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We observe that space- and time-crystallization effects in multicomponent superfluids—while
having the same physical origin and mathematical description as in the single-component case—are
conceptually much more straightforward. Specifically, the values of the temporal and spatial periods
are absolute rather than relative, and the broken translation symmetry in space and/or time can be
revealed with experiments involving only one equilibrium sample. We discuss two realistic setups—
one with cold atoms and another one with bilayer superconductors—for observation of space and
time crystallization in two-component counterflow superfluids.

The superfluid long-range order—either genuine or,
in lower dimensions, topological/algebraic—is associated
with the emergence of a well-defined (modulo 2π), defect-
free field of a coarse-grained phase, Φ(r, t); see, e.g.,
Ref. [1]. In what follows, we discuss the genuine long-
range order only. The generalization to the case of alge-
braic order is readily achieved along the lines described
in Ref. [2]. Also, we use the classical-field (matter-wave)
language, which, on one hand, captures the essence of su-
perfluid phenomena and, on the other hand, is straight-
forwardly generalized to the case of quantum bosonic
fields [1].
Long-range order in the coarse-grained matter field

ψ = exp[iΦ(r, t)] means that we are dealing with the
broken global U(1) symmetry state. The very nature of
this state implies the existence of a space crystal when
the phase is a linear function of distance (and ψ is peri-
odic in space with the period 2π/k):

ψ(r, t) = ψ(0, t) eik·r. (1)

This is a state with finite superflow velocity proportional
to the wavevector k. In the literature on superfluidity,
the term “space crystal” is almost never (if at all) used in
the context of the state Eq. (1), because the matter den-
sity n(r, t) = |ψ(r, t)|2 remains homogeneous in space. [It
should not be confused with a supersolid—the superfluid
state with spontaneously broken translation symmetry
in the particle density.] However, it is now conventional
to call various states of mater “solids” and/or “crystals”
if there is some observable revealing broken translation
invariance, and this observable need not be the particle
density. One familiar example is the valance-bond crys-
tal state of lattice bosons at half-integer filling factor.
In superfluids, the phase field plays the role of such an
observable. The interference fringes produced by super-
imposing two matter waves with opposite wavevectors [3]
nicely visualize the fact that superflows break translation

symmetry and thus qualify to be called space crystals.
Supercurrent states in three-dimensional superfluids do
not form naturally by cooling the system across the tran-
sition temperature [4]. Nevertheless, supercurrent states
can be prepared by cooling the system in a rotating ves-
sel which is stopped once the system is in the superfluid
phase. In this sense, the period of the space crystal in
the phase field depends on the experimental conditions
used to prepare the sample, but otherwise we are dealing
with a stable thermodynamic equilibrium described by
the Gibbs distribution with an emergent quantized topo-
logical constant of motion (phase winding number) [1].
Academically speaking, such a persistent current state
is metastable. However, its relaxation time due to rare
quantum-tunneling or thermal-activation events is expo-
nentially large in the inverse k, and easily exceeds the
time of the Universe unless the period of the space crys-
tal is microscopically small.
While the existence of plane-wave states (1) is a generic

property of any statistical model with broken U(1) sym-
metry, the period depends on the reference frame. The
Galilean transformation of the field Φ when going to the
reference frame moving with the velocity v0 with respect
to the original one,

Φ(r, t) → Φ(r, t) −
v0 · r

γ
, (2)

implies that the state wavevector changes to:

k → k− v0/γ. (3)

Here γ is the system-specific parameter relating the
wavevector of the matter wave to the flow velocity. In
the quantum case, γ = h̄/m, where h̄ is the Planck’s
constant (in what follows we set it to unity) and m is
the particle mass. This relativity of the period is quite
unique for non-relativistic crystals!
What distinguishes superfluids from purely statistical

models with broken U(1) symmetry is that broken U(1)
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symmetry automatically entails breaking of the time-
translation symmetry, and links superfluidity to yet an-
other fundamental phenomenon of time crystallization
[5, 6]. Indeed, the phase Φ evolves in time in accordance
with the universal Beliaev–Josephson–Anderson relation
(in the reference frame of the normal component)

Φ̇ = −µ. (4)

Here µ ≡ µk is the chemical potential that depends on the
wavevector of the superflow. Equation (4) readily follows
from the generalised Gibbs distribution for a superfluid
[1]. Its remarkable simplicity and universality is rooted
in the fact that the phase Φ is canonically conjugated to
the total amount of matter

N =

∫

|ψ|2ddr, (5)

(the U(1) symmetry in question is the Noether’s sym-
metry responsible for the conservation of N). With the
relation (4), the expression (1) can be upgraded to the
formula

ψ(r, t) = ψ(0, 0) eik·r−iµkt, (6)

showing that, in the long-wave limit, the superfluid order
parameter has the form of a running plane wave. Hence,
the superfluid state with a superflow is a space-time crys-
tal, or, a time crystal in the of absence of the superflow.
It is important to keep in mind that the value of µk is

relative. This is formally reminiscent of (and even par-
tially connected to) the relative nature of the wavevec-
tor k: changing the reference frame we change k and µk.
Furthermore, the chemical potential is defined only up to
a global constant prescribed by the convention about the
ground state energy per particle. In the non-relativistic
physics, the rest energy of a free particle is typically set
to zero. The merely conventional character of this choice
results in a certain constraint on the protocols of mea-
suring µ and the time-crystallization effect in superfluids,
but does not exclude the effect itself.
In their paper on the no-go theorem for equilibrium

time crystals [7], Watanabe and Oshikawa argued that it
is the above-discussed relativity of the chemical poten-
tial that reconciles their theorem with Eq. (6). However,
the proof of the no-go theorem in Ref. [7] is based on
the implicit assumption that energy is the only additive
constant of motion in a system (cf. Ref. [8]), which is
certainly not true for superfluids where (5) is also a key
constant of motion. The actual restriction implied by the
no-go theorem for equilibrium time crystals is two-fold:
(i) An equilibrium time crystal is supposed to have at
least one additive constant of motion besides the energy.
(ii) The observable revealing the time crystallization has
to violate the conservation of this constant.
In the light of the above discussion, it is instructive to

identify a class of superfluid systems that feature the ef-
fect of equilibrium space-/time-crystallization in the form
of Eq. (6) while being free of the subtleties originating

from the relative nature of k and µk. We observe that
multicomponent (counterflow) superfluids belong to such
a class. Here the quantity of interest, Φab(r, t), is the
coarse-grained field of the phase difference between the
components “a” and “b” (the description stays exactly
the same for arbitrary number of components, so we re-
strict ourselves to the two-component case for simplicity).
We further limit ourselves with counterflow superfluid
states (see, e.g., [1]) where the superfluid order exists ex-
clusively in the field Φab(r, t) but not in the individual
phases of the components. The long-wave equilibrium
statistics of the two-component counterflow superfluid is
isomorphic to that of a single-component superfluid, ren-
dering the system particularly simple and relevant for
our purposes. To exclude irrelevant long-wave degrees of
freedom, we also assume that the normal component is
pinned by either disorder, walls, or an external periodic
potential. The Beliaev–Josephson–Anderson relation for
Φab (its derivation from the Gibbs distribution is directly
analogous to that in the single-component case),

Φ̇ab = µb − µa, (7)

has the form of the Josephson relation for the standard
ac Josephson effect between two single-component super-
fluids (made of the same type of matter but having dif-
ferent chemical potentials). Similarly, the protocol of de-
tecting the rotation of the phase Φab can be based on
simply creating a “Josephson link” between components
a and b. In this regard, note that any protocol of reveal-
ing the time crystallization effect in the field Φab has to
deal with interactions explicitly violating the U(1)×U(1)
symmetry of the original system, which implies a process
converting components “a” and “b” into each other. The
conceptual difference between this “internal” Josephson
effect and its conventional counterpart is that now the
frequency of the phase rotation—and thus the period of
oscillations of the ac Josephson current—is independent
of the choice for counting energy in a single equilibrium
sample.
In the presence of disorder or external periodic po-

tential, the system has a natural reference frame. The
absence of Galilean invariance in this case does not yet
mean that the period of the space crystal (1) is not rel-
ative. One can, in principle, design an experiment when
this period is observed from a moving frame, in which
case Eqs. (2)–(3) still apply. However, in a counterflow
superfluid with two components having equal parame-
ters γ, Galilean transformation (2) leaves the phase field
intact,

Φab → Φab −
v0 · r

γa
+

v0 · r

γb
≡ Φab, (8)

and the period of the corresponding space crystal is the
same in any reference frame.
The difference between the single-component and

counterflow superfluids becomes even more dramatic and
instructive in the case of toroidal geometry and rotating
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frame. The fictitious vector potential Afict emerging in
the rotating frame brings about the gauge freedom. In
the single-component superfluid in the rotating frame,
the gauge freedom renders the notion of spatial phase
difference ambiguous and thus ill defined. The gauge-
invariant equivalent of the phase difference between the
points r1 and r2 has now the form of the line integral:

∫

r2

r1

(∇Φ−Afict) · dl. (9)

Even in the absence of topological defects in the field Φ,
this integral depends on the form of the line because of
the term with Afict. This, in particular, means that there
is no experimental way of unambiguously measuring the
phase difference in the rotating frame. In the case of
counterflow superfluid, the counterpart of the integral
(9) reads [cf. Eq. (8)]

∫

r2

r1

(∇Φab −Afict +Afict) · dl ≡

∫

r2

r1

∇Φab · dl. (10)

Now the phase difference is well defined and invariant
with respect to the choice of the reference frame.
Experimental implementation 1: Cold atoms. One

possible realization of the counterflow superfluidity is
with multicomponent ultracold bosons in optical lattices
[9]. A straightforward generalization of the protocol dis-
cussed in Ref. [2] (in the context of algebraic time crys-
tallization in a single-component two-dimensional super-
fluid) allows one to simultaneously study both the space
and time crystallization in such systems. The protocol is
as follows.
• Consider a toroidal shape sample with close, but dif-

ferent, chemical potentials µa and µb, in a state with
finite counterflow supercurrent. Introduce switchable in-
ternal Josephson links between the two components on
two special sites of the optical lattice separated by a dis-
tance r.
• At time zero, turn the first link on for the duration

∆t, such that (∆µ = |µa − µb|)

∆t∆µ ≪ 1. (11)

• Keep both links switched off for a much longer time
interval t∆µ > 1 and then turn the second link on for
the duration ∆t.
• Quickly, on time scales ≪ 1/∆µ, apply a deep opti-

cal lattice to localize all atoms in the system and count
atom numbers Na and Nb using single-site microscopy
[10, 11].
Repeating the protocol many times under identical

conditions allows one to accumulate representative statis-
tics and process the data with the help of an auxiliary
experimental run that skips the next-to-last step of the
above-described protocol. The outcome of the auxiliary
run is the expectation value N̄ab = 〈Na −Nb〉 that aver-
ages typical particle number differences taking place right
before the two samples are disconnected for a period of

time t. The key statistical observable is then

K(t) = 〈 [Na(t)−Nb(t)− N̄ab]
2 〉. (12)

In this expression, random particle number differences
characterizing irreproducibility of the initial state prepa-
ration cancel out and we are left with a signal reflecting
spatial and temporal oscillations of the phase field

〈Φab(r, t)− Φab(0, 0) 〉. (13)

State preparation fluctuations are independent of r and
t and thus creates no problem except for that of a signal-
to-noise ratio, which can be improved by collecting more
statistics and optimizing setup parameters. To ensure
that the space-/time-dependent contribution to disper-
sion is large, one needs to have J0/∆µ ≫ 1, where J0
is the Josephson constant (assumed to be the same for
both links).
Experimental implementation 2: Bilayer superconduc-

tor. A different—and interesting on its own—realization
of space-/time-crystallization effect in a counterflow su-
perfluid is a bilayer superconducting annulus. When
the thickness of the two layers is small enough to sup-
press finite-temperature bulk superconductivity and tun-
neling between the layers is negligibly small, the system
still features (at appropriately low temperature) a two-
dimensional neutral counterflow superfluid mode [12].
In this case, the coarse-grained phase field Φab(r, t) de-
scribes the phase difference between the layers “a” and
“b.” Because of the long-range current-current interac-
tion between the layers via the vector potential, the field
Φab(r, t) remains algebraically ordered while the individ-
ual phase fields Φa(r, t) and Φb(r, t) are destroyed at
finite-temperature by the proliferation of vortices that
cost finite energy [12]. The effect of surface supercon-
ductivity predicted recently by Samoilenka and Babaev
[14] can be used to create an interesting modification of
the bilayer superconducting setup [13], in which the two
layers are formed by adjacent surfaces of two supercon-
ducting materials that remain normal in the bulk.
The setup with switchable Josephson link(s) and sub-

sequent counting of the electrons in each of the two lay-
ers appears to be impractical. Instead, one can utilize
the standard ac Josephson setup with one or two per-
manent links. One link would be sufficient for revealing
the time crystallization through the current-current cor-
relation function [2]. To reveal both the space and time
crystallization, one needs the second link (assume that
both have the same Josephson constant J0) at a macro-
scopically large distance r from the first one. Opera-
tionally, the resulting device will behave as a hybrid of
an ac Josephson junction and a SQUID. On the one hand,
the it will be demonstrating the algebraic Josephson ef-
fect, see Ref. [2], with the frequency prescribed by the
superconducting analog of relation (7), where the chemi-
cal potential difference µb −µa is doubled because of the
Cooper pairing. On the other hand, the net amplitude
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of the Josephson current will depend on the phase shift
k · r between the two junctions:

Jnet ∝ J0

∣

∣

∣

∣

cos
k·r

2

∣

∣

∣

∣

. (14)

This way one can directly measure the projection of the
wavevector k on the axis of r.
Conclusions and discussion. Multicomponent

superfluids—most notably, counterflow superfluids—
unquestionably feature the effects of space and time
crystallization. In this context, the space crystallization
is understood broadly as the broken translation symme-
try, irrespective of its microscopic origin (including the
role played by interactions) and relevant observables.
The counterflow superfluidity was predicted theoretically
some time ago but it has not been yet realized in the
lab. Observation of the space-/time-crystallization
effects can be used for detecting this superfluid state
experimentally.
To comply with the no-go theorem [7], a system fea-

turing the effect of time crystallization has to have an
additive conserved quantity different from energy, and
measurements have to violate the conservation of this
quantity. The counterflow superfluids with potentially
inter-convertible components satisfy these criteria; inter-
nal Josephson links between the two components probe
the order in the phase difference field through temporal
correlations and spacial interference of Josephson cur-
rents. The necessity for the time-crystallization probe
to deal with the inter-conversion of the two components
explicitly follows from the Beliaev–Josephson–Anderson
relation (7). Otherwise, each of the two chemical poten-
tials is defined up to its individual arbitrary additive con-
stant reflecting the convention about the counting zero
for energy.
We discussed two different experimental setups and,

correspondingly, two different protocols for the observa-
tion of space-/time-crystallization in counterflow super-
fluids. The first setup, dealing with ultracold atoms in
optical lattices, appears to be the most universal and con-
ceptually transparent. Here the probes are local in space
and time and unquestionably remove all concerns about
non-equilibrium effects. Yet, an important aspect of re-
alistic cold-atomic systems is that their sizes are rather
moderate. This makes them especially suitable for study-
ing the finite-size effects leading to phase decoherence
and hence the finite linewidth of the Josephson effect
power spectrum [15, 16]. This setup is equally good for
detecting the genuine space and time crystallization in a
three-dimensional system, as well as algebraic space and
time crystallization in lower dimensions.
The second experimental setup is based on a bilayer

supeconductor with two spatially separated Josephson
links between the layers to study the effect of space crys-
tallization via the interference of the two Josephson cur-
rents. The advantage of this setup is that it allows one
to employ standard experimental techniques for detecting

Josephson effect in electronic systems. In particular, one
can use the emitted electromagnetic radiation to measure
the frequency and the amplitude of the oscillating cur-
rent. This setup also appears to be natural for utilizing
the space-/time-crystallization effects to reveal and study
some other superfluid phenomena and properties such as
algebraic (as opposed to genuine) time crystallization [2],
equilibrium statistics of supercurrent states [4], and sur-
face superconductivity [14]. A minor shortcoming of this
setup is that the system is two-dimensional so that it
deals with the algebraic space and time crystallization.

It is instructive to put our results in a broader con-
text of past and present activities addressing sponta-
neous breaking of time-translation symmetry in equi-
librium, steady state, and periodically driven (Floquet)
systems. At the moment, an exciting progress is being
made—on both theoretical and experimental side—with
Floquet time crystals (see, e.g., review [17] and references
therein). By their very nature—the presence of a peri-
odic drive—Floquet time crystals break discrete time-
translation symmetry as opposed to breaking continuous
time-translation symmetry. The discussed scenario for a
macroscopic system to break continuous time-translation
symmetry is most closely related to the Kuramoto syn-
chronization mechanism (see review [18] and references
therein), when, under appropriate conditions, local ro-
tors get globally synchronized despite local fluctuations
and disorder.

Our discussion was focused on the counterflow super-
fluid. Nevertheless, all the conclusions apply to any
multicomponent superfluid because it inevitably has at
least one counterflow mode. In particular, a simple two-
component Bose-Einstein condensate would be a reason-
able system for applying the above-mentioned protocol.
In this regard, the manifestation of time crystallization
in a two-component Bose-Einstein condensate has been
already observed in Ref. [19]. As opposed to our protocol
of detecting the time-translation symmetry breaking at
equilibrium, the experiment of Ref. [19] starts by creating
a coherent non-equilibrium initial state with well-defined
relative phase between the two components (by produc-
ing the second component out of the condensed first one).
The evidence for the broken time-translation symmetry
then comes in the form of long-lived oscillations of the
relative phase of the two condensates.

If the two-pulse protocol for equilibrium states is modi-
fied to render the weak interconversion interaction global
(uniform) rather than local, then the experiment would
demonstrate—by the very fact that a macroscopic equi-
librium system features a finite response to such type
of perturbation—a fundamental property of macroscopic
time crystals: an inevitable presence of long-range spa-
tial correlations along with the oscillations in the time
domain. This property can be interpreted in terms of
time-dependent order parameter, see, e.g., Ref. [20].
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