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We investigate many-body localization in the chain of interacting spins with a transverse power-
law interaction, Jo/r, and random on-site potentials, ¢; € (—W/2,W/2), in the long-range limit,

a < 3/2, which has been recently examined experimentally on trapped ions.

The many-body

localization threshold is characterized by the critical disordering, W., which separates localized
(W > W) and chaotic (W < W.) phases. Using the analysis of the instability of localized states
with respect to resonant interactions complemented by numerical finite size scaling, we show that
the critical disordering scales with the number of spins, N, as We ~ [1.37Jo/(4/3 — a)]N*/?~*In N
for 0 < a <1, and as W, ~ [Jo/(1 — 2a/3)]N'=22/3In*3 N for 1 < a < 3/2 while the transition
width scales as ow o« W./N. We use this result to predict the spin long-term evolution for a very
large number of spins (N = 50), inaccessible for exact diagonalization, and to suggest the rescaling
of hopping interaction with the system size to attain the localization transition at finite disordering
in the thermodynamic limit of infinite number of spins.

I. INTRODUCTION

Many-body localization (MBL) transition separates
two distinguishable kinetic behaviors: the delocalized,
chaotic system acts as a thermal bath for each small part
of it [1, 2], while in the localized system its different parts
are approximately independent. In the chaotic phase, en-
ergy levels obey the Wigner-Dyson statistics, while in the
localized phase, they obey the Poisson statistics [3]. The
localized phase can be characterized by related local in-
tegrals of motion [4, 5] (see also Refs. [1, 6] for review of
a more recent progress in this area). The experimental
investigations of many-body localization [7-13] are car-
ried out in systems of interacting spins coupled by the
long-range interaction, which decreases with distance ac-
cording to the power law U(r) o< r~*. The interaction ex-
ponent, «, can be modified experimentally [7, 14], which
helps to understand the effect of different power-law in-
teractions on localization. Such systems are of interest
particularly due to their relevance in quantum comput-
ing [9, 11], while the ubiquitous power-law interactions
are associated with the presence of dipole, magnetic or
elastic moments [15-20]. Theoretical studies of these sys-
tems include the investigation of entanglement entropy
[21], superdiffusive transport [22], ultrafast propagation
of information [23] and search for many-body localization
in various settings [24-30].

It has been recently shown experimentally [7, 31] that
the system of N spins with long-range power-law interac-
tions can be modeled on trapped ions simulating Hamil-
tonians of the form

N 1
H=) Jijojoj + 53 (B+¢i)o;, (1)

i<j i

where J;; = Jo|j—i|~ is the long-range interaction with
a tunable exponent «. Random fields, ¢;, are uniformly
distributed in the range (—%, %), with an additional
transverse field, B, added to make the system delocalized

in the absence of disordering. The system is expected to
be localized at sufficiently strong disordering, W, where
interaction can be neglected, and the eigenstates are de-
fined by spin projection operators S*, which serve as local
integrals of motion. The localization threshold is deter-
mined by the critical disordering W, such that the states
are localized for W > W, and delocalized otherwise.

Many-body localization breakdown due to the insta-
bility of localized states with respect to resonant long-
range interactions has been considered in the earlier
work [16, 17, 32-34], in models with both off-diagonal
(transverse, hopping oo} /r¢:) and diagonal (longitudi-
nal, o707/ 7‘5) interactions with power law exponents «
and [ < a, respectively. Similar premises were used for
electronic systems in Ref. [35, 36]. According to those
considerations, delocalization takes place in the presence
of around one resonance if the diagonal interaction of res-
onant transitions exceeds their amplitude. This consider-
ation led to the dimensional constraint § < 2d, for which
delocalization always takes place in the thermodynamic
limit of infinite N. Recent papers [27-29] challenging
this constraint possess isotropic interaction. According
to Ref. [14] such interaction leads to a much weaker di-
mensional constraint (54 2 < 2d), which turns out to be
consistent with the numerical results of Refs. [27, 28].

The argument of resonant interactions [14, 17, 34] is
not applicable to the system described by Eq. (1) since
it lacks the diagonal interaction. The investigation of
the X-Y model lacking the longitudinal interaction [37]
led to a weaker dimensional constraint, o < 3d/2. The
power-law scaling of the critical disordering, W, with
the number of spins, N, was predicted there for d < o <
3d/2.

The main target of the present work is to determine the
critical disordering in the regime of violated dimensional
constraint o < 3d/2 in the model described by Eq. (1).
Using the analysis of the instability of localized states
with respect to resonant interactions complemented by



numerical finite size scaling, we express the critical dis-
ordering as an algebraic function of the number of spins,
N. This expression can be used to characterize arbi-
trarily large spin systems, including those not accessible
for numerical simulations but only for experimental mea-
surements (N ~ 50 [10, 31]). We demonstrate that the
most efficient delocalization is associated with resonant
spin quartets. The analysis of the localization break-
down by quartets leaves dimensional constraint of Ref.
[37] (o < 3d/2) unchanged, but leads to a faster increase
of the critical disordering with the system size. It should
be easier to observe the latter scaling in practice, com-
pared to the very slow increase of the critical disordering
predicted in Ref. [37], as noticed in Ref. [38]. The lo-
calization threshold is also determined for the power-law
interaction with small exponents 0 < o < 1, which can
also be realized in cold ions [7, 10, 31].

The recent work [39, 40] suggests that the power-law
interaction always breaks down MBL at sufficiently large
system sizes, because of chaotic spots; however, the crit-
ical disordering is expected to increase logarithmically
with the system size [39, 41, 42]. This dependence is
weaker than the power-law scaling; therefore, the predic-
tions of the present work for the localization threshold in
the case of a < 3d/2 should remain valid.

The paper is organized as following. In Sec. II, we
derive the scaling of the critical disordering with the sys-
tem size up to the accuracy of a power law and logarith-
mic factors, based on the consideration of the delocal-
ization induced by resonant spin quartets. The obtained
dependence is then used to suggest rescaling of the inter-
action constant leading to the finite localization thresh-
old within the thermodynamic limit of infinite number of
spins. We show that this threshold is stable with respect
to the higher order resonance (sextets, etc.) and chaotic
spots [40].

In Sec. III we compare numerical results for Hamming
distance and level statistics obtained by means of exact
diagonalization with some experimental data [7] and our
analytical predictions, using the latter comparison to de-
termine numerical factors in the definition of the critical
disordering. We also obtain a universal expression for the
transition width, oy, justifying it both numerically and
analytically.

We summarize our results in Sec. IV and make a pre-
diction for the Hamming distance in a system of N=50
spins with the power-law interaction exponent a = 0.5.
This prediction can be directly compared to the Ham-
ming distance measurements like in Ref. [7].

Appendices A and B include detailed derivations of the
localization threshold due to interacting spin pairs and
spin quartet transition amplitudes. In appendix C, a
detailed description of numerical fitting is provided. Ap-
pendix D covers differences in averaging over all states, as
done for Hamming distances, and over near zero energy
states, as done for the level statistics.

II. DELOCALIZATION DUE TO
INTERACTING QUARTETS.

In the recent paper [37], the many-body localization
transition has been considered within the X-Y model
with 1/r% interaction. The resonances in the pairs of in-
teracting spins leading to the delocalization has been ex-
amined as a potential source of delocalization, while the
longitudinal interaction between them has been gener-
ated in the third order of perturbation theory. This con-
sideration has lead to the dimensional constraint for lo-
calization requiring o > 3d/2, which converts to o > 3/2
in the case of interest for d = 1. Here and in the rest
of the paper we consider one-dimensional systems except
for the few cases targeting the generalization to higher
dimensions.

The scaling of localization threshold has been obtained

a(3—2a)
in the form W, o< N 2@+D .| Here, we demonstrate that

the interacting resonant transitions of spin quartets lead
to more efficient delocalization and lower critical disor-
dering, W.. The consideration is also generalized to the
practically significant case of the smaller power law inter-
action exponents 0 < a < 1, where delocalization is also
determined by interacting resonances in spin quartets, as
can be seen by comparing the criteria for spin quartets
(derived below) with the criteria for spin pairs (derived
in Appendix A).

A. General definition of the localization threshold.

We use the definition of delocalization transition of
Ref. [43] for the system of N spins, coupled by the long-
range interaction, in the way that the interaction at the
maximum distance is the most significant, and the most
relevant multi-spin resonances are associated with spins
separated by the system size. We will see below that this
is the case for interacting spin quartets in the problem
given by Eq. (1), in the regime of interest of o < 3/2
(3d/2 in a d-dimensional system).

A collective transition of k spins (k = 2 for pairs and
k = 4 for quartets of spins) can be characterized by the
transition amplitude V.. The probability of resonance
for a single k-spin transition can be expressed as V. /W.
There are approximately N, ~ N*/k! ways to create k-
spin excitations, so the total number of resonances can
be estimated as N,V./W, averaged over possible real-
ization of the k-spin transition. According to Ref. [43],
it is sufficient to have few resonances per system, if the
diagonal interaction between them, U, exceeds the typ-
ical resonant coupling strength, V.. Then the delocal-
ization transition can be described using the similarity
of the present problem with the localization problem on
the Bethe lattice, with resonant coupling Vi, disordering
W, and coordination number N, [44]. The transition is



detemined as [43]

Vi, Us
N,—In— =~ 1. 2

Since amplitudes V; for different spin transitions can fluc-
tuate, one can define the typical amplitude V, as the av-
erage absolute value of contributing amplitudes similarly
to Refs. [43, 44].

This criterion is used below to describe the delocal-
ization due to quartet spin transitions. Considering all
quartets of spins, characterized by transition amplitudes
Viimn, defined below in Sec. IIB, one can rewrite the
criterion of Eq. (2) in the form

/ U*
2= > ([Vitmal) In <m> ~1, (3)

klmn

where the prime means that the sum is only over quar-
tets with Viimn < Uk, and the diagonal interaction of
resonances, U, estimated in Sec. II C. We do not target
analytically the unknown numerical constant n ~ 1 in
Eq. (2), because there are correlations in various con-
tributions to the transition amplitude, Vi, which are
too difficult for accurate analytical calculations; instead,
we determine that constant using the numerical study of
the same problem in Sec. III.

B. Definition of quartets and their coupling
amplitudes

Resonances created by interacting clusters of four spins
should be considered after the resonances of spin pairs,
since only transitions of even numbers of spins are per-
mitted in the system described by Eq. (1). Flipping a
spin quartet from an all up to an all down state can be
done by flipping each pair of spins independently in a
second order process. That process, however, has zero
amplitude in the resonant regime ¢; + 2 + ¢3 + ¢4 =0
(see Appendix B), due to the destructive interference of
processes like

[P1) = A1) = L) (4)

For the sake of simplicity, we consider the case of zero
external constant field, B = 0, in the Hamiltonian (1).
Since the critical disorder approaches infinity with in-
creasing the system size, the results in that limit should
not be sensitive to the finite field B that is consistent
even with our finite size numerical studies in Sec. III.

The perturbation theory can be used to estimate spin-
quartet transition amplitudes, Viymny, if there are no res-
onant spin pairs within the quartet. Resonances can be
excluded by setting a constraint, |¢; — ¢;| > J;;, that
is justified with logarithmic accuracy, similarly to Refs.
[43-45]. The transition amplitude, Viimn, comprises four
distinguishable contributions,

Vistmn = Ak, imn + Al kmn + Am kin + An kim, (5)

where each contribution corresponds to a process led by
one of four spins, flipping three times with other spins,
as illustrated below for the representative process led by
the first spin:

) = ) = [T = L. ()

Each individual contribution can be expressed as (see
Appendix B)

B Ikt Jkm Jkn B
At = 2 G o) (ot o)

_ 4¢1 I Jiom T T
(¢l + ¢m)(¢l + (bn)((bm + ¢n),

where the sum is taken over all six permutations of the
indexes {Imn}.

All four contributions are distinguishable, since they
are proportional to the product of three different inter-
actions (e.g.  Agimn X JuiJgmJkn), and they cannot
exactly compensate each other, except for the case of
a = 0, that is beyond the scope of the present paper.
The quartet transition amplitude can also be calculated
using Schrieffer-Wolff transformation, as in Ref. [37], and
it leads to the same result.

This amplitude is very sensitive to the random ener-
gies, ¢, so it is convenient to replace it with the char-
acteristic acting value. The acting value (|Viimn|) can
be determined as the average absolute value of the am-
plitude in Eq. (3), similarly to that in the localization
problem in the Bethe lattice [44]. The logarithmic di-
vergence at small denominators should be cut off at the
critical energy, |¢; + ¢m| ~ Jim, where the level repul-
sion becomes significant due to resonances. The average
amplitude, (|Viimnl), can then be expressed as

Wd4¢

<|Vklmn|> = W |Vklmn| . (8)

Average absolute value of the sum can, with the accu-
racy to the constant factor, be approximately replaced
with the sum of absolute values of averages of each con-
tribution leading to the sum over four contributing pro-
cesses, lead by different spins k, [, m, n respectively. The
average amplitude can be represented as

JrtJem Jkn w
<|Vklmn|>~ Z T [ln

For the quartet made of spins separated by the interme-
diate distance 1 < R < N one can estimate the average
transition amplitude as

J3 R«
V. -2 Y0 2
w I/[/ 3a 1n (—JO W> . (10)



In the case of small «, the destructive interference leads
to the reduction of the quartet transition amplitude, up
to its complete vanishing for v = 0. This destructive in-
terference may be responsible for the factor « in the nu-
merical estimate of the critical disordering, as described
in Sec. III.

C. Diagonal interaction

The localization-delocalization transition is expected
to happen when there are more than one spin-flipping
resonances [34, 37, 46]; however, the mere existence of
local resonances is not enough to establish chaotic be-
havior, because it is important that the diagonal cou-
pling between separate resonances is strong compared to
flipping amplitudes. In Ref. [37], the diagonal interac-
tion of spins has been estimated in the third order as an
induced diagonal interaction, assisted by an additional
spin k. Following the same logic for the Hamiltonian (1),

one gets the diagonal corrections in the form U -(3)afaz-

iJ J?
where the interaction U (3)

py is defined as

U® _y Gip;JijJinJjk 7 1
LAY (07 — o}) (65 — ¢7) ()

k

which is given in the absence of the longitudinal field B in
Eq. (1), and generalization to the finite B is straightfor-
ward. Since critical disordering W, increases limitlessly
with the system size, one can ignore the field effect on
statistics of interactions U, described below.

In case of a < 1, this sum is determined by long dis-
tances r;r ~ 7T ~ 7y ~ N, and by short distances
rik ~ 1 or rj;, ~ 1, in the case of @ > 1. The estimate
for U, [37, 47] can then be written as

o {ng—2N1—3a, a<l1,

12
JEWTAN"2 o> 1. (12)

The importance of the induced diagonal interaction
and its influence on delocalized dynamics has been
demonstrated not only for spin systems, but also for
localization-chaos transition in the Fermi-Pasta-Ulam
problem for vibrational dynamics in atomic chains [48].

D. Localization threshold

The localization threshold is reached when the condi-
tion in Eq. (2) is satisfied, meaning that the interac-
tion energy between resonances exceeds their amplitude,
U, > Vi, and the number of resonances approaches unity
within logarithmic accuracy. Depending on the case, the
first or the second requirement is stronger and defines
the threshold. Due to the different optimum choice of
inter-spin distances in interacting quartets, the regimes
of longer @ < 1 or shorter a > 1 range interactions are
considered separately. We start our consideration with
the most long-range case of 0 < o < 1.

1. Caseof0<a<1

For the case of o < 1, the localization threshold can be
determined by mapping the transverse field problem onto
the Bethe lattice [43] within the self-consistent theory of
localization or the forward approximation. The critical
disordering is determined from Eq. (3), where the largest
contribution is made by quartets of spins at distances
R ~ N from each other. Setting R ~ N in Eq. (10), and
neglecting small corrections to the logarithmic factor, we
get

V(N)=JSW 2N=3*1n? N. (13)

The quartet resonance amplitude, V(N), is clearly
smaller than the characteristic diagonal interaction, U, ~
JEW—2N1=32 that allows us to use Egs. (2) and (3) to
estimate the localization threshold. Setting In(U,/V) ~
InN and N, ~ N*, one can express the localization
threshold as

W. o JoN*/3~“In N. (14)

2. Case ofa>1

If @ > 1, the density of resonant quartets of the typi-
cal size R < N scales as R*1~) which means that it in-
creases as the size of the quartet decreases. Consequently,
the delocalization can be associated with quartets of the
size R < N, which are characterized by the transition
amplitude V(R) ~ J3W 2R3 In*(N) (cf. Eq. (10)).
These quartets lead to delocalization when few of them
are formed if their amplitude V(R) is less or equal to
their longitudinal interaction U, ~ JSW 2N 2% as de-
fined in Eq. (12). Setting U, ~ V(R) and the number of
quartets to unity, we obtain the delocalization threshold
in the form

W, o JoN'=2¢/31n?/3 N, (15)

In this case, the logarithmic dependence is weaker, than
in the case of a < 1, because U, ~ V, so that the loga-
rithmic factor in Eq. (2) is of order of unity. The result
is applicable only for av < 3/2 where the critical disorder-
ing increases with the system size. The interaction power
law exponent constraint o < 3/2 agrees with Ref. [43],
where interacting resonances of spin pairs have been con-
sidered. The scaling exponent of the critical disordering
is different from that in Ref. [43] by the factor 2(1+«)/3.
Below, we argue that the consideration of more compli-
cated spin excitations (sextets or more) does not modify
this criterion.

8. Multi-spin clusters

The resonant quartets, rather than the resonant pairs,
determine the localization transition in the problem un-
der consideration, because the longitudinal interaction of



pairs is insufficiently strong to suppress the destructive
interference of their transitions (cf. Ref. [43]); on the
other hand, the more complicated spin excitations pos-
sess the smaller probability of resonance, and, therefore,
we do not expect them to modify the critical disordering
estimated for quartets. Indeed, for m-spin resonances,
one can estimate their amplitude using (n — 1)%* order
of perturbation theory (e. g. simultaneous transitions of
the first spin with n — 1 other spins) as

Vp ~ N—on=b) gn=l jppn=2, (16)

We consider here only the case o < 1, where all charac-
teristic distances are of order of N; the case @ > 1 can
be treated similarly. The logarithmic factors are ignored
for the sake of simplicity. The number of resonances can
be estimated by multiplying the probability of individual
resonances, V,, /W, by the number of n-spin combina-
tions, N", which yields

Nyes(n) ~ NO=-DH st pypn=t - (17)

Setting N,..s ~ 1 we get the critical disordering estimate
as

W, ~ JoN™ (n=D=a (18)

which obviously has a maximum at n = 4 corresponding
to quartets (remember that n must be even). At that
maximum where W, ~ JyN*/3= the number of higher
order resonances scales as Ny.cs(n) ~ Nyes (4)N‘2("_4)/3
so they can be neglected compared to quartets. There-
fore, we believe that the localization breakdown is deter-
mined by quartets, which is confirmed by the numerical
results reported in Sec. III.

4. Summary of analytic predictions

Both results for the localization threshold obtained in
two different regimes of large (Sec. IID 2) and small (Sec.
IID 1) power law exponent « can be resumed as following

— {J0N4/3—a1nN, 0<a<l,

19
1<o¢<%, (19)

JON17204/3 1n2/3 N,

where ¢, is a constant numerical factor determined be-
low in Sec. IIT by fitting the numerical results with our
analytical expression.

The result in Eq. (19) cannot be extended to the case
of @ = 3/2, since the dependence W, I N relies
on the factor In?/?(W./.J), while W, does not show the
power-law dependence of N at a = 3/2; therefore, we
don’t have any reasonable prediction for the localization
threshold scaling in this crossover regime. The numerical
analysis of Sec. III is also inconclusive in this case.

The obtained scalings of the critical disordering that
correspond to the localization threshold (19) should be
observable in the dependencies of the level statistics and

spin-spin correlation functions. These parameters will be
studied numerically in Sec. III using exact diagonaliza-
tion of the problem in Eq. (1), and it will be shown that
the numerical findings are consistent with the analytic
predictions of the present section.

E. Finite W, in the thermodynamic limit

Since the critical disordering, W, in Eq. (19) becomes
infinite as the number of spins, N, approaches infinity,
there is no localization transition in the thermodynamic
limit for the system described by Eq. (1). Following the
spin glass model [49] and Rosenzweig-Porter random ma-
trix model [50, 51], one can rescale the spin-spin coupling
strength in the Hamiltonian Eq. (1) as (cf. Eq. (19) in
the large N limit)

- Jo
Jo— — 20 o —1/34+¢(1—a),
0 caanngN K / 3 )
1, 0<a<l
= ’ - 20
¢ {%, l<a<3 (20)

After this rescaling the critical disordering approaches
the size independent limit W, = Jy, while the transverse
interaction becomes too weak to enter any thermody-
namic parameter, yet it is sufficient to bring the system
to the chaotic state.

Comparing the mentioned rescaling to the Katz pre-
scription as in Refs [29, 52], it can be noticed that the
latter is not strong enough to make the critical disorder-
ing size independent in the limit of large N. A weak size
dependence of critical disordering, W, o N'/3, remains
after applying Katz prescription. Ref. [29] illustrates a
significant effect of Katz prescription on delocalization
in the case of long-range diagonal interaction; yet, sim-
ilarly to the previous consideration we expect delocal-
ization even in that regime with the scaling preliminary
estimated as W, oc N'/2. The more accurate analysis of
that system should be performed separately.

A system described by Eq. (1) with the interaction
constant, Jo, redefined according to Eq. (20) is stable
with respect to the formation of chaotic spots [39, 40]
of several neighboring spins with reduced random fields,
|pi| ~ Jo < W ~ Jy. Since chaotic spots are formed by
rare fluctuations of random energy making several ad-
jacent spins chaotic, the random energy for such a spot
should be comparable to the coupling strength decreas-
ing as N~ ", where n = 1/3 + £(1 — a) (see Eq. (20)).
Logarithmic dependencies can be omitted here as less
significant compared to the power laws.

The probability to create a chaotic spot of k spins
scales as P.(k) ~ N~ with the maximum number of
spins limited by the constraint k < 1/n. Chaotic spots
containing more spins can be neglected since the total
probability to form such spots, N P.(k), vanishes in the
thermodynamic limit of infinite N. Surrounding spins
that can exchange energy with the chaotic spot of k spins



should have random fields, ¢;, not exceeding the maxi-
mum spot energy VAN 7 < 1. The distance to clos-
est spin satisfying this condition is r ~ N7/ Vk and the
interaction with it can be estimated as jor_o‘2_k/2 ~
N-et+1)9=k/2 cf Ref. [40]. To add an external spin
to the chaotic spot this interaction should exceed the
level splitting within the spot, which can be estimated as
§ ~ N="27F_ Since the maximum number of spins in the
chaotic spot is finite, the spot-spin resonance condition,
2k/2 > N7 cannot be satisfied in the thermodynamic
limit of infinite N.

Since the rare fluctuations associated with ergodic
spots are not relevant in our regime of interest of violated
dimensional constraint (o < 3/2) this should reduce fi-
nite size effects compared to the regime of a short-range
interaction where such fluctuations are significant. Con-
sequently, the predicted scaling of critical disordering can
be studied at accessible system sizes N ~ 10 — 16 and
it is consistent with our numerical consideration of Sec.
IIT below. The short-range interaction regime is more
difficult to study because of its sensitivity to rare fluc-
tuations. Thus two regimes seem to belong to different
universality classes.

F. Transition width

Transitions at finite sizes can be characterized by size
dependent width, ow (N), of the critical region where
both phases coexist. Within the vicinity of the transition
|W — W,.| ~ ow, it is natural to expect that system pa-
rameters behave as a universal function of (W —W,)/ow
where oy ~ W./N7 [53-55]. We will employ this anzatz
in Sec. III to analyze the numerical data for the MBL
transition in our system of interest. The estimates for
the minimum transition width given below turn out to
fit the obtained numerical results for Hamming distance
and level statistics reasonably well.

Given two systems with maximum random energies W
and W — W, one can estimate the difference §W to have
them statistically non-distinguishable. The probability
for each spin random potential to stay within the range
—(W = 6W)/2 < ¢y < (W —W)/2is p(W) =1 — ¥
The probability of all random potentials to fall into the
same range can then be found as

ow N

which means that two realizations of random potentials
differing by less than W/N are indistinguishable. The
minimum width estimate oy = W./N coincides with
the numerical estimate of the actual width in Sec. III.

G. Transition at small W for B =0

As it was noticed in the introduction, for B = 0 there is
also a localization transition at W < Jy; this transition

can be described following Ref. [56] and the localization
takes place at W < W;, defined as:

JoN~(a+1/2)
J()N_l
JONf(Qfa)

Wi~ (22)

= o= O
IN A A
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Since this transition is already characterized in Ref. [56],
we do not focus on that regime. In the case of a finite
field B in Eq. (1), considered in the experiment [7], this
transition does not take place.

IIT. NUMERICAL STUDIES

The localization transition in the system described by
Eq. (1) is investigated using Hamming distance [7, 52, 57]
and level statistics, expressed in terms of the average
minimum ratio of adjacent energy differences [3]. The
normalized Hamming distance between the initial and fi-
nal states can be directly measured experimentally. The
Hamming distance between two Ising states is measured
as the number of flips required to change one state into
the other. The normalized Hamming distance is given as
a ratio of the number of spin flips to the total number
of spins. At certain time, ¢, and all spins in initial states
determined by the sequence ¢7(0), the normalized Ham-
ming distance can be expressed using the initial state

10) as

1

DIt) = 7 3 (val o7 (0) = ()

07 (0) [tho) . (23)

In the fully delocalized regime in the long time limit, the
normalized Hamming distance approaches its maximum
1/2, due to thermalization, while in the fully localized
state it remains zero.

The level statistics is represented by the averaged ratio
of minimum to maximum differences between successive
eigenenergies of the system

o-(Gmaasy), o

The localized regime obeys Poisson statistics for A,,, and
is characterized by (r) ~ 0.3863, while the delocalized
regime is known to obey the Wigner-Dyson statistics with
(r) & 0.5307 [3]. To calculate the level statistics numeri-
cally one has to find eigenvalues of the system Hamilto-
nian and average them over different disorder realization.
For the Hamming distance, the eigenstates of the system
also need to be found.

Hamiltonian matrix diagonalizations are performed us-
ing MATLAB software [58]. Eigenenergies and eigen-
states of the Hamiltonian (1) were found through exact
diagonalization, and averaged over 2000 realizations of
random potentials for every disorder.

Hamming distance and level statistics were studied in
the range of 8 < N < 16 with a transverse field, B.



The results below are given for the case of B = 4J, (as
in Ref. [7]) and power-law interaction exponents o =
0.25, 0.5, 0.85, 1, 1.15, 1.25, and 1.5. We also studied the
case of B = 0, for which the results were quite similar,
except for the domain around W = 0 described by Eq.
(22). Since this work is focused on the transition at large
W, we present only the results for B = 4Jy. For all
calculations, the coupling constant, .Jy, was set to unity.

Numerical results are to be compared with the theory
predictions expressed by Eq. (19). To account for the
discrete effects at small sizes, the power-law dependence
of N in Eq. (19), expressed in the form N" with n =
1/3+&(1—a), is substituted with the finite sum, similarly
to Ref. [34, 37], as

N
N7
INg) =S R (25)
R=4 K

where the minimum distance R = 4 is chosen as a min-
imum quartet size. The critical disordering can then be
given in the form consistent with Eq. (19) as

W. = canl(N,n)In* N (26)

The numerical optimization of data collapses for Ham-
ming distance and level statistics described below leads
to the accurate definition of the proportionality factors,
Ca, that can be expressed as

1.37a
o~ 33-a 0<a<l,
o o 3
a3 1<a<3

(27)

Hamming distance provides better information about
delocalization transition, because it is less sensitive to the
symmetry and integrability of the problem in the limit
of small disordering, showing the most pure scaling for
the transition at large W; therefore, we begin our con-
sideration with the Hamming distance. The level statis-
tics is also very important, since the observation of the
Wigner-Dyson statistics gives the best, basis independent
evidence for the chaotic behavior; therefore, we analyze
level statistics in Sec. IIIB, and demonstrate that the
obtained behaviors are consistent with those found using
the Hamming distances.

It is noticeable that the data for level statistics are
taken from only states with nearly zero energy, while
the Hamming distance is calculated using all eigenstates.
However we expect that this will lead to the minor mod-
ification of the transition estimate since the error in the
definition of resonance probabilitiy being averaged over
all states or states with nearly zero energy is of order of
1/N (see the derivation in Appendix D). Consequently
the associated error in the definition of the critical disor-
dering should be of order of W, /N that is comparable to
the transition width (see Sec. IIT A 3) and therefore can
be neglected.

A. Hamming distance

The correlation functions of spins determine the Ham-
ming distance between initial spin state, chosen as anti-
ferromagnetic Néel state [7], and the state at time ¢. This
distance is defined in Eq. (23), which can be rewritten
in terms of the system eigenstate basis as

(ol 1)* o7, [PeHEn=Em)/R - (28)

nm

where summation goes over all eigenstates |n) and |m),
having energies E,, and F,,, correspondingly. In the limit
t — oo the oscillating terms with n # m can be neglected
and the last expression takes the form:

1 1
D(o0) = 5 = 50 O ol w0, P (29)

Below, we start with comparison of numerical results
with experimental observations in Ref. [7], then perform
data rescaling to analyze the dependence of localization
threshold and transition width on the system size, and
then consider the dependence of critical disordering on
the power-law interaction exponent «.

1. Numerical results for infinite time

Comparison to the experimental results [7] at large fi-
nite time shows that numerical results for the Hamming
distance give a slightly larger value compared to the ex-
perimental data. As it has been mentioned above, the

0.5
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FIG. 1. The normalized Hamming distance according to Eq.
(23) (red line) and extracted from the experiment [7] for finite
time ¢ > 5/Jo (blue line) for o = 1.15 and N = 10.

normalized Hamming distance grows with time, due to
the thermalization process to reach 1/2 for the fully de-
localized regime at infinite time. Since the experimen-
tal data provided are not at infinite time, the measured



Hamming distance is expected to be a bit less than the
numerically calculated, which can be observed on the
Fig. 1.

2. Scaling of transition width with the system size

We analyzed the transition width using the pyfssa
Python library [55] developed for the analysis of the criti-
cal domains. Since this library is applicable only to tran-
sitions with a transition point converging within the ther-
modynamic limit, we rescaled random potentials for each
data set containing N spins as W — W/(I(N,n)In® N)
following Egs. (20), (26). The scaling exponents, v, of
the transition widths ow (N) ~ W./N7 have been eval-
uated as shown in Fig. 2 for different power-law interac-
tions, characterized by exponent c. The result v ~ 1is in
agreement with the estimate for the minimum transition
width given in Sec. ITF.

2 T T
—theory prediction
pyfssa optimization
1.5}
[l | S G B —

0.5

0 .

0 0.5 1 1.5

[0}

FIG. 2. Scaling exponent for transition width as a function of
the power-law interaction exponent «. Both exponents and
error bars are obtained using the pyfssa library [55].

Using the same library, we extracted the constant
factor d, determining the critical disorder as W, =
doI(N,n)In® N (cf. Eq. (20)). It is shown in Fig. 3
together with the alternative estimate of the same con-
stant obtained from the calculations of the minimum root
mean squared (rms) of mutual logarithmic deviations be-
tween rescaled graphs (see Ref. [34] and Appendix C for
detail).

The linear fit for the constant factor d, yields d, ~ «
for a <1 and d, =~ 1.37«a for 1 < a < 1.5. Combining
this result with Eq. (26), we end up with Eq. (27) intro-
ducing the constant, ¢, in the definition of the localiza-
tion threshold in the large size limit where the power-law
functions can be used instead of discrete sums. Below, we
demonstrate data collapses for Hamming distances (Sec.
IITA 2) and level statistics (Sec. IIIB) using our esti-
mates for critical disordering, Eq. (26), and transition
width.

25 T T
—fitting line l
pyfssa optimization

2| O rms optimization

| /o
0.5
0 : :
0 0.5 1 1.5

FIG. 3. Estimate of numerical factors in the definition of the
critical disordering as a function of the power-law interaction
exponent and a linear fit for this dependence.

3. Collapse of rescaled data for Hamming distances

To analyze the data, we plot Hamming distances vs.
disordering rescaled as (W — W.)/ow, where the critical
disordering W, is given by (26) with ¢, as in Eq. (27)
and the transition width oy chosen as

ow — . (30)

There, rescaled graphs collapse onto one curve, as can
be seen on Figs. 4 to 7 for selected o = 0.25, 0.5, 1, and
1.25, respectively.

0.1 - :
-20 0 20 40 60 80

(W —=W.) Jow

FIG. 4. The normalized Hamming distance at infinite time
vs disordering rescaled as (W — W.)/ow (main plot) with
original data (inset) for 8 < N < 16 and a = 0.25.

The data scaling for the threshold a@ = 3/2 (Fig. 8)
is surprisingly consistent with Eq. (26), in spite of the
irrelevance of the derivation as explained after Eq. (26).
The observed logarithmic dependence can have different
origins, including, for instance, ergodic spots [40, 41];
this can be the reason for the special behavior of level
statistics in this case (see Fig. 14).
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FIG. 5. The normalized Hamming distance at infinite time
vs disordering rescaled as (W — W.)/ow (main plot) with
original data (inset) for 8 < N < 16 and a = 0.5.

30

~#=N=16

-20 0 20 40 60 80
(W W) Jow

FIG. 6. The normalized Hamming distance at infinite time
vs disordering rescaled as (W — W.)/ow (main plot) with
original data (inset) for 8 < N <16 and o = 1.

4. Scaling with the power-law exponent

As it is clear from Figs. 4 to 7, the fit of the critical
disordering by Eq. (26) gives a very good data collapse
for different power-law interaction exponents, c. Placing
all data for different numbers of spins, N, and interac-
tion exponents, «, onto one graph, it can be seen that
all data for 0.5 < a < 1.5 can be represented by a sin-
gle curve reasonably well (see Fig. 9). The deviations
for small o can be due to stronger correlations between
different interactions vanishing at o = 0. This similarity
supports the expectation of Sec. IIE that MBL transi-
tions at violated dimensional constraint are similar to the
localization transition in the Bethe lattice and, therefore,
they show similar behaviors.

a=125

20 30

-20 0 20 40 60 80
(W —=W.) Jow

FIG. 7. The normalized Hamming distance at infinite time
vs disordering rescaled as (W — W.)/ow (main plot) with
original data (inset) for 8 < N < 16 and a = 1.25.

-20 0 20 40 60 80
(W —=W,) Jow

FIG. 8. The normalized Hamming distance at infinite time
vs disordering rescaled as (W — W.)/ow (main plot) with
original data (inset) for 8 < N < 16 and o = 3/2.

B. Level statistics

The level statistics is calculated according to Eq. (24),
where averaging is done in a narrow (n ~ 100) range of
eigenstates, with energies around zero, which corresponds
to the infinite temperature. Generally speaking, since
there is no restriction in participating eigenstates when
the Hamming distance is calculated, the results of two
scalings don’t have to match.

1. Scaling with the system size

For the case of interest, B = 4.Jy, the level statistics
was rescaled following the same law, (W — W,.)/ow, and
keeping the coefficients found for the corresponding cases
of Hamming distance (Figs. 4 to 7). The fit is gets better
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FIG. 9. The normalized Hamming distance at infinite time

vs disordering rescaled as (W — W.)/ow (main plot) with
original data (inset) for 0.25 < a < 3/2 and N = 16.
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FIG. 10. The level statistics vs disordering rescaled as (W —

We.)/ow (main plot) with original data (inset) for 8 < N < 16
and o = 0.25.

as the system size increases, because of rapid narrowing
of the weak disorder domain, affected by symmetry at
W =0.

2. Scaling with power-law exponent

Rescaling for different o and fixed N also gives a nice
collapse, as seen on Fig. 15. It can also be noticed,
in contrast with Fig. 9, that the « = 3/2 curve went
significantly lower than others, but its tail still merged
with other curves, which is consistent with the discussion
after Eq. (19); therefore, the results for o = 3/2 seem to
be inconclusive, which confirms its threshold behavior.
For a < 1 there is a nearly perfect match.
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FIG. 11. The level statistics vs disordering rescaled as (W —

W.)/ow (main plot) with original data (inset) for 8 < N < 16
and o = 0.5.
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FIG. 12. The level statistics vs disordering rescaled as (W —

W.)/ow (main plot) with original data (inset) for 8 < N < 16
and o = 1.

IV. CONCLUSION

The proposed model of multispin resonances provides a
scaling of the critical disorder corresponding to the MBL
transition in the model of spins in random fields coupled
by transverse power law interaction 1/r®* for 0 < a <
3/2. It is shown that delocalization takes place due to
interacting resonant quartets. We predicted the critical
disordering W, to behave as

H3e JoN4/3=21n N, 0<a<l,
We = / a ¢ 1—2a/31,,2/3 3 (31)
mJON In N, l<a< bR
and the width of transition as
W,
ow ~ N (32)

The scaling of the critical disordering has been pre-
dicted considering the localization breakdown by inter-
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FIG. 13. The level statistics vs disordering rescaled as (W —

W.)/ow (main plot) with original data (inset) for 8 < N < 16
and o = 1.25.
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FIG. 14. The level statistics vs disordering rescaled as (W —

We.)/ow (main plot) with original data (inset) for 8 < N < 16
and o = 3/2.

acting resonant spin quartets, while the quantitative defi-
nitions of the critical disordering and the transition width
were obtained using the numerical analysis of the system
eigenstates for system sizes 8 < N < 16.

Based on the obtained scaling, we predict a behavior of
the Hamming distance for the system with N = 50, a =
1, and B = 4Jy described by Eq. (1) (Fig. 16). These
results call for comparison with the experiment that can
be performed for systems so large [10, 31] that they are
completely unaffordable for exact diagonalization.

In the limit @ — 0, the extension of results leads to a
full localization, consistent with preliminary studies.

There are no conclusive results for the threshold case
a = 3/2. The logarithmic scaling of the critical disorder-
ing, W,, gives a satisfactorily data collapse for Hamming
distances, while the behavior of level statistics is more
complicated. More sophisticated analytical and numeri-
cal studies are needed to describe MBL in this regime.
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FIG. 15. The level statistics vs disordering rescaled as (W —

We.)/ow (main plot) with original data (inset) for 0.25 < o <
3/2 and N = 16.
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w
FIG. 16. The theoretically predicted normalized Hamming

distance for N = 50 and @ = 1 comparing to the numerically
calculated for N = 8,12, 16.

The analytical expression for the critical disordering
can be generalized to higher dimensions, d > 1, as

N#/3=a/dln N <
WCZCM{JO nN, 0<a<d,

33
JoN1=20/30102B N d < < 3. (33)

The reasoning based on spin quartet resonances can be
applied for higher dimensions, d, leading to a dimensional
constraint « < 3d/2. The proportionality coefficients,
Ca,d, are not provided here due to the much harder nu-
merical studies of the problem through full diagonaliza-
tion for d > 1.

The rescaling of the interaction in a one-dimensional
system following Eq. (20) makes the critical disordering
converging in the thermodynamic limit. This transition
is stable with respect to ergodic spots as justified in Sec.
ITE. The same behavior can be expected in higher di-
mensions. The nature of this transition is different from



the delocalization transition for o > 3d/2 where ergodic
spots are crucially important [40].

Analytical predictions of MBL breakdown give a lower
estimate for the critical disordering at the localization
threshold, W,, in case of o < 3/2. In contrast to the
spin glass model studied in Ref. [43], the present prob-
lem does not direclty match the Bethe lattice localization
problem due to the presence of resonant pairs, therefore,
we cannot make a rigorous upper estimate for the criti-
cal disordering, W,. Nevertheless, we do not expect the
pairs to affect our results through forming the ergodic
spots [39, 40] as argued in Sec. ILE.

Although our numerical results support analytical ex-
pectations, the relative error of the numerical estimates
is large, especially for o > 1 (Figs. 2,3). Further numer-
ical and experimental verification of the obtained results
would help solidify our assertions.
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Appendix A: Spin pairs

The results for localization threshold due to spin pairs
were obtained only in the case of & > 1 [37]. Our re-
sults for spin quartets in the case of & < 1 cannot be
conclusive without understanding the resonance contri-
bution of spin pairs. We begin with the definition of
diagonal interaction at arbitrary distance between pairs.

This interaction can be written as Uo7 07, with

Jij JikJjk9i9;
Ui = J J i
= G-

(A1)

The typical interaction depends on the distance between
resonant pairs, R, and their energy difference, ¢; — ¢;.
The minimum distance, R, and the minimum energy dif-
ference, €, can be expressed in terms of the total number
of resonances, n, as R ~ N/n,, and € ~ W/n,. In the
practically significant case of n, ~ 1, one gets R ~ N
and € ~ W, so the interaction is defined by Eq. (12) as

Uij ~ JO3W_2N_2O‘, a>1;
Uij ~ JSWT2N1I39 o < 1. (A2)

If N > n, > 1, one can consider the contribution from
either closest distance R ~ N/n,, and typical energies
¢; — ¢; ~ W, or smallest energy difference ¢; — ¢; ~

W/n,., and typical distances R ~ N. These contributions
can be estimated as

3. 2a 3
Uyj ~ %, 1<a< ok small distances,
Jin2—e 3 :
Uij ~ 32k, 1<a< > small energies,
J3n3e—t 1 .
Uij ~ whnNsa=T> 3 < a < 1, small distances,
ng 1 .
Uij ~ yensa=T> 3 < a < 1, small energies,
Uij ~ et 0<a< > small distances,
U Jg’nr 1 .
ij ~ yeamasT, 0<a< 3 small energies. (A3)

The case of @ > 2/3 is determined by small distance
regime. For a > 1, considering pairs of the maximum
size N, we get n, = JoN?7*/W; then, setting U;; ~

a(3-2a)
Vij = Jo/N®, we obtain the criterion W ~ JyN 2@+D ",
identical to the earlier work [37]. Similar arguments in

5a—3a2—1

the case of 2/3 < o < 1 yield W ~ JyN  3a+1 . The
case of o < 2/3 is determined by the small energy regime;
the calculations for this regime yields W, ~ JoN'=2,
which is always smaller than the contribution of quartets.

In all regimes the delocalization is determined by quar-
tets, because the diagonal interaction of pairs is too weak
to disturb resonances [43].
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Appendix B: Spin quartets

We consider the case of B = 0, meaning that even
for the finite transverse field the threshold disordering
satisfies B <« W, so the resonance condition for a spin
quartet can be written as ¢1 + ¢2 + ¢3 + ¢4 = 0. The
contribution from spin quartets in the second order gives
zero, because only possible flips are independent like

T1) = A1) = D (B1)

and they interfere destructively with each other, resulting
in zero, as can be seen from the sum over all processes like
(here the first spin flips with all other in arbitrary order,
and three other processes like that should be added)

v _ J12J34 J13J24 J14J23 J34J12 +
* 1+ P2 pr+d3 P+ by P3+ @4
JogJ13 JazJ14 J12J34 J13J24
+ + = + +
G2+ ¢s P2+ P3  P1+ P2 b1+ @3
J1aJ23 J34J12 JosJ13 JozJ14

+ — — — =0. (B2

Pr+ds dr1+d2 b1+ ds P+ da (B2)
In the third order there is a non-zero contribution from
six processes led by first spins (similarly one can consider
18 more processes led by second, third and fourth spins):

[T = (L) = (1) = [ (B3)
[T = WD) = (1) = [ (B4)
[T = A1) = [T = [ (B5)
[TTT1) = A1) = D) — [ (B6)
[TT1) = N = [T = [ (B7)
[TT1) = A = (114D = ) (B8)

The resulting amplitude, Aj 234, of contributions from
processes led by the first spin can be evaluated as

J12J13J14 J13J12J14

b1+ ¢2) (P2 + b3) * (61 + ¢3) (2 + ¢3)+

J1aJ12J13 J13J14J12
" (¢1 + H4) (P2 + p2) " (¢1 + #3) (¢3 + <l54)jL

+ J12J14J13 J1aJ13J12 _
(61 + ¢2) (B2 + da)  (P1+ ¢4) (P2 + ¢3)
(202 + ¢3 + ¢4)
= J12J13J"
I + ) (d2 + 3) (02 + h4)
(203 + 2 + ¢4)
(1 + ¢3) (P2 + ¢3) (93 + ¢a)
(204 + P2 + ¢3)
+ JioJ13J =
BTG+ 0a) (D2 + 04) (03 + D4)
4 (p2 + ¢3 + ¢4)
= —JioJi13J .
I (g + ¢3) (d2 + ) (03 + ha)
This expression is used in the main text as Eq. (7).
The sum of all contributions, Viasa = A1 234 + A2 341 +
Az 412 + A4.123, is not zero due to different products of
coupling constants in each contribution, except for the
case of all equal amplitudes (« = 0), where the full com-
pensation takes place.

At234 = (

+ Ji2J13J14 +

(B9)



Appendix C: Root mean square optimization of the
fitting parameters

Root mean square optimization has been performed
as following. Each data rescaling can be determined by
three independent parameters including two exponents
n and v and a proportionality constant ¢ estimating lo-
calization threshold and transition width as W.(N) =
enI(N,n)In® N, Eq. (26), and ow (N) = W.(N)/N7.
We redefine each data set of disorderings and associ-
ated Hamming distances (Wy, Dy) as (wn, Dy ), where
wy = (W — W.)/ow, and calculate the match between
different data sets as following: 10 representative Ham-
ming distances D; = 0.11540.03-(i—1) (i = 1,2...10) are
selected for which the corresponding wy; values are found
using the MATLAB interpolation function “interpl”; the
logarithmic overlap between all sets is calculated as

10 16

Ocn) =Y. 3 Lol

. C1

3 jos (Wi + wka)® v
Minimization of this expression with respect to the con-
stant, ¢, at fixed exponents, 7, defined according to Eq.
(26) and v = 1 was used to obtain rms fit data in Fig. 3
while minimization of it at fixed constant ¢ and exponent
v =1 leads to the estimate of the critical disordering ex-
ponent, 7, consistent with our theoretical predictions in
Eq. (20) which can be seen in Fig. 17.
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FIG. 17. Optimization results for n (blue circles) vs the the-
oretical predictions, n = 1/3 + £(1 — a) (red line, Eq. (26)).

Appendix D: Average resonance probability

We evaluate two-spin resonance probability using two
different ways to average over eigenstates. Averaging
over all states is relevant for the calculation of the Ham-
ming distance while averaging over the states around zero
energy is used for the calculation of level statistics.
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Since near the transition point disordering scales as a
power of the system size, one can ignore spin-spin interac-
tion and perform averaging using only random potential
part of the Hamiltonian Eq. (1) given by > . ¢;07 /2.
The resonance probability for two spins ¢ and j can be
estimated as the probability density of zero transition
energy given by Pres = ((0(¢io; + ¢;0;)) where ¢ is
the proportionality coefficient. Averaging over all states
runs over all possible spin and random potential real-
izations. It can be then expressed using the identity
§(t) = [T e'dx/(2) as

o0

’I"ES all = 5~ / dx

(D1) over spins and disorder realiza-

¢101+¢]UJ)>. (D1)

Averaging in Eq.
tions yields

res all = 5~ /

Averaging over the states with zero energy can be per-
formed introducing an additional J-function setting the
total energy to zero as

4sm 4sin®(Wz/2) ¢

S = (D2)

¢ fffo dydzx <ei1(¢i‘7i+¢j01)+iy >N drok
2 ffooo dy <ez‘yzg ¢wk/2>

Pres,O - \D3)

Averaging both equations over disordering and perform-
ing integration over z as in Eq. (D2), we get

iffooo dy (4sin%z/4))N*2

Pres =
0 w (4sin(Wz/4))N
Wax

(D4)

The final ratio of two probabilities can be evaluated as

N-—-2
0 4sin(Wy/4)
Pres,O o I*OO dy ( Wy ) D5
Presall Asin(W N ' (D5)
res,a ( sin y/4))
Wy

Assuming N >> 1 one can expand (sin(y)/y)" ~ e~ Nv*/6
in the denominator. Applying a similar approximation to

the numerator one gets

Pres,O ~ N
~ N_2

D6
Pres,all ( )

As we verified numerically, Eq. (D6) is valid for N = 10
with only 0.5% deviation.

Eq. (D6) predicts that the difference between
the two estimates of resonance probabilities (Preso —
Presail)/Pres,o is of order of 1/N. This result is used
in Sec. III to consider the difference between Hamming
distance and level statistics analysis.



