
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Spin-orbit related power-law dependence of the diffusive
conductivity on the carrier density in disordered Rashba

two-dimensional electron systems
Weiwei Chen, Cong Xiao, Qinwei Shi, and Qunxiang Li

Phys. Rev. B 101, 020203 — Published 30 January 2020
DOI: 10.1103/PhysRevB.101.020203

http://dx.doi.org/10.1103/PhysRevB.101.020203


Spin-orbit related power-law dependence of the diffusive conductivity on the carrier density in
disordered Rashba two-dimensional electron systems

Weiwei Chen,1 Cong Xiao,2, ∗ Qinwei Shi,1 and Qunxiang Li1, †

1Hefei National Laboratory for Physical Sciences at the Microscale &
Synergetic Innovation Center of Quantum Information and Quantum Physics,
University of Science and Technology of China, Hefei, Anhui 230026, China

2Department of Physics, The University of Texas at Austin, Austin, Texas 78712, USA
(Dated: January 21, 2020)

By using the momentum-space Lanczos recursive method which considers rigorously all multiple-scattering
events, we unveil that the non-perturbative disorder effect has dramatic impact on the charge transport of a two-
dimensional electron system with Rashba spin-orbit coupling in the low-density region. Our simulations find
a power-law dependence of the dc longitudinal conductivity on the carrier density, with the exponent linearly
dependent on the Rashba spin-orbit strength but independent of the disorder strength. Therefore, the classical
charge transport influenced by complicated multiple-scattering processes also shows the characteristic feature
of the spin-orbit coupling. This highly unconventional behavior is argued to be observable in systems with
tunable carrier density and Rashba splitting, such as the LaAlO3/SrTiO3 interface, the heterostructure of Rashba
semiconductors bismuth tellurohalides and the surface alloy BixPbySb1−x−y/Ag(111).

Introduction.—Spin-orbit coupling underlies numerous
fascinating phenomena in the field of spintronics [1], such as
the spin and anomalous Hall effects [2, 3], current-induced
spin polarization [4, 5], and spin-orbit torque [6]. Recent stud-
ies concerning the interplay between spin-orbit coupling and
disorder scattering have successfully described the spin and
anomalous Hall effect [2, 3] in the high carrier density regime.
In contrast, how the spin-orbit coupling affects the classical
charge transport properties of materials especially in the low
charge density regime, such as longitudinal conductivity and
Lorentz-force induced Hall effect, is still fuzzy.

Recently, unconventional behaviors of classical charge
transport in the two dimensional electronic systems (2DES)
with linear Rashba spin-orbit coupling [7–9] have begun to be
uncovered [10–17]. For instance, the Hall coefficient deviates
considerably from 1/ne in the low-density region (n < n0)
[13, 14]. Here n is the electron density, and n0 = m2α2

R/(π~
4)

is the electron density when the Fermi level locates at the
Dirac point of the Rashba system, with αR the Rashba spin-
orbit coefficient and m the effective mass. Besides, the lon-
gitudinal diffusive conductivities as a function of n differ sig-
nificantly between the high-density (n ≥ n0) and low-density
regions, as shown in the Boltzmann transport theory [10, 11]:

σ

σ0
=

 1, n ≥ n0;
1
2 ( n2

n2
0

+ n4

n4
0
), n < n0.

(1)

Here σ0 = n0e2τ0/m denotes the conductivity at the Dirac
point and τ0 = ~3/(mniṼ2

0 ) is the elastic scattering time, where
Ṽ0 and ni denote, respectively, the scattering strength and
the impurity concentration of Gaussian white-noise disorder.
This formula shows that the diffusive conductivity of classical
charge transport is highly sensitive to the spin-orbit coupling
strength in the low-density region.

When the Fermi energy is close to the band edge, how-
ever, due to long-wavelength potential fluctuation, previous
intensive studies in the absence of spin-orbit coupling con-

firmed that multiple scatterings off many impurity centers
play a dominated role to determine the localized density
of states and invalidate the coherent-potential approximation
[18–23]. As is well known, the presence of spin-orbit cou-
pling which breaks the spin rotational invariance, can trans-
form the orthogonal universality classes into symplectic uni-
versality classes and makes the two-dimensional electronic
states resilient to the localization [24–27]. The mobility edge
even locates below the unperturbed band edge in the weak
disorder regime. Therefore, how is the diffusive conductiv-
ity in spin-orbit coupled systems influenced by the multiple-
scattering is still an open question. In particular, it is of much
interest whether the conductivity in this case still shows un-
conventional characteristic features of the spin-orbit coupling.

A recent work by using the T-matrix approximation pre-
dicted plateaus of the conductivity in the ultra-low-density
case of the Rashba system [12]. The T-matrix approxima-
tion only takes into account multiple scatterings off every sin-
gle impurity center, but neglects those off a set of impurities.
As a result, it cannot reproduce [12, 28] the disorder-induced
smooth tail of the density of states near the band edges, which
is however a basic experimental fact [29, 30]. Therefore, a
more reasonable non-perturbative method is necessary to in-
spect the novel transport behavior resulting from multiple-
scattering events.

In this work, we simulate the diffusive conductivity of a
Rashba 2DES based on the Kubo formula combined with the
Green’s function obtained from the Lanczos recursive method
in momentum space. For this purpose, our study focuses on
the strong spin-orbit coupling system in the presence of weak-
potential disorder, so that even the states a little below the
band edge are guaranteed to be extended [27]. Our numerical
method takes into account rigorously all multiple-scattering
events [31–33]. We find that in the low-density region the
multiple-scattering events lead to an unconventional power-
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law dependence of the conductivity σ on the electron density:

σ

σ0
= A(

n
n0

)ν, (2)

with A a coefficient independent of the electron density. Our
simulation displays that the exponent can be fitted as

ν = −1.56α/t + 1.66, (3)

which does not depend on the electron density or disorder
strength, but is linearly related to the spin-orbit strength α.

Preliminaries.— In the calculation, we simulate the real
material by a nearest-neighbor tight-binding (TB) Hamilto-
nian on a square lattice,

H = 2t
∑

i

c†iσ′ciσ′ −
∑

〈i, j〉σ′σ′′
Viσ′, jσ′′c

†

iσ′c jσ′′ + h.c.. (4)

Here

Vi,i+x̂ =
1
2

(
t α
−α t

)
, Vi,i+ŷ =

1
2

(
t −iα
−iα t

)
, (5)

c†iσ′ (ciσ′ ) denotes the creation (annihilation) operator of an
electron on site i with spinσ′, t stands for the nearest-neighbor
hopping energy, and α is the spin-orbit strength. As we have
noted, the existence of metallic phase in the low-density 2DES
demands a strong spin-orbit coupling [24–27]. Therefore, this
study focuses on the regime 0.1 ≤ α/t ≤ 0.4. The upper
boundary α/t = 0.4 in fact represents a very strong spin-orbit
coupling in real materials [34–36] (see below).

Since in a number of systems, such as semiconductor het-
erostructures [15, 37, 38], LaAlO3/SrTiO3 interface [34, 39],
surface of Rashba semiconductors bismuth tellurohalides [35,
36, 40, 41] and surface alloys [42–44], both the carrier den-
sity (Fermi energy) and the Rashba spin-orbit coupling can be
tuned, experimental verification of Eqs. (2) and (3) is feasible.

In order to simplify the calculation of the conductivity in
the Kubo formula, in particular the vertex correction to the
conductivity bubble diagram, and to compare with the previ-
ous results Eq. (1), we map the TB model into the effective
continuum Hamiltonian in the low-energy regime as

H(k) =
~2k2

2m
+ αR(σ × k) · ẑ, (6)

with t = ~2/ma2 and α = αR/a. Here a denotes the lat-
tice constant, k = (kx, ky) is the 2D wave-vector, ẑ is a unit
vector perpendicular to the 2D plane, and σ is the vector of
Pauli matrices. The details of the transformation between the
TB model and continuum model are presented in the Supple-
mental Materials [45] (see, also, references [46–48] therein).
Such a mapping also results in the equality α/t = kRa, where
kR = mαR/~

2 corresponds to the Rashba wave-vector which
measures the momentum splitting of the two Rashba sub-
bands. To give a specific example, we consider the surfaces
of Bismuth Tellurohalides [35, 49], where kR ≈ 0.05Å−1,
a ≈ 4.3Å and hence α ≈ 0.22t. The two models match well in

the low-density regime when the spin-orbit coupling α ≤ 0.4t.
Beyond this value, the mapping from the TB model to the con-
tinuum one gradually fails to work because one can no longer
obtain the same dispersions even at very low energies [45].

The eigenfunctions and eigenvalues of H(k) (Eq. 6) are
given respectively by |ks〉 = 1

√
2
(i, seiθk )T and Eks = ~2k2

2m +

sαR|k|, where s = ±1 denotes the helicity and θk is defined by
θk = arctan(ky/kx). The two Rashba bands Eks are approxi-
mately linear in the vicinity of the Dirac point k = 0, where
they touch each other. The matrix

Uk =
1
√

2

(
i i

eiθk −eiθk

)
(7)

implements the rotation from the spin to the eigenstate basis.
Besides, the disorder is modeled by the Gaussian white noise,
V(r)V(r′) = nimpṼ2

0δ(r − r
′), where · · · stands for averaging

over disorder realizations.
Within the linear response the longitudinal diffusive con-

ductivity at zero-temperature is given by the Kubo formula
[50, 51]

σ(E) = σRA(E) − σRR(E), (8)

where

σRA(E) =
e2~

2π

∫
d2k

(2π)2 Tr[GR(k, E)vxGA(k, E)ṽx], (9)

σRR(E) =
e2~

2π

∫
d2k

(2π)2 ReTr[GR(k, E)vxGR(k, E)ṽx]. (10)

Here Tr represents the trace over helicity s, and

G(k, E) =

(
g(k+, E) 0

0 g(k−, E)

)
(11)

denotes the Green’s function of the disordered system in the
band-eigenstate basis with g(ks, E) = (E − Eks − Σ(ks, E))−1

and Σ(ks, E) the self-energy. A,R indicate advanced or re-
tarded Green’s functions. The x component of the veloc-
ity operator in the band-eigenstate basis is given by vx =
1
~
( ~

2kx
m + αR cos θσz + αR sin θσy), and the vertex function ṽx

can be obtained from the Bethe-Salpeter equation ṽx(k) =

vx(k) + nimpṼ2
0

∫ d2p
4π2 U†kUpG(p, E)ṽx(p)G(p, E)U†pUk. Based

on symmetry arguments, it is verified that ṽx has the same ma-
trix structure as vx, so that the vertex function can be solved
as

ṽx =
1
~

(
~2kx

m
+ α̃R cos θσz + α̃R sin θσy), (12)

where

α̃R =
αR + nimpṼ2

0 I1

1 − nimpṼ2
0 I2

,

I1 =

∫
d2k
4π2

~2k
4m

(g+g+ − g−g−),

I2 =

∫
d2k
4π2

1
4

(g+g+ + g−g− + g+g− + g−g−).

(13)
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FIG. 1. (Color online) The self-energy function versus energy of
the system with the spin-orbit strength α/t = 0.2 and the disorder
strength: (a) Γ0 = ER/32, (b) Γ0 = ER/16, (c) Γ0 = ER/8, and (d)
Γ0 = ER/4. The results calculated from the exact numerical sim-
ulation (blue), the SCBA (red) and the Born approximation (green)
are displayed for comparison. Gray lines locate at the Dirac point
E = 0t and band edge of the pure system E = −ER = −0.02t. Here
Γ0 = ~/2τ0 = V2

0 /2t denotes the disorder-induced band broadening.

with g± = g(k±, E). Thus the conductivity can be calculated
by Eqs. (8-13) with exactly calculated Green’s functions.

Numerical methods.—In our numerical simulation, the
Green’s functions g(ks, E) of the disordered systems are cal-
culated using the well-developed Lanczos recursive method
[31–33] with the TB model. We generate the disorder by ran-
dom on-site energies with zero mean and V2

0 variance, where
V0 = Ṽ0/a2, without loss of generality. The impurity concen-
tration is ni = 1/a2 in following calculation.

The numerical evaluation requires a nonzero broadening
(resolution) parameter η & δE, where δE is the mean level
spacing [52]. In order to obtain a high energy resolution and
also be free from the finite-size errors, we consider a large
enough square lattice of size Lx × Ly = 8000 × 8000 [53]
with periodic boundary conditions in both the x and y direc-
tions. Thus, a small artificial parameter η = 0.001t is used
to simulate the infinitesimal imaginary energy in our simu-
lations. Remarkably, based on the standard Dyson equation
Σ(ks, E) = g−1

0 (ks, E) − g−1(ks, E), we find the self-energy
function is independent of both k and s.

Before addressing the transport behaviors, here we show
the advantage of our exact simulation to the self-energy over
other methods employed in previous studies on the Rashba
system, including the Born approximation [10, 11], self-
consistent Born approximation (SCBA) [11] and the T-matrix
approximation [12, 28]. The self-energy produced by the lat-
ter two methods are qualitatively similar [12, 28], so we do not
show the result of the T-matrix approximation. In Fig. 1 we
plot the numerical real and imaginary parts of self-energy as
functions of the Fermi energy for different disorder strengthes,
and compare them with the results of Born approximation and
SCBA. As expected, the Born’s and SCBA’s results both work
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FIG. 2. (Color online) ln(σ/σ0) vs ln(n/n0) for spin-orbit strength (a)
α = 0.2t, (b) α = 0.3t and (c) α = 0.4t. In the low-density regime,
the numerical results are described by Eq. (2) with ν independent
of both the carrier density and random disorder strength. The Boltz-
mann analytical result is plotted for comparison. (d) The slope ν of
ln(σ/σ0) vs ln(n/n0) in the low-density region as a function of spin-
orbit strength α/t.

well in the high-density regime, where the perturbation ap-
proaches are successful due to the presence of a small param-
eter expansion in terms of 1/kF l. Here kF and l denote the
Fermi momentum and mean free path, respectively. On the
contrary, as E approaches the band edge, kF l . 1 brings the
system into a totally different regime where the contribution
from multiple scattering events plays in important role and the
conventional perturbative methods are invalid [51, 54]. The
effects of multiple scattering involving many impurity cen-
ters on the self-energy, for instance the the crossing wigwam
self-energy diagrams sketched in the Supplemental Materials
[45], are out of the regime of previous perturbation theories.
However, they become important in the strong-scattering case
(kF l . 1). Thus, the results of the Born approximation and
SCBA gradually deviate from our non-perturbative results in-
cluding all the multiple scattering contributions. Especially,
the tail of the imaginary part of the SCBA self-energy vanishes
sharply, contrary to the smooth tail in our numerical simula-
tion. Such a sharp reduction behavior may lead to some un-
physical behaviors, for example, the upturn of mobility near
the band edge in the previous SCBA calculation [55].

It is worthwhile to note that the character of the imaginary
part of the self-energy obtained by our simulation is consis-
tent with the smooth tail of the experimental density of states
of the Rashba-type spin-split states near the conduction band
bottom, such as the surface state of Bi/Ag(111) [29, 30]. This
agreement indicates that our simulation indeed gives a rea-
sonable account for the multiple-scattering effects in the low-
density region of Rashba systems.

Spin-orbit related power-law conductivity.—The qualita-
tive difference between the self-energies produced by our sim-
ulation and by the SCBA or the T-matrix approximation sug-
gests that our method may demonstrate some transport be-
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FIG. 3. (Color online) Different contributions to the conductivity
as a function of the charge density for systems with α/t = 0.2 and
disorder strengthes (a) Γ0 = ER/32, (b) Γ0 = ER/16, (c) Γ0 = ER/8
and (d) Γ0 = ER/4.

haviors unprecedented in previous theoretical researches of
2D Rashba systems [10–12]. Our simulation supports this
speculation by finding an emergent power-law dependence
of the diffusive conductivity on the carrier density [Eq. (2)]
in the low-density region. The curves of the conductivity
versus the carrier density n for different spin-orbit strengths
(α/t = 0.2, 0.3 and 0.4) are displayed in the log-log plots
Fig. 2(a), (b) and (c), compared with the Boltzmann analyt-
ical formula [Eq. (1)]. In the low-density regime our results
deviate significantly from the analytical solution [55].

In the multiple-scattering dominated regime the curves of
ln(σ/σ0) vs ln(n/n0) in Fig. 2(a), (b) and (c) are mostly lin-
ear. This observation inspires us to use the power-law formula
[Eq. (2)] to fit the results, where the exponent ν is indepen-
dent of the carrier density. As shown in Fig. 2(a), (b) and
(c), the curves corresponding to different disorder strengths
Γ0/ER = 1/4, 1/8, 1/16 and 1/32 (defined in the caption of
Fig. 1) for a fixed spin-orbit strength are parallel to each other
in the linear regime. This means that the exponent ν in Eq. (2)
is also independent of the random disorder strength.

When presenting the values of ν for different spin-orbit
strengths in the same plot, Fig. 2(d), we find that the expo-
nent ν is linearly dependent on the spin-orbit strength α. Fit-
ting the data, we obtain the linear scaling Eq. (3). This equa-
tion indicates that, the charge transport influenced by compli-
cated multiple-scattering processes also shows the character-
istic feature of the spin-orbit coupling. The deep understand-
ing for the underlying physical mechanism leading to this un-
conventional relation is not clear at the present stage and is
beyond the scope of our numerical study. More theoretical ef-
forts are called for in the future. Here we just numerically find
this relation, which can be experimentally tested as a transport
indicator of multiple-scattering.

Another remark here is that, the factor A in Eq. (2) is de-

pendent on both the disorder and spin-orbit strengths. The
A-V0 curves for different spin-orbit strengths are shown in
the Supplemental Materials [45]. In the considered regime
0.1t ≤ α ≤ 0.4t we can approximately fit A as A(α/t,V0/t) =

0.47 (α/t)−1.43 V0/t + 0.03 (α/t)−1.1.
Conclusion and discussion.—In conclusion, we showed

that the multiple-scattering events play an important role in
determining both the quasi-particle and transport properties
of the low-density Rashba 2DES. Our simulations uncover a
power-law dependence of the dc conductivity on the electron
density with the exponent linearly dependent on the spin-orbit
strength but independent of the disorder strength.

To provide some clues in understanding the unconventional
transport behavior described by Eqs. (2) and (3), we stress
here the relevance of the σRR term [Eq. (10)]. Theoreti-
cally, this term can be neglected in the Boltzmann regime
where the σRA term yields the quantitatively similar result to
Eq. (1). Hence, when the non-Boltzmann power-law conduc-
tivity emerges instead of the Boltzmann formula, the σRR term
is anticipated to be important. In Fig. 3, the contributions from
the σRR and σRA terms are shown separately for the case of
α/t = 0.2. In combination with Fig. 2(a), we find that the
power-law [Eq. (2)] holds perfectly when σRR ≥ σRA/3.

So far we have assumed scalar (spin independent) short-
range scatterers. Here we note that the short-range disorder
can be classified into three types according to the spin depen-
dence: spin independent, spin conserved and spin-flipped. In
the Supplemental Materials [45] we display ln(σ/σ0) versus
ln(n/n0) in the cases of the other two types of disorder: the
spin conserved disorder V1 = V1(r)σz and the spin-flipped
disorder V2 = V2(r) · σ. Here V2(r) is a in-plane vector,
and both V1(r) and V2(r) are random with zero mean and V2

0
variance. In these two cases the exponent of the conductiv-
ity power-law can be fitted respectively by the linear relations
ν = −1.36α/t + 1.41 and ν = −2.42α/t + 1.83. Therefore,
we find that the linear relation in Eq. (3) holds for each type
of short-range disorder, with the slope and intercept constants
depending on the type of disorder. We also find that the Eq. (3)
is independent of the impurity concentration [45].

Lastly, we suggest some experimental systems where our
simulation results can be potentially observed. First, atten-
tion can be paid to the Rashba 2DESs in heterostructures, due
to the tunability of the Rashba effect by an external electric
field, such as the one formed at the LaAlO3/SrTiO3 interface
[34, 39] where kR ≈ 0.08Å−1 (a ≈ 2.5Å, α/t ≈ 0.2) in the
absence of the external electric field. Besides, the Rashba
2DESs in the heterostructures formed by n-type polar semi-
conductors bismuth tellurohalides are also compelling candi-
dates [38]. Meanwhile, the Rashba 2DESs appearing near
the surface of bismuth tellurohalides [35, 36, 40, 41] can be
considered for experiment as well, such as that in the surface
states of Bismuth Tellurohalides [35, 49] which arises in the
bulk-gap region with kR ≈ 0.05Å−1 (a ≈ 4.3Å, α/t ≈ 0.22).
Furthermore, it has been reported that in the surface alloy
BixPbySb1−x−y/Ag(111) [42–44] the Fermi energy and Rashba
splitting can be independently tuned through the concentra-
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tions x and y. This system may be another good platform to
verify our finding.
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[55] In the Supplemental Materials [45] we also show that, in the
low-density regime the saturation behavior of the mobility ob-

tained within the SCBA [11] disappears due to the full consid-
eration of multiple-scattering events.
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