION

For a periodic drive, the evolution operator U(t = nr)
after n periods can be represented as the nth power of
the Floquet operator Uf(7) per one period 7 = 2m/w:
U(t = nt) = U}. The Floquet operator is unitary and
has a set of eigenvectors, that form a Floquet basis:

Upla) = e o), (6)

where we use Greek indices to numerate Floquet basis,
a=1,...,2% and Q. are quasienergies. After n periods
of the drive, the system evolves from its initial state |¢g)
to the state

[ (nT)) = Uf |vo) »

with Uy written in the Floquet basis.
To evaluate the Floquet operator, we notice that the
transformation

. L
Ur(t) = exp (;“ ) a§”> (8)
=1

removes explicit time-dependence in the full Hamiltonian
of the system, Eq. (4):

Up=e " aylal  (7)

FIO = Ho — W Sz.

(9)
After this transformation, the Floquet operator can be
defined as an exponent of time-independent Hermitian
operator

U = exp(—iHT) Ui(r) = (*1)L eXp(*iﬁIT))a (10)

We notice that for f = 0, the Floquet states [a) and
eigenvectors of stationary Hamiltonian Hy as well as
quasienergies 2, and energies F; coincide,

Qo = Eo(mod 27/7).  (11)

H=UHU] —iU U} = Hy + folV,

(tlay=o) = dia;

Using Eq. (10), we find that the Floquet basis is sim-
ply given by the eigenstates of the transformed Hamil-
tonian (9) [19]. Response of quantum disordered spin
systems to a local periodic drive [33] and global drive
[22, 31, 32, 34-36] were also studied, where Hamiltonian
is switched between two different operators periodically
in time. Differently, we consider local AC drive in this
paper.

The effect of a harmonic drive on a state of the sys-
tem can be defined by the displacement of this state
|5 (7)) after one period of the drive from the free evolu-
tion over the period 7 of the same state |1o(7)). For an
arbitrary initial state |¢;), the state after one period is
|5 (7)) = Uy ;) for a harmonic drive with amplitude f,
and |'I/J()(T)> = U() |’(/JZ>, where U() = Uf*)() = EXp(—’iH()T).
The corresponding overlap between the two states is mea-
sured by the real part of the Fubini-Study metric and is
simply determined by the overlap of these two states:

Fy, = [(bo(r) [r (P = [(ltd [9a)|*,  (12)

where we introduced a unitary operator
U=Ulu; (13)

representing a mismatch between the evolution of the
system with and without drive. Fubini-Study metric
is known as quantum geometric tensor in the adiabatic
limit. The imaginary part of the quantum geometric ten-
sor gives the Berry curvature. Both real and imaginary
parts of the quantum geometric tensor can be used as
susceptibility to measure phase transitions [50]. Here, to
identify phases, we use fidelity susceptibility for the weak
drive, which will be defined in the next section.

We characterize a typical response of an arbitrary state
to the drive over a single period in terms of the overlap
F,,. The quantum fidelity is given as F' = Fy;,,, where (...)
stands for the average over initial states |1;). The corre-
sponding average, known as a quantum fidelity between
two unitary operations, is defined in terms of operator U
as [51]

_ M+ |r@)?

F
M(M+1) "’

(14)

where M = 2% is the dimensionality of the Hilbert space.
We define quantum displacement between the two final
states after one period as in the following;:

e=1-F. (15)

In the weak drive limit, this quantity is proportional to
the fidelity susceptibility and its analysis is given in the
next section.

We calculate the matrix element of ¢/ taken between
the energy eigenstate |i) of the static Hamiltonian H
and the Floquet state |«), which has the form

(i|U o) = AT exp(—i(Qa — Ey)7),  Af = (ila), (16)

where A is the overlap amplitudes between energy eigen-
states of the static Hamiltonian and the Floquet states.
This relation leads to the matrix elements of U in the
energy eigenstate basis of Hy:

Uy = (i|U|j) = exp(—i(Qu — Ei)T)AF(A)*. (17)

According to this equation, the evolution of the system
reduces to a search of the components A of the Flo-
quet states in the basis of the static Hamiltonian, and
the corresponding eigenenergies and quasienergies. Be-
low we present numerical evaluation of these matrix ele-
ments and argue that the statistical properties A$* change
across the crossover from the ergodic to MBL regimes.

For quantitative analysis of the effect of the drive on
the system, we consider a Hermitian matrix

1-U
7-*ZlJru

instead of the unitary matrix &4. A simple choice of the
norm as o ¢r(7?) can be interpreted as the power of the

(18)



drive applied to the system. This is especially mean-
ingful in the limit of weak drive when 7 is linear in
the drive amplitude f. In its eigenvector basis, opera-
tor U is presented by a diagonal matrix with elements
e (a=1,...,M) and T is also diagonal with diagonal
elements [T ]qq = tan(d/2). The norm of T is

.6
tr(T?) = QZZI tan? e (19)

and tr(7?) — oo when one of the scattering phases
reaches the unitary limit, §, = 7, so that corresponding
eigenvector |a) of U completely flips just after a single
period of the drive, U |a) = —|a). This strong effect
of the system states does not necessarily reduce fidelity
F Eq. (14). However, the system rearrangement over
energy states |i) of the stationary Hamiltonian Hy per
cycle of the drive becomes significant if (i|a) # 0 for
many states |4).

Utilizing Eq. (16) and (18), we can write the system
of linear equations for the Floquet amplitudes A$:

tan((Qa — ENT/2)+T |\ 40
> - AT =0 (20)
J
This equation can be reduced to a hopping problem [33]
of a particle with on-site energy tan((2, — E;)7/2) and
hopping amplitude 7 between sites in the Hilbert space:

{tan w +T|Ixa) =0, (21)
where |xa) = >2;(1 —4T)7"|j) A} is an eigenstate at
zero energy existing for a set of quasienergies €, of the
Floquet operator Uy. Equation (20) is in particular use-
ful in the limit of weak drive when it establishes a simple
relation between the Floquet amplitudes A and hopping
amplitudes 7;;, which is derived in the next section.

III. FIDELITY SUSCEPTIBILITY AT WEAK
DRIVE

Two initial same states are evolved under unperturbed
and perturbed Hamiltonians for a period. We calculate
the quantum displacement e given by Eq.(15) between
the two final states after a period, which is independent
of the given initial state and depends only on the mis-
match between the energy eigenstates of the unperturbed
Hamiltonian and Floquet basis. When the drive strength
f is small, we can write the Maclaurin series expansion
for the fidelity in Eq. (12) around f = 0:

f2
F:l—?xp—i—..., (22)
and neglect the higher order terms. Here xr is defined
as fidelity susceptibility and it is the second derivative of

4

the fidelity with respect to the drive amplitude f [37]. In
the small f limit, x can be written in terms of fidelity
F:

xr=2(1-F)/f*=2¢/f (23)

Note that x g is proportional to the quantum displace-
ment € given by Eq. (15).

In this section, we consider in detail the limit of weak
external drive and take into account only terms that are
linear in drive amplitude f in the hopping matrix 7 and
the unitary matrix 4. First, we expand the operator U,
defined by Eq. (13), to the lowest order in f, and obtain
the following expression for the hopping matrix:

_ifT
2
s \2
x (o;” +ir[Ho, o] + %[ﬁo, [Ho, o)) + . ) .
(24)

T:

This expression indicates that the matrix elements of 7;;
can be easily written in the eigenstate basis of Hamil-
tonian Hy in terms of (i oM |7). Here we present an
alternative derivation of 7;;. We consider Eq. (20) up to
the first order in 7 and apply Eq. (11) to find a relation
between off diagonal elements of matrices Ag’éz and 7
written in the eigenstate basis:

Ti;j = 1A sin we”w“&)/w. (25)
To the lowest order in f, overlap between Floquet states
and eigenstates of Hy can be evaluated from the first or-
der perturbation theory as A7,/ = f (i oM 1) J(E: —
E;). Note that while the difference between eigenener-
gies E; of Hy and E; of Hy are not important in Eq. (25),
this difference is important in the denominator of A5},
that represents transition between states with different
values of total spin along the z-axis, due to absorption or
emission of energy hw. We obtain the following expres-
sion for matrix elements of the hopping matrix in the
basis of eigenstates of Hy that coincides with eigenstates
of H()S

1o 1) - w(Bi— By) nsis
7;j = f<gai ‘E~|1]> sin ﬂ-( Zw j)e“r(Ei—Ej)/w- (26)
? J

At weak drive, Y = 1+ 2iT —272+... and we obtain

an expression for the average fidelity

_ M+ M? - AM tr(T?)

E M(M+1)

(27)

The quantum displacement can be regarded as the aver-
age displacement of the states per period of the drive. In
the expression above, we disregarded terms that contain
(Tr {T})? since Tr {7} vanishes.



We apply Eq. (25) to argue that the quantum displace-
ment, €, is a universal, M —independent measure of the
effect of a harmonic drive on the system in either ergodic
or MBL regimes. We write

1 s 3, P @
e < Mzg g = =L Q) (28)
where P(S;g is the escape probability Pe(gc = |AZ \2 of the

system from initial state |i) at long drive time, averaged
over states |4).

We can provide more accurate estimate of quantum
displacement by applying Eq. (26):

sin?(7(E; — E;)/w)
wQM Z E E;)/w]?

[t 1] (29)

First, we evaluate the average value of quantum displace-
ment over realizations of the random magnetic field for
ergodic regime of weak disorder W < 3J. At frequencies
of the drive exceeding the mean level spacing we omit the
energy dependent factor. Also, a typical matrix element

for i # j can be estimated as >, ‘( \gz)m‘ ~ M.

So, after these approximations, we can write the quan-
tum displacement as:
2 £2
(e o« =L (30)
where ((...)) represents the disorder average throughout
the paper.

In the limit of strong disorder, the distribution of quan-
tum displacement is more complicated. As we demon-
strate below from numerical analysis, the distribution be-
comes extremely wide and its average value actually loses
its meaning. More meaningful is the distribution of the
logarithm of quantum displacement, lg(¢), and its disor-
der average ((lg(e))). The exponential of ((Ig(e))) gives
the typical value (geometric mean) for the quantum dis-
placement. Note that lg shows logyo throughout the text.
The logarithmic distribution is a common characteristic
of strongly disordered, glassy systems that exhibit a wide
hierarchy of scales [52]. In our case, the broad distribu-
tion is formed due to rival realizations of the random
magnetic field. For some realizations, the spin states are
strongly localized and effectively decoupled from the rest
of the system, for other realizations the system develops
a resonance between spins in the chain and may result
in the quantum displacement exceeding the average dis-
placement in the ergodic regime, cf. Eq. (30).

The contribution from configurations representing lo-
calized spins dominates for average value of lg(¢), and re-
sults in monotonically decreasing value of ((Ig(¢))). For
localized states case when the local magnetic field for a
driven spin is strong, |hi| > J, the eigenstates |i) are
factorized and we can reduce the evaluation of quantum
displacement in Eq. (29) as

f2 M sin?(mhy /w)
“M2 K

W m| . @

Assuming that the localized configurations give the main
contribution to ((lg(e))), we integrate lg(e) given by
Eq. (31) over uniformly distributed h; and obtain

ge) o 2lg - (32)

We note that our estimates for € in the limit of weak or
strong disorder are independent of the dimensionality of
the Hilbert space M = 2L, see Egs. (30) and (32).

IV. STATISTICAL PROPERTIES OF THE
FIDELITY SUSCEPTIBILITY

In this section, we numerically evaluate the quantum
displacement ¢, which determines the fidelity susceptibil-
ity in Eq. (23). We choose the drive frequency w = J for
the simulations. We do not expect the results to be very
different for w comparable to J. As pointed in Sec. VI
Discussion and Conclusions; new phases of matter can
arise for large w, and the limit of small w can be studied
as a DC perturbation to the Heisenberg Hamiltonian [19].
We calculate the fidelity directly from Eq. (14), by com-
puting the matrix exponents for evolution matrices Uy
and Uy, and therefore, our computation is not restricted
to the weak drive limit considered in the previous sec-
tion. For f < J, we obtained the bilinear response of
€ o< f? and recover all relations between the Floquet am-
plitudes A{, quasienergies and matrix elements of af(cl)
between unperturbed eigenstates of Hy that we discussed
in the previous section. We also observed that the bilin-
ear regime is satisfied for average value of ¢ or lg(e) for
f < J, and chose f = J/4/10 for analysis of ¢ at dif-
ferent values of disorder strength W. This choice of f
allows us to compare some conclusions from the previ-
ous section with the numerical results, and at the same
time demonstrates that the properties of € remain similar
at moderate drive amplitudes, f ~ J. At stronger drive,
multi photon processes become important and their anal-
ysis deserve a separate discussion.

First, we study the probability distribution P(¢) at the
drive strength f = J/v/10 over ensemble realizations of
the random fields {h;} defined by a uniform distribution
within the interval |h;| < W. Because our numerical
analysis required evolution of matrix exponent and in-
verting matrices, to reach a large number of realizations
N = 10%, we took the system size L = 12. We present
the normalized histograms in Fig. 2 for weak, moderate
and strong strengths of disorder. As the strength of dis-
order increases, the distribution broadens and the peak
shifts to smaller values of . However, while more realiza-
tions have smaller values of ¢, there are some realizations
at moderate disorder that exhibit ¢ exceeding maximal
values of € in weakly disordered system, see the tail to
the right in Fig. 2(a). This behavior becomes even more
pronounced at strong disorder, W = 30J, when the dis-
tribution covers extremely small values of €, but its tail
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FIG. 2. (Color online) (a) Distribution of quantum displace-
ment € over N = 10 realizations of the random magnetic field
h; for a system with L = 12 spins. The top panel shows the
distribution of the displacement itself for W/J = 0.3 (blue
long-dashed line), W/J = 3 (green short-dashed line), and
W/J = 30 (red solid line). Distributions for strong disorder
have exponentially large tails. Rare events appear for the
strong disorder. (b) Logarithm of the distribution of € for the
same three values of disorder as in (a). The dash-dotted line
represents the slope ~ 1071/208() — 1y/€. The drive ampli-
tude f = J/\/ﬁ and w = J. lg shows logip throughout the
text. We scaled the distribution curves for W/J = 3 by factor
two and for W/J = 30 by factor six.

extends to larger values of € than the values found for
weak and moderate disorder, see Fig. 2(b).

We characterize the distribution in the strong disor-
der limit by lg(¢). In such logarithmic presentation, it
is possible to fit all distributions of three cases of weak,
moderate and strong disorder on the same plot, as shown
in Fig. 2(b). At strong disorder, distribution of lg(e)
shows that in most realizations, the quantum displace-
ment is significantly reduced below its values for the er-
godic regime. At the same time, we find the tail that
extends to larger values of ¢, which do not happen at
weaker disorder. In these rare events, quantum displace-
ment ¢ takes values closer to 1 and our bilinear analysis
is not applicable, in particular, relation (27) is no longer
valid. For realizations with large values of ¢, the sys-

tem exhibits occasional resonances between spins in the
chain that lead to strong coupling of the drive to the spin
system. In this case, the spin system subject to a drive
strongly deviates from its free evolution.

We plot the distribution of the logarithm of the quan-
tum displacement in the limit of strong disorder in
Fig. 2(b) and observe that the right slope is consistent
with 1/4/e. This behavior implies that the probabil-
ity distribution function for ¢ decays as a power law
o (£)73/2, and we conclude that the distribution of quan-
tum displacement is Pareto type. Such slow power law
decrease makes the cumulants ill-defined, including the
expectation value, unless the power law has upper cut-
off. According to Fig. 2(b), the power law terminates at
sufficiently large displacement, making the expectation
value of displacement over disorder sensitive to the rare
large realizations of disorder. This sensitivity to rare fluc-
tuations of displacement does not allow us to numerically
study average value of displacement at strong disorder,
as even for a very large number of samples, N > 10* for
smaller systems, L = 6, the average value of displacement
does not converge well.

To characterize the effect of disorder strength on the
quantum displacement, we numerically evaluate the dis-
order average of lg(e), which is shown as ((Ig(¢))). The
result is presented in Fig. 3. We observe that ((lg(¢)))
does not strongly depend on the system size L, as points
for L = 8, 10 and 12 are aligned along the same curve.
At weak disorder, {(lg(¢))) changes weakly with disorder
strength, as demonstrated by different values of ((lg(¢)))
at the plateaus for disorder strength corresponding to the
ergodic regime with W < 3J. At stronger disorder, in the
localization regime W 2 3.J, ({lg(¢))) decreases linearly
as ~ 21g(J/W), in agreement with estimate (32).

V. TIME EVOLUTION OF THE TOTAL SPIN

In this section, we describe a technique to distinguish
between ergodic and MBL phases using the total spin
projection in z-direction S, given by Eq.(2). It has been
shown that magnetization can be a probe to distinguish
between ergodic and MBL phases [53]. Here, we study
the variance of total spin in z-direction that gives the
measure of localization for a given state [54]. The to-
tal spin projection in z-direction is a conserved quantum
number of Hy, Eq. (1). When there is a local periodic
drive perpendicular to z-direction, .S, is not conserved
anymore. The value of S, with respect to time depends
on the strength of the random field W. For the vari-
ance of S, given by Eq. (5), 52(t), we observe different
statistics for the ergodic and MBL phases.

We choose the initial state as a product state with
S, = 0. Such product states can be shown as [¢)) = |{0;})
with o; = +1, Y. 0; = 0, where +1 represents spin up
and -1 represents spin down for even system size L. There
are L!/((L/2)!)? product states with S, = 0. For systems
of size up to L = 12, it is computationally feasible to take
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FIG. 3. (Color online) Average of the logarithm of quantum

displacement, 1g(), as a function of disorder strength W for
a spin system of size L = 8 (circles), L = 10 (squares) and
L = 12 (diamonds). The average is evaluated over N = 10°
disorder samples for L = 8, 10, 12. The drive amplitude
f = J/V10 and w = J. {{)) shows the disorder average
throughout the paper.

average 052(t) (product state average is shown by over-
line) over all product states along with disorder average.
For the sizes beyond L = 12, we took average over some
group of randomly selected product states. Even a small
group of samples can be useful to identify the phase of
the system. By analyzing statistical dynamics of prod-
uct states, we can study the ergodic and MBL phases.
By using time dynamics, one can simulate larger systems
comparing to the spectral analysis because exact diago-
nalization is computationally more intensive.

Short time growth of §S2(¢) can identify the phase of
the system [55]. Fig. 4 shows how the average variance

({(652(n1))) changes with respect to the number of peri-
ods, n [56]. Average is taken over product states (shown
by overline) and disorder (shown by double angle brack-
ets). In the ergodic regime, the variance changes quickly
for the initial periods and reaches a saturation point for
longer times. For L = 14, the saturation point is reached
in less than one hundred cycles of drive. For larger sys-
tems, it takes more time to reach the saturation point.
One can estimate based on the decreasing rate of change
of the variance with time that it does not take expo-
nentially long time to reach the saturation for systems
with L = 16 and 18 in the ergodic regime. However,
in the MBL regime, the variance increases slowly and
based on the monotonous increase rate one can estimate
that it takes much more time to reach a saturation point
comparing to the ergodic case. In addition, the vari-
ance change in the MBL regime is less sensitive to the
system size than in ergodic regime. In Fig. 4(b), we
demonstrated for different initial conditions and product
states (S, = 0 vs. + 1) that one can still distinguish be-
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FIG. 4. (Color online) (a) Average 6S2(t) as a function of
time for a spin system of size L = 14 (diamonds), L = 16
(squares) and L = 18 (circles). Curves for W = 1.25 have
filled and for W = 5 have unfilled markers. The averages
are performed over 10® realizations of disorder for all system
sizes and 103 product states for L = 14, 150 product states
for L = 16 and 60 product states for L = 18. The overline
shows the product state average throughout the paper. (b)
Average 6S2(t) as a function of time for a spin system of size
L =14 and W = 1.25 or 5. Results are compared for the
initial product state with S, = +1 and 0 at ¢ = 0. 100
product states and 10 disorder averages are considered for
all cases.

tween ergodic and MBL regimes regardless of the initial
S, choices. In MBL regime (W = 5), the spin accumu-
lation takes almost the same values and the curves are
aligned with each other. In ergodic regime (W = 1.25),
the spin accumulation for the three different initial .S,
values slightly differ. The reason of this slight difference
between S, = £ 1 is the sine term in Eq.(3), which is an
odd function and breaks the symmetry with respect to
the local field rotation direction.

In Fig. 5, we show how the average of logarithm of
the variance, ((1g(652(7)))), changes with respect to the
disorder strength W. Time is fixed at one period, 7.
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FIG. 5. (Color online) Average 6S2(7) as a function of

lg(W/J) for a spin system of size L = 8 (circles), L = 10
(squares) and L = 12 (diamonds). Time = 1 period. f =
J/v/10 and w = J. The averages are performed over 10*
disorder realizations for L = 8, 10% disorder realizations for
L = 10, L = 12. All product states are considered for all
system sizes for product state averaging.

The variance curves in Fig. 5 shows similar properties
as the quantum displacement curves in Fig. 3. §52(¢)
changes weakly with disorder strength at weak disorder
(W < 3J), whereas it decreases linearly with {g(W/J)
at stronger disorder (W 2 3J). Similar to the quantum
displacement, §52(t) also does not strongly depend on
the system size L.

In Fig. 6, we show the probability distribution of
lg(652(7)). The distributions are narrow and the typical
value of §S2(7) is large at weak disorder, whereas the
distributions broaden and the typical value of §S2(r) is
small at strong disorder. For the quantum displacement,
we showed in the previous section that the distribution
of lg(e) is a Pareto distribution. 1g(6.52(7)) distributions
for strong disorder have longer tails but not as long as
the distributions of quantum displacement €. However,
it is still possible to distinguish between localized and
ergodic phases based on 1g(652(7)) distributions for dif-
ferent disorder strengths even though rare events do not
appear and distribution is spread out in a smaller range
in the strong disorder.

We compare the typical values of the displacement e
with spin diffusion coefficient 652(7). We demonstrate
the correlation between ((lg())) and ((1g(652(7)))) by
the parameter plot provided in Fig. 7(a). This behavior
of ((Ig(e))) and ((lg(052(7)))) supports our claim that
the total spin measurement can also be used to identify
the localization properties of the system. We also provide
scatter plots in Figs. 7(b, ¢, d) for three of the disorder-
unaveraged values from Fig. 7(a) with W = 1 (ergodic
regime), 3.16 (critical regime) and 10 (MBL regime). The
distributions for both lg(e) and Ig(6S?) are wide in the

localized phase with large disorder strength and the typ-
ical values of € and 052 are small. For smaller W, the
distributions get narrower and the typical values are big-
ger. We deduce from the shape of the clouds in the scat-
ter plots in Figs. 7(b, ¢, d) that the correlation between
lg(€) and 1g(652) are small [57]. However, as we pointed
out, the average values of them are correlated as shown
in the parameter plot in Fig. 7(a).
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FIG. 6. (Color online) Distribution of 1g(652) over N = 103
disorder realizations of the random magnetic field h; for a
system with L = 12 spins for W/J = 0.3 (blue long-dashed
line) and W/J = 3 (green short-dashed line), 30 (red solid
line). We scaled the distribution curve for W/J = 30 by factor
six. The averages are performed over all product states of the
system.

VI. DISCUSSION AND CONCLUSIONS

We discussed time dynamics of a quantum Heisenberg
spin chain that is subject to a harmonic local drive. We
analyzed the overlap between the states started from
the initial states |¢);) and evolved under the Heisenberg
Hamiltonian with and without drive. We observed that
when averaged over |1;), the quantum displacement after
one period &, given by Eq.(15), shows different statisti-
cal properties with respect to random field realizations at
weak (ergodic) and strong (localized) disorder. As shown
in Figs. 2 and 3, in the ergodic regime the distribution of
the quantum displacement is narrow and nearly indepen-
dent from disorder strength, while in the localized regime
the distribution has an exponentially small average value
but a very long power-law tail. The average value of the
quantum displacement is independent of system size sug-
gesting that quantum systems with L ~ 10 spins would
be sufficient to see the distinction between the localized
and ergodic regimes using available quantum hardware
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FIG. 7. (Color online) (a) Parameter plot of ((Ig(¢))) and

((1g(652))) for a spin system of size L = 8 (circles), L = 10
(diamonds) and L = 12 (squares). Data points from Figs. 3
and 5 are used. Time = 1 period. The drive amplitude
f=J/ V10 and w = J. There is almost a linear dependence
between the two quantities. (b, ¢, d) Scatter plots of the
data for the three of the results for L = 12 from (a). W =
1 (red diamond), 3.16 (blue square) and 10 (green circle).
Each scatter plot includes 10% unfilled markers each of which
corresponds to a single disorder realization. Each average
value in plots of (b, ¢, d) is in a big black square and is shown
by a filled marker of same type as the scattered data.
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We also studied the variance of the operator for total
spin in z-direction §52(t), given by Eq.(5), for an initial
state prepared as a product spin state with total spin
projection equal to zero. Thus, §S2(t) is a measure of
spin accumulation due to the drive and can be used to
measure the speed of the thermalization in the ergodic
and MBL regimes. Both initialization of this system as a
product state of individual spins in z-direction and mea-
surement of their net spin projection are basic require-
ments for quantum hardware and experimental studies of
crossover from the ergodic to localized regimes through
the spin polarization dynamics is feasible in available sys-
tems similar to those described in Refs. [38-43, 58, 59].

We calculated the spin accumulation in response to the
drive over time ¢, the results are shown in Fig. 4. In the
ergodic regime, the spin accumulation speed is large in
the initial periods and total spin gets saturated rapidly.
However, in the MBL regime, the spin accumulation is
slower in the initial periods and the spins are still drift-
ing in response to the drive in the longer time limit. The
spin accumulation after one period gives the total spin
diffusion coefficient §52(7). The behavior of the diffusion
coefficient is very similar to the behavior of quantum dis-
placement . As illustrated in Fig. 5, at weak disorder,
diffusion coefficient is large and changes weakly with the
disorder strength. However, at strong disorder, the dif-

fusion coeflicient decreases linearly with the logarithm of
the disorder strength, lg(W/.J), and eventually diffusion
is broken. The system may show subdiffusive dynamics
as recently pointed out in [60]. Furthermore, diffusion
coefficient does not depend on the system size strongly
similar to quantum displacement.

Probability distributions for the diffusion coefficient
show different characteristics depending on the disorder
strength as can be seen in Fig. 6. At weak disorder, the
distribution is narrow and the typical value of the diffu-
sion coefficient is large. At strong disorder, the distribu-
tion is wide and have long tail but unlike the distribu-
tions for the quantum displacement, the distribution for
the diffusion coeflicient does not have exponentially long
tail and does not exhibit rare events. However, it is still
possible to identify the phase of the system based on the
diffusion coefficient distributions. The broad distribution
of 652(r) at strong disorder shows that this parameter
cannot be seen as a one-fit-all parameter. In other words,
there is a different dynamics at strong disorder.

In Fig. 7, we demonstrated that there is a positive
correlation between the quantum displacement and spin
accumulation. However, we note that flips of a spin have
different effects on the quantum displacement and the
spin accumulation. If a single spin flips, the original
and new states, [¢) and |¢') respectively, are orthogo-
nal. That makes the displacement 1 — |3 [1/’) |2 between
the states equal to 1. However, in the large system size
(L > 1) limit, one spin flip produces a small effect for
the total spin ~ L in the z-direction and therefore also
for the spin accumulation §52(¢). Even though spin flips
have smaller effects on the spin accumulation, there is a
clear difference between the speed of the thermalization
for the two phases as explained above.

Our study was focused on a local harmonic drive with
moderate drive frequency (w =~ J). For this frequency,
we observed that thermalization occurs regardless of
whether the system is in the localized or ergodic regimes,
which supports the results of [32, 41, 61], and the speed
of thermalization is different for the two cases. On the
other hand, one could also consider the cases where w is
much smaller or larger than J. In the limit of w << J,
the time-independent Hamiltonian Eq. (9) will be similar
(with difference of wS,) to the Hamiltonian with DC
perturbation considered in [19]. If the drive frequency
is larger than the depth of the local energy minima,
different regimes such as prethermal states occur [62, 63].
Most closed many-body systems tend to heat up when
they are driven. The situation is different for driven
localized systems when many local deep minima appear
in the energy spectrum and prevent thermalization.
The system is prevented from heating up, which can be
understood via quantum mechanics of energy levels. If
the drive frequency is large, the system cannot absorb
all the energy provided by the drive. Instead, the energy
absorption requires many-body excitations and slows
heating down exponentially [64, 65]. Under certain
nonequilibrium conditions of prethermalization, the



systems can exhibit topological phases protected by
time-translation symmetry [66-69] and time crystals
where time-translation symmetry is spontaneously
broken [62, 63, 70-76]. Exploring statistics of the system
responses at high frequency periodic drive was not
addressed here and is the topic of a separate study.
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