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Abstract

By recasting the definition of the dielectric constants in terms of currents, as well as, using

atomistic simulations and analytical derivations, we show that the dielectric permittivity can be

negative at an ultra-short timescale, under perfect screening conditions and for very different

materials and switching mechanisms, in line with recent experiments and modelings. In particular,

we found that this effect can be due to a previously overlooked phenomenon of post-switching

polarization oscillations. We also derived practical analytical formulae that can be experimentally

checked.
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I. INTRODUCTION

It was long thought, due to basic thermodynamic laws, that capacitance (which is pro-

portional to the dielectric constant) ought to be positive (see probably first discussion of

this point in Ref. [1]). Recently, it was shown experimentally and by modeling polarization

switching with the help of a two-well model2,3, that the “transient” capacitance during po-

larization switching in a ferroelectric could momentarily become negative due to negative

curvature of the energy of the two-well model near the maximum between the wells. Ref-

erence [4] extended this explanation proposing that passing the negative curvature portion

generates a strong depolarizing field. It is interesting that this conclusion sounds similar to

the discovery that negative capacitance can exist even in statics, in a ferroelectric having

dead layers5,6 or in heterostructures of ferroelectrics with dielectrics7–11, due to depolariz-

ing field. Moreover, Ref. [12] extended the homogeneous-switching approach to the local

180◦ domain’s switching model in a system with some distribution of the parameters of the

two-well systems over the domains. The transient negative capacitance in lead zirconium

titanate (PZT) was then shown to originate from reverse domain nucleation and growth.

The authors claimed that the capacitance becomes positive again after domain coalescence.

Here, we decided to perform calculations of the evolution of the transient negative dielec-

tric permittivity (TNDP) during polarization switching in ferroelectrics by using large-scale

Molecular Dynamics (MD) approach altogether with first-principles-based Hamiltonians de-

scribing interatomic interactions. We demonstrate that this effect can be an internal (ma-

terial) phenomenon (that is, it does not have to be due to external resistors, capacitors or

inductions) and exists (i) irrespective of the switching mechanism (i.e., homogeneous and

different types of inhomogeneous ones) in different ferroelectric materials; and (ii) can be

traced back to the existence of specific non-equilibrium currents. The structure of the paper

is as follows. In Sec. II, we provide definitions of quantities used in our study. In Sec.

III, we discuss properties of the materials selected for calculations. In Sec. IV, we briefly

describe the method of the calculation employed. In Sec. V we discuss the results of our

calculations. In Sec. VI, we suggest how to verify our predictions experimentally. Finally,

Sec. VII formulates our conclusions.
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II. DEFINITIONS VALID FOR NON-EQUILIBRIUM

Let us start by recalling that the thermodynamic properties and response functions of

ferroelectrics depend on the Hamiltonian H = H0 − E0

∑

i pi describing the energy terms

at microscopic (atomic) level. Here E0 is a homogeneous field acting on (and thus interact-

ing with) each local dipole, as commonly done for theoretical descriptions of polarization

switching in ferroelectrics13, and pi is an electric dipole at site i. The Hamiltonian we

employ describes interactions between electric dipoles and between these dipoles and other

degrees of freedom such as strain, magnetic moments, oxygen octahedra tilting, etc. We

consider here an infinite periodic system having ideal screening conditions, because of peri-

odic boundary conditions. In Molecular Dynamics (MD) method, each individual dipole pi

evolves according to classical (Newtonian) equations of motion14–16,

mip̈i = −
∂H0

∂pi

+E0, (1)

with mi being a mass associated with a dipole pi (an analog of a “displacement” in New-

tonian mechanics), and p̈i denotes the second time derivative of pi(t) (“accelerations”).

“Velocities”, ṗ, in this approach, can be found from the general kinetic equations and initial

conditions. “Viscosity” appears naturally, because of the potential barriers in the dynamical

path of the system13.

The term ei =
(

∂H0

∂pi

)

can be viewed as an on-site electric field. Let us now introduce a

vector of electric field, E, as the average, over the sites “i”, of these on-site fields: E = 〈ei〉.

Note that, at equilibrium, the instant value of the electric field in the ferroelectric coincides

with the homogeneous field E0 (Ref. [7]), that is E = E0, because, at equilibrium, the

average of the “generalized force” (the right-hand side of Eq. (1), see Ref. [14]) over i

must vanish. However, these two fields, E and E0, can be different away from equilibrium,

because in the transient state the average “generalized force” does not have to be zero. The

measure of this difference is thus the non-equilibrium field Eneq = E −E0. This is one of

the most important ideas of the present study. Note that E = E0+Eneq is the field defining

the instant voltage drop on the ferroelectric, namely VF = tFE (Ref. [3]), where tF is the

thickness of the ferroelectric capacitor and E is the instant electric field across the capacitor.

The instant value of the electric displacement vector can be now defined as D = P +ε0E,

where ε0 is the vacuum permittivity and P the instant (not necessarily equilibrium) value

3



of the average volume density of the dipole moments of the system.

Further on, one may define the instant value of the relative dielectric permittivity in a

non-equilibrium state as

ε =
dD

ε0dE
, (2)

For the sake of simplicity we consider the changes of the electric displacement and electric

field as projections on the direction of field E0 applied to the sample to switch polarization.

Interestingly, Eq. (2) depends not only on the change of the user-controlled field E0, but

also on the change of the instant non-equilibrium fields E and Eneq. In particular, during

out-of-equilibrium switching of the polarization, the instant electric field can spontaneously

change due to the destabilization or/and excitation of optical phonons or relaxators, even

under a constant electric field E0, until the system reaches its new equilibrium position.

Importantly, ε can be recast in terms of the current induced by the electric displacement,

Ḋ, and of the current associated with the electric field, ε0Ė:

ε =
Ḋ

ε0Ė
, (3)

This formula reduces the measurement of the momentary dielectric constant to the mea-

surement of momentary currents, as a function of time. We reckon from Equation (3) that

TNDP is achieved when one of the two following criteria is met:

Ė < 0, Ḋ > 0; or equivalentlyṖ > −ε0Ė and Ė < 0 (4)

Ė > 0, Ḋ < 0; or equivalentlyṖ < −ε0Ė and Ė > 0 (5)

Specifically, if the current associated with the electric field, Ė, is opposite to the current

associated with the electric displacement field, Ḋ, the instant relative dielectric permittivity

gets negative. Equivalently, if the current associated with the polarization, Ṗ , is opposite

and larger in magnitude than the current associated with the electric field, the instant

relative dielectric permittivity gets negative.

Note that in terms of measurable quantities, Ḋ = q̇free/A and Ė = V̇F/tF , where q̇free is

the free-charge current, V̇F the current of the voltage on the ferroelectric, and A is the area

of the capacitor. For example, Ref. [4] formulates the same conditions as (4) and (5) in the

following way: Ṗ > Q̇free > 0 and Ṗ < Q̇free < 0, where Qfree = qfree/A.
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III. MATERIALS SELECTED FOR CALCULATIONS

We selected two materials: lead magnesium niobate (PMN) and bismuth ferrite (BFO).

PMN is a ferroelectric relaxor17,18. It shows an anomalous birefringence temperature de-

pendency below the so-called Burns temperature19. Further cooling down results in freezing

phenomena, which nevertheless do not result in a macroscopic polarization18. However,

PMN can also adopt a polar phase when poled at low temperature under an electric bias

field18,20,21. An unconventional polarization switching dynamics has recently been predicted

in PMN (Ref. [20]) in which first a so-called infinite cluster (a region of correlated dipoles

spreading throughout the whole supercell) melts and breaks into smaller isolated polar clus-

ters. The latter then rotate and switch their local polarization before merging together to

form a new infinite cluster with a switched polarization. Interestingly, this picture is close

qualitatively to the picture described in Ref. [12] in their modeling of domain type switching

in PZT, but, instead of domains, we found percolation clusters.

Moreover, BFO is a well-known multiferroic material with numerous complex and in-

tertwined degrees of freedom22. BFO in its supertetragonal phase (called T-BFO here) can

show either homogeneous switching (HS) or nucleation-limited switching13 (NLS), depending

on the magnitude of the external electric field23.

IV. METHODS

In 1994, first-principles-based calculations showed that ferroelectrics can be accurately

modeled by an effective Hamiltonian H (see Ref. [24]) that employs only a limited number

of degrees of freedoms, such as microscopic electric dipoles pi and local and global strains.

For PMN: We conducted simulations on an 18× 18× 18 supercell by using the effective

Hamiltonian developed in Ref. [25]. This effective Hamiltonian reproduces several specific

temperatures inherent to relaxor systems and proposes that relaxor behavior originates from

the competition between random fields (arising from the random distribution of the Mg and

Nb ions in the supercell as done here with the help of a random number generator) and

peculiar antiferroelectric interactions. Local and average polarization can then be defined

by proper summing and division by the volume of the local dipole moments.

Here, our setup is the same as in Ref. [20]. In other words, we first pole PMN along
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the [111] pseudocubic direction using a 5 MV/cm external electric field. Then we relax

this poled state during 40,000 Monte-Carlo (MC) sweeps. We then employ the Molecular

Dynamics method in which we study the polarization reversal by applying a bias field of

4 MV/cm along [1̄1̄1̄]. All calculations ran at a temperature of 10 K.

For BFO: The effective Hamiltonian developed in Refs. [23, 26, and 27] is used to

investigate BiFeO3 in its supertetragonal phase. A 48 × 48 × 6 supercell is used, and the

homogeneous strain components ηH,1 and ηH,2 are clamped to impose a -6% compressive

strain with respect to their relaxed bulk values in the R3c phase; concurrently, ηH,6 is fixed

to zero. From the ferroeletric state relaxed with Monte Carlo simulations, we conduct MD

simulations with a time step of 0.5 fs, at the temperature of 10 K, and apply an electric

field opposite to the initial polarization with magnitude either (i) 25 MV/cm to get NLS,

or (ii) 40 MV/cm to induce HS. Note that, due to the Landauer’s paradox, the measured

coercive field is often much smaller than the theoretical prediction. For instance, a factor

of ∼25 has been found in the R3c phase of BFO (see Ref. [23]). Such rescaling would make

the 25 MV/cm and 40 MV/cm used in our simulations being smaller than the experimental

coercive field of about 2.2 to 4.3 MV/cm reported for BFO films in Ref. [28].

V. RESULTS OF CALCULATIONS

Comparing in Figures 1a-c the current associated with the electric displacement field,

Ḋ, with the current induced by the instant electric field, Ė, one observes that they have

opposite signs in the yellow shaded intervals for PMN, T-BFO for NLS, and T-BFO for

HS, respectively. Figures 1d-f present the inverse of the dielectric permittivities calculated

by formula (3) for the same materials and types of switching. We see that these quantities

are negative in the same intervals, and we thus witness the emergence of TNDP caused by

polarization switching, in two different ferroelectric compounds (poled PMN and T-BFO)

and for three different switching mechanisms (in particular NLS versus HS in BFO). At the

same time, the criterion exposed in Equations 4&5 that, if the current associated with the

electric field, Ė, is opposite to the current associated with the electric displacement field, Ḋ,

the instant relative dielectric permittivity gets negative, is evidently satisfied in the shaded

areas, as seen from Figures 1a-c.

We also performed a run of the computation of the polarization switching in PMN that
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is longer than the one shown Figure 1. The results of such longer run are presented in Fig.

2.

One can clearly see a periodic oscillation of the polarization after ≃ 320 fs, that is after

its switching – with this oscillation decreasing in magnitude as time increases. The time

period of such oscillations can be extracted from Figure 2a and equals 345 fs, which therefore

corresponds to a natural frequency of f = 2.9 THz. Such latter frequency is consistent with

the phonon frequency of about 2.7 THz reported in Ref. [29] and assigned there to be an

A transverse optical mode. It is thus legitimate to assume that the polarization explores

the harmonic potential around its minimum in energy but with this exploration away from

the minimum being reduced as time evolves, in order to interpret the oscillation of the

polarization after switching and its further decrease in magnitude in time.

Strikingly, Figure 2b reveals that these phonon-induced periodic oscillations of the polar-

ization give rise to TNDP at the time-points for which the polarization is basically maximum

or minimum during these oscillations. These short-time intervals of TNDP are due to vis-

cosity that introduces a slight phase shift between the harmonic vibrations of Ḋ and ε0Ė,

see Figure 3. Consequently, the inverse of the internal dielectric permittivity, ε−1 = ε0Ė/Ḋ,

has thin intervals of TNDP in which the conditions 4&5 are satisfied.

To explain the phase shift and emergence of additional peaks in E(t) dependence, as

compared to the D(t) dependence, let us concentrate on Figure 3 close to 500fs. One can

indeed see a single peak in Ḋ at t = 505 fs as well as a corresponding peak in Ė at that

precise time. They correspond to positive ε as this follows from Equation (3), at which both

Ḋ and Ė are positive. In addition, there is also a plateau in Ė at t=385 fs. This plateau lies

in the left yellow shaded bar of a time region exhibiting TNDP, and for which Ḋ and Ė are

now of opposite sign – with Ḋ being now negative while Ė is positive and nearly insensitive

to time (hence the plateau).

Note also that we obtained (not shown here) similar polarization oscillations in both BFO

NLS and HS switching mechanisms, with these oscillations also resulting in many short-time

TNDP intervals – therefore demonstrating the generality of such effect.

Note that the understanding of these oscillations can be easily achieved in the frame of

the harmonic oscillator model in the underdamped regime, which is inherent, e.g., to ringing

in RLC electric circuits30. In the present case, the role of induction is played by inertia of the

dipoles during the switching, which has not been taken into account in previous modelings.

7



VI. HOW TO VERIFY TNDP EXPERIMENTALLY?

Let us now consider a specific electric circuit whose schematization is shown in Figure 4.

Application of the Ohm’s law to this circuit gives:

V0 = IR + VF (6)

where V0 is the battery voltage, I the electric current, R the resistance, and VF the potential

drop on the ferroelectric capacitor (we assume here that the contacts at the ferroelectric are

perfect in order to avoid consideration of stripe domains). Note that Equation (6) is common

in many studies2–4.

Now, let us plug the formula VF = tFE into Equation (6) (see Ref. [3]), then differentiate

this equation with respect to time, divide the result by I, and take into account that

I = AḊ (7)

where A is the area of the ferroelectric capacitor. We then obtain:

V̇0

I
=

İR

I
+

tF Ė

AḊ
(8)

One can recall from Sec. II that
ε0Ė

Ḋ
= ε−1 (9)

Then Equation (8) takes the form:

V̇0

I
=

İR

I
+

tFε
−1

ε0A
(10)

Now we can solve Equation (10) with respect to ε−1:

ε−1 =
ε0AV̇0

tF I
−

ARε0İ

tF I
(11)

The first term of this equation is finite if only the voltage on the battery changes in time.

The second term indicates that, when V0 is constant with time, TNDP can occur as a result

of positive İ
I
.

It is interesting to compare the last finding with experiment. For example, in Ref. [2]

electric current in the interval of TNDP has wether positive first derivative of I with respect

to time and positive values of I, or has negative first derivative of I and negative values of I.
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This is in-line with the negative values of the dielectric permittivity given by our Equation

(11).

Note that, by employing Equation (6), one can also express ε−1 via VF and its time-

derivative:

ε−1 =
ε0AR

tF (V0 − VF )
V̇F (12)

This is a very interesting result: One can keep V̇0 constant or not constant, but ε
−1 depends

only on V̇F and V0 but does not depend on V̇0.

Let us now describe one of the possible reasons of TNDP, when İ
I
is positive. For that,

we now employ the simple model of Ref. [2] which substitutes the electric field (voltage) on

the ferroelectric by a Landau expansion:

E = αD + βD3 (13)

Then Equation (6) can be rewritten in the form:

V0 = RI + tF (αD + βD3) (14)

Taking the first time derivative of this equation and solving the result with respect to İ,

after also taking into account Equation (7), yields:

İ = −
tF (α + 3βD2)Ḋ − V̇0

R
(15)

Plugging this result into Equation (11) gives:

ε−1 = ε0(α + 3βD2) (16)

Note that the result, again, does not depend on V̇0. So, the dielectric permittivity is negative

when D2 < −α
3β
. In this interval, the curvature of the energy, F = 1

2
αD2 + 1

4
βD4 − E0D,

with respect to the electric displacement is negative.

Thus, within the simple one-dimensional model considering a homogeneous polarization

switching, one can obtain that (i) the inequality İ
I
> 0 is possible for example if D2 < −α

3β

that corresponds to the totaly unstable transient states; (ii) one of the possible reasons of

TNDP is dynamical overcoming an interval where the curvature of energy versus electric

displacement is negative. The latter statement was published earlier based on a different

derivation and is in accord with experiments2,3. However, one should be careful with this
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idea because the system in this transient state is totaly unstable and polar phonons are

also unstable. From this point of view, this transient state, achieved during the switching,

cannot exist in statics, but, probably, it will be possible to stabilize it in the future with the

help of a resonator.

Getting the inverse dielectric permittivity from measurement of the electric current and

voltage on the ferroelectric is not the only profit of such measurement. One can have

more. Specifically, by measuring the voltage drop on the ferroelectric [or by expressing it

from Equation (6)] one can scan the energy relief. Indeed, the Electric Free energy can be

obtained from the integral:

∆U =

∫ t

EḊdt (17)

Let us rewrite this integral in terms of experimental observables:

∆U =
1

AtF

∫ t

VF I(t)dt =
1

ARtF

∫ t

VF (V0 − VF )dt =
1

AtF

∫ t

I(V0 − IR)dt (18)

VII. CONCLUSION

We derived analytically the most general conditions for TNDP, which are consistent with

previously derived conditions in Ref. [4]. These conditions impose some inequalities involv-

ing the currents of the non-equilibrium instant electric field we introduced and of instant

electric displacement (or polarization). Our first-principles-based calculations performed for

two different systems with different types of polarization switching confirms the existence of

TNDP in finite time-intervals as an internal property of materials at non-equilibrium. We

found out that one of the possible reasons for TNDP is post-switching polarization oscilla-

tions (that are reminiscent of ringing in RLC electric circuits30). We have also developed

a simple analytical model and derived practical formulas to measure TNDP to be checked

further in experiment.
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9 I. Lukyanchuk, Y. Tikhonov, A. Sené, A. Razumnaya, and V. M. Vinokur, Commun. Phys. 2,

22 (2019).
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Figure 1. (Color online) Properties related to TNDP. The regions of TNDP are marked by

yellow shaded areas. (a,b,c) Time evolution of different displacement currents in PMN (a), T-

BFO with NLS mechanism (b) and T-BFO with HS mechanism (c); (d,e,f) Time evolution of the

Inverse dielectric permittivity in PMN (d), T-BFO with NLS mechanism (e) and T-BFO with HS

mechanism (f).

Figure 2. (Color online) Time evolution of some physical quantities in PMN. Panel a shows the

polarization in a long MD run, while Panel b depicts the inverse of the dielectric response in that

long run.

Figure 3. (Color online) Time evolution of the currents Ḋ and ε0Ė in PMN shows that local

maxima and minima of the polar oscillations (after 320 fs) exhibit slight delays between Ḋ and

ε0Ė, leaving a window where they have opposite signs.

13



Figure 4. (Color online) A sketch of an experimental electric circuit.
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