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The thickness dependence of spin-orbit torque and magnetoresistance in ferromagnet/heavy-metal
bilayers is studied using the first-principles non-equilibrium Green’s function formalism combined
with the Anderson disorder model. A systematic expansion in orthogonal vector spherical harmonics
is used for the angular dependence of the torque. The damping-like torque in Co/Pt and Co/Au
bilayers can be described as a sum of the spin-Hall contribution, which increases with thickness
in agreement with the spin-diffusion model, and a comparable interfacial contribution. The mag-
netoconductance in the plane perpendicular to the current in Co/Pt bilayers is of the order of a
conductance quantum per interfacial atom, exceeding the prediction of the spin-Hall model by more
than an order of magnitude. This suggests that the “spin-Hall magnetoresistance,” similarly to the
damping-like torque, has a large interfacial contribution unrelated to the spin-Hall effect.

Introduction. Magnetization in nanoelectronic de-
vices can be manipulated by angular momentum trans-
fer [1, 2]. Spin-orbit torque (SOT) [3–5] is a manifes-
tation of such transfer driven by spin-orbit coupling in
ferromagnet/heavy metal (FM/HM) bilayers, which is
also responsible for anisotropic transport properties such
as spin-Hall magnetoresistance (SMR) [6, 7]. SOT and
SMR involve complex processes both in the bulk and
at the interface [5, 7–11]. The role played by spin cur-
rents in angular momentum transfer is still being actively
investigated both experimentally [12, 13] and theoreti-
cally [14, 15]. However, it is also clear that SOT is not
fully determined by spin currents because magnetization
can exchange angular momentum with the lattice.

SMR is usually explained by interfacial absorption of
the spin-Hall current incident from the bulk of the heavy
metal [16]. It is also common to attribute damping-like
SOT to the spin-Hall effect [17] originating in the bulk
of the heavy metal [4, 18, 19] and field-like SOT to the
inverse spin-galvanic effect [20–22] at the interface [3, 23–
26]. However, damping-like SOT can also be generated
at the interface [8, 9, 27–29] without any spin-polarized
current incident from the bulk of the HM layer. Be-
sides, the layers in FM/HM bilayers are usually about a
nanometer thick or even less. Thus, the distinction be-
tween interfacial and bulk contributions to SOT is not
well defined, which prompts a fully quantum-mechanical
treatment of the whole device [30]. This point of view is
supported by experiments suggesting a competition be-
tween interfacial and bulk contributions to damping-like
SOT [31–34] and by ab-initio calculations hinting at the
importance of interfacial contributions [30, 35].

Most ab-initio calculations of SOT have been per-
formed using the linear response method with phe-
nomenological broadening for the Green’s functions
[36] and did not reveal the interfacial contribution to
damping-like SOT [37]. However, given that various

bulk, interfacial, and disorder effects can influence SOT
and SMR in interconnected ways, it is advantageous to
treat them all on equal footing. A suitable computational
technique based on the non-equilibrium Green’s function
(NEGF) approach [38, 39] within the tight-binding lin-
ear muffin-tin orbital (LMTO) method [40, 41], with an
explicit treatment of disorder, has recently become avail-
able [30]. In this Letter, we employ this technique to
study the thickness dependence of SOT and SMR in
FM/HM bilayers. For the leading damping-like SOT,
we find a contribution increasing with thickness in agree-
ment with the spin-diffusion model and a comparable in-
terfacial contribution that survives in the limit of zero
thickness. We further identify the interfacial contribu-
tion to magnetoresistance which exceeds the expected
spin-Hall contribution by more than an order of mag-
nitude.

Thickness dependence of SOT. The technical details
of the ab initio NEGF calculations are similar to Ref. 30,
except that here we represent the angular dependence
of SOT using the complete orthonormal basis of vec-
tor spherical harmonics, as described in the Appendix.
The expansion is generally given by Eq. (10), and the

three harmonics relevant here are Z
(1)
1,−1, Z

(2)
1,−1, and Z

(1)
2,1;

their relation to the familiar damping-like, field-like, and
planar-Hall-like SOT terms is given in Eqs. (11)-(13).
Only the Fermi-surface contribution is considered here,
because the Fermi-sea term is considerably smaller at
room temperature [30]. We employ the Anderson disor-
der model with a uniformly distributed random potential
Vi, −Vm < Vi < Vm, applied on each lattice site i with an
amplitude Vm = 0.77 or 1.09 eV, which results in resis-
tivities typically observed in FM/HM bilayers (see Table
I). The SOT is calculated from the non-equilibrium spin
density matrix on each atom.

Figure 1 shows the dependence of SOT in Co/Pt and
Co/Au bilayers on the thickness of the heavy-metal layer
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dN measured in monolayers (ML). The damping-like

SOT coefficient C
(1)
1,−1 is well described by the function

C
(1)
1,−1 = τ0 + τSH [1− sech(dN/lsf )] (1)

with the parameters listed in Table I, where lsf is the
spin-diffusion length in the heavy-metal layer, τ0 repre-
sents the thickness-independent interfacial contribution
to SOT, and τSH is the conventional spin-Hall-generated
part that follows from spin-diffusion theory [4]. However,
the fitting (1) should be approached with care, because
it assumes a geometrical interface between homogeneous
bulk regions and ignores thickness-dependent perturba-
tions and finite-size effects in the electronic structure of
the bilayer.

Importantly, we find that τ0, which can appear due to
interface scattering [8, 9], is comparable with τSH in both
systems and is especially large in Co/Pt. The value of τSH
is similar in Co/Pt and Co/Au, while the spin-diffusion
length is larger in Co/Au.

FIG. 1. Dependence of the SOT coefficients on the thickness
dN of the heavy-metal layer in Co/Pt and Co/Au bilayers.

(a) Dampinglike (DL) C
(1)
1,−1 and planar-Hall-like (PHL) C

(1)
2,1

coefficients. (b) Fieldlike (FL) coefficient C
(2)
1,−1. Blue (red)

circles (squares): C
(1)
1,−1 or C

(2)
1,−1 for Co/Pt (Co/Au); green

lines and diamonds: C
(1)
2,1 for Co/Pt. Filled (empty) symbols:

Vm = 1.09 eV (0.77 eV). Blue (red) lines in panel (a): fits of
the data for Co/Pt (Co/Au) at Vm = 1.09 eV (see text).

FM/HM Vm, eV ρ̄, µΩ cm τ0, ns/m τSH, ns/m lsf , nm θSH

Co/Pt
1.09 27.2 110.3 96.5 1.94 0.027
0.77 17.7 133.2 97.5 2.43 0.018

Co/Au
1.09 6.4 54.6 108.9 3.61 0.007
0.77 4.1 58.2 81.1 3.38 0.003

TABLE I. Parameters of the fits [Eq. (1)] for the thickness

dependence of the damping-like SOT coefficient C
(1)
1,−1. The

effective resistivities ρ̄ are given for the Co(4 ML)/HM(12
ML) bilayers.

The influence of disorder strength on the damping-like
SOT can be seen by comparing the results for Vm =
1.09 and 0.77 eV in Fig. 1a (filled and empty symbols,
respectively) and Table I. The behavior is different in
Co/Pt and Co/Au bilayers. In Co/Pt, increasing Vm
from 0.77 to 1.09 eV reduces lsf and τ0, both by about
20%, while τSH remains unchanged. This suggests that
the spin-Hall contribution to damping-like SOT in Co/Pt
is dominated by a combination of intrinsic and side-jump
mechanisms, which are insensitive to the relaxation time
[42]. In contrast, stronger disorder in Co/Au leads to a
34% increase in τSH while the changes in lsf and τ0 are
within the margin of error. The dependence of τSH on Vm
in Co/Au suggests that the skew-scattering contribution,
which is proportional to the relaxation time [42], is not
negligible and negative in this system. The suppression
of the skew scattering contribution in Co/Pt it likely due
to the much larger resistivity in this system compared to
Co/Au.

Interestingly, lsf does not increase with increasing con-
ductivity in Co/Au, suggesting that the Dyakonov-Perel
mechanism of spin relaxation, which was shown to be
dominant in some supported metallic films [43], can sur-
vive even in the presence of a proximate ferromagnetic
layer. This mechanism is expected to be more impor-
tant in Co/Au compared to Co/Pt, because the magnetic
proximity effect in Au is much weaker than in Pt.

We have previously found [30] that spin-orbit coupling
on the Co atoms has no effect on the total damping-
like SOT in the Co(6 ML)/Pt(6 ML) bilayer. The
same statement holds for Co(4 ML)/Pt(30 ML) and
Co(4 ML)/Au(30 ML) bilayers, suggesting that the spin-
Hall effect in Co [14] does not contribute materially to
damping-like SOT.

Table I also lists the effective spin-Hall angle in the
heavy metal estimated as

θSH =

√
3

8π

2e

h̄
τSHρ

M

A
(2)

where M/A is the total magnetic moment per area of
the film, and the numerical factor comes from Eq. (11).
Small θSH in Co/Au is due to the low resistivity of Au
compared to Pt. The values for Co/Pt are smaller com-
pared to the experimental measurements; for example,
θSH ≈ 0.06 was reported in Ref. 4. However, including
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the interfacial contribution τ0 would result in θSH ≈ 0.06,
which may increase further in more resistive films. We
also note that the spin-Hall conductivity estimated from
τSH assuming the spin-Hall current is fully absorbed by
the magnetization is similar to the result of the Berry-
phase calculation at zero temperature [44].

The planar-Hall-like term C
(1)
2,1 in Co/Pt is roughly pro-

portional to the leading damping-like coefficient C
(1)
1,−1

and amounts to about −7% of it. This term can be iso-
lated experimentally by measuring current-induced mag-
netization damping in the xz plane [30, 45]. It is seen
from Fig. 1a that disorder strength has little influence on

C
(1)
2,1 , consistent with its attribution to vertex corrections

[30]. In Co/Au the planar-Hall-like term is positive, does
not exceed 5 ns/m, and is not shown in Fig. 1a.

The thickness dependence of the field-like SOT C
(2)
1,−1

is shown in Fig. 1b. This term exhibits sharp variations
at small thicknesses, which likely reflect the sensitivity
of the underlying mechanism to the electronic structure
near the interface. At larger thicknesses the field-like
SOT converges to a moderate value in Co/Pt, but in
Co/Au it is comparable to the damping-like SOT and
keeps growing at large thicknesses. This growth may in-
dicate that the field-like SOT in Co/Au has a contribu-
tion that is associated with the spin-Hall effect in Au.

The effect of disorder strength on the field-like SOT
is also different in Co/Pt and Co/Au bilayers. While

stronger disorder tends to suppress C
(2)
1,−1 in Co/Pt,

which is consistent with inverse spin galvanic effect
(ISGE), it has hardly any effect on it in Co/Au. This fea-
ture is due to the cancellation of disorder-induced trends
in different bands. Indeed, if spin-orbit coupling is turned

off on the Co atoms, the field-like C
(2)
1,−1 coefficient at

dN = 30 ML increases from 86 to 150 ns/m at Vm = 1.09
eV, and from 89 to 226 ns/m at 0.77 eV. Thus, the contri-
butions to the field-like torque from spin-orbit coupling
on Co and Pt atoms have opposite signs and both de-
crease with increasing disorder, as expected for ISGE.

Magnetoresistance. The term spin-Hall magnetore-
sistance (SMR) refers to the reduction of the resistance of
a FM/HM bilayer whose magnetization is aligned paral-
lel to the interface and perpendicular to the current flow,
i.e., along the ŷ axis. Measurements of the magnetoresis-
tance in fully metallic bilayers [46] including Co/Pt [47]
have been attributed to the spin-Hall mechanism.

The phenomenological theory of SMR [16], which was
introduced for a bilayer with an insulating FM layer, de-
scribes the effect of spin-dependent interfacial scatter-
ing of the spin-Hall current incident from the heavy-
metal layer and predicts the cos2 θy angular dependence
of the magnetoresistance. However, such magnetore-
sistance can also arise due to purely interfacial mech-
anisms [48–50]. Metallic FM/HM bilayers also exhibit
anisotropic magnetoresistance (AMR) with the cos2 θx
angular dependence contributed by the metallic FM

layer. In addition, the dependence of the interfacial elec-
tronic structure on the orientation of the magnetization
[51] should result in an interfacial anomalous magnetore-
sistance (IAMR) with the cos2 θz angular dependence.
IAMR is similar to the tunneling anisotropic magnetore-
sistance [52] but occurs in the current-in-plane geometry.

Because the three functions cos2 θα representing the
angular dependence of SMR, AMR, and IAMR are lin-
early dependent, there are, in fact, only two indepen-
dent parameters that can be extracted from experiment,
and different mechanisms can not be uniquely separated
from the angular dependence. On the other hand, only
the SMR mechanism is due to the spin-Hall effect in the
bulk of the heavy-metal layer, and it comes with a char-
acteristic dependence on its thickness dN [16].

We introduce the reduced conductance g(m̂) =
LG(m̂)/w in the Ohmic limit (large L and w), where
G(m̂) is the conductance, L the length, and w the width
of the bilayer, and write it as

g(m̂, dN ) = gF (m̂, dN ) + σNdN (3)

where σN is the conductivity and dN the thickness of
the normal metal. The two terms on the right-hand
side represent, respectively, the angular-dependent con-
tribution of the FM layer (including the interface), and
the angular-independent bulk contribution of the normal
metal. The dependence of gF on dN can come both from
the spin-Hall contribution and from Friedel oscillations
and quantum-well-like effects in other mechanisms. Of
course, the angular dependence of gF also includes the
contribution of AMR.

Defining the difference ∆µνg(dN ) = g(µ̂, dN ) −
g(ν̂, dN ), where µ̂, ν̂ are some chosen orientations of m̂,
we have ∆µνg(dN ) = ∆µνgF (dN ). The quantity ∆yzg/g
is usually reported as SMR. Note that ∆µνg is expected
to saturate at large thicknesses. The prediction of the
spin-Hall theory [16, 46] for the angular and thickness
dependence of ∆yzg can be compared with the results of
ab initio calculations.

We compute g(x̂), g(ŷ) and g(ẑ) for Co/Pt bilayers
with a varying thickness dN of the Pt layer while keep-
ing the Co layer 4 monolayers thick. For each value of
dN , we calculate the conductance G for a fixed width
w and L = 60, 90, . . . , 240 ML, taking several hun-
dred disorder configurations for each L. The dataset
for the given dN and w is then fitted to the function
G(L) = (R0 +Lg/w)−1, which provides the value of g for
the given m̂. Finally, we find ∆yzg(dN ) and ∆yxg(dN ).
Most of the calculations were performed with w = 12
ML, but for dN = 4, 12 ML we also considered w = 16
ML to check convergence with respect to w.

The results of the calculations of ∆yzg(dN ) and
∆yxg(dN ), along with their standard deviations, are
shown in Fig. 2. The magnitude of ∆yxg, which is in-
fluenced by SMR and AMR but not IAMR, appears to



4

be thickness-independent apart from relatively small os-
cillations. ∆yzg, which is influenced by SMR and IAMR
but not AMR, is of the order of one conductance quan-
tum, which is well above the margin of error, but its
thickness dependence is obscured by the relatively large
error bars.

FIG. 2. Dependence of the magnetoconductances ∆yxg (red
symbols) and ∆yzg (blue symbols) in Co/Pt bilayers on the
thickness of the Pt layer calculated at w = 12 ML. Grey sym-
bols: convergence tests at w = 16 ML. The disorder strength
is Vm = 1.09 eV. The error bars show the standard deviation.
Dashed line: the prediction of Eq. (4) with the parameters
for Co/Pt at Vm = 1.09 eV from Table I, scaled by a factor
of 10.

The spin-Hall theory [16, 46] predicts the following
spin-Hall contribution to ∆yzg, where we assume the
magnetic layer is sufficiently thin so that the shunting
effect can be neglected:

∆yzgSH =
θ2SH
ρ̄

tanh2(dN/2lsf ) tanh(dN/lsf ). (4)

The values of θSH, lsf , and ρ̄ obtained from SOT calcula-
tions can be found in Table I. The dashed line in Fig. 2
shows the resulting ∆yzgSH(dN ) scaled by a factor of 10.
It is clear that the spin-Hall mechanism [16, 46] is too
weak, by more than an order of magnitude, to account for
the calculated magnetoconductance ∆yzg ∼ e2/h. The
effect can, therefore, be entirely due to interfacial mech-
anisms.

The growth of ∆gyz/g at small thicknesses [46, 47] is
the main evidence in favor of the spin-Hall theory of mag-
netoresistance in FM/HM bilayers. However, this infer-
ence assumes that the interface is well-formed and has
the same properties for all dN . In a practical device, this
assumption can fail once dN is reduced to a few mono-
layers, which is comparable to both the typical interfa-
cial roughness and to the screening length of the metal.
Thus, the region of linear growth of ∆gyz/g could indi-
cate the typical thickness at which the continuous and
homogeneous heavy-metal film is formed during deposi-
tion. Interfacial roughness sets the natural scale for this
thickness.

Conclusions. The results of ab initio calculations sug-
gest that the damping-like SOT in Co/Pt and Co/Au bi-
layers has an interfacial contribution comparable to the
spin-Hall effect in the heavy-metal layer. The magne-
toconductance ∆yzg for the Co/Pt bilayer is found to
be of the order of a conductance quantum per interfacial
atom, which exceeds the expected spin-Hall magnetocon-
ductance by more than an order of magnitude and likely
has an interfacial origin.
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Appendix: Expansion of SOT in vector spherical har-
monics. Any vector field V(n̂) defined on the unit
sphere and tangential to it can be represented as a linear
combination of orthonormal vector spherical harmonics

(VSH) [53] Y
(ν)
lm (ν = 1, 2):

V(n̂) =
∑
lmν

A
(ν)
lmY

(ν)
lm (n̂) (5)

where

Y
(1)
lm (n̂) =

r∇Ylm(n̂)√
l(l + 1)

, (6)

Y
(2)
lm (n̂) =

r×∇Ylm(n̂)√
l(l + 1)

. (7)

The magnetization torque T induced by the applied elec-
tric field E is given by the torquance tensor K̂(m̂) which
depends on the orientation of the magnetization m̂,

T = K̂(m̂)E, (8)

and can generally be expanded in the VSH basis as

K̂(m̂) =
∑
lmν

Y
(ν)
lm (m̂)⊗K

(ν)
lm . (9)

Here K
(ν)
lm are (complex) Cartesian vectors whose struc-

ture is determined by the symmetry of the system. In
particular, consider the axially symmetric case (C∞v
symmetry) characteristic for a polycrystalline bilayer. In
this case, the torquance tensor K̂(m̂) should be invariant
with respect to the rotation of the crystal around the z
axis. Because this rotation does not mix VSH with each
other, each term in Eq. (9) should be invariant.
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If the bilayer is rotated around the z axis by angle δ,

the VSH transforms as Y
(ν)
lm (θ, φ) → Y

(ν)
lm (θ, φ − δ) =

e−imδY
(ν)
lm (θ, φ). Therefore, K

(ν)
lm must transform as

K
(ν)
lm → eimδK

(ν)
lm , which is only possible for m = 0 with

K
(ν)
l0 ‖ ẑ, or for m = ±1 with K

(ν)
l,±1 = K

(ν)
l,±1(x̂ ± iŷ).

Thus, only VSH with m = ±1 are allowed in the axially
symmetric case for the torque arising in response to the

in-plane electric field. We also have K
(ν)
l,−1 = −K(ν)∗

l,1 ,

because K̂(m̂) must be real.

In this Letter we use the reference frame in which E =
Ex̂. Mirror reflection symmetry only allows ImY

(ν)
l1 for

odd l and ReY
(ν)
l1 for even l. It is then convenient to

use the basis of (also orthonormal) real VSH, which are
defined, similar to the real scalar spherical harmonics,

as Z
(ν)
l,−1 = −

√
2ImY

(ν)
l1 and Z

(ν)
l,1 = −

√
2ReY

(ν)
l1 . The

torquance is then represented by the expansion

T/E =
∑
lν

C
(ν)

l,(−1)lZ
(ν)

l,(−1)l . (10)

Apart from being orthonormal, the VSH (both com-
plex and real) have the following useful properties for
representing SOT. First, under time reversal (m̂→ −m̂),

Z
(1)
lm is even for odd l and odd for even l, while the oppo-

site holds for Z
(2)
lm . Further, the contribution of a given

SOT term to magnetization damping is given by the curl
of the effective field B = T × m̂ corresponding to that
term. It follows from the definition of VSH that the effec-
tive field corresponding to the torque harmonic Z

(1)
lm has

the form of Z
(2)
lm , and vice-versa. Because Z

(2)
lm ∝ L̂Zlm,

we find that the torque harmonic Z
(1)
lm generates damp-

ing proportional to L̂2Zlm = l(l + 1)Zlm, i.e., simply to

Zlm. On the other hand, torque harmonics Z
(2)
lm do not

contribute to damping at all, because the correspond-
ing effective field is a pure gradient and, therefore, has
a zero curl. Conversely, the effective field correspond-

ing to torque harmonics Z
(1)
lm has zero divergence. These

properties make it natural to call Z
(1)
lm torque harmonics

purely damping-like, and Z
(2)
lm purely field-like.

The angular dependence of the current-induced magne-
tization damping generated by the first two damping-like

terms in the VSH expansion, Z
(1)
1,−1 and Z

(1)
2,1, is propor-

tional to my and mxmz, respectively [30, 45].

The commonly used SOT types can be represented in
terms of VSH as follows:

Damping-like: m̂× (ŷ × m̂) =
√

8π/3Z
(1)
1,−1 (11)

Field-like: ŷ × m̂ = −
√

8π/3Z
(2)
1,−1 (12)

Planar-Hall-like [30, 45]:

mxm̂× (ẑ × m̂) =
√

2π/3Z
(2)
1,−1 +

√
2π/5Z

(1)
2,1

(13)

As can be seen from Eqs. (11)-(13), the leading damping-
like and field-like SOT terms are pure VSH’s, while the
planar-Hall-like term (13) is a linear combination of the
field-like term and a damping-like VSH with l = 2. For
brevity, we retain the terms damping-like and field-like
for the leading terms (11) and (12).
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