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A correction method for vertical transition levels (VTLs) involving defect states calculated with a supercell
technique is formulated and its effectiveness is systematically verified with 10 defects in prototypical materials:
cubic-BN, GaN, MgO, and 3C-SiC. Without any corrections, the absolute errors are around 1 eV with moderate
size supercells in most cases. In contrast, when our correction method is adopted, the absolute errors are reduced
and become less than 0.12 eV in all the cases. Our correction scheme is general and will be potential of wide
application as it is adaptive for evaluating various quantities at fixed geometry, as represented by those relevant
to the generalized Koopmans’ theorem.

Point defects determine various physical properties in
solids. One of the most important properties is the optical
property. For instance, ZnO is known to show green lumi-
nescence, which has been attributed to point defects [1]. An-
other example is SrTiO3, known to show blue-light emission
at room temperature after Ar+-irradiation, whose origin is pre-
sumably the emergence of oxygen vacancies [2]. In addition,
we can investigate defects with deep states, which often de-
grade the device performance, from the photo-absorption and
-emission spectra. It is generally considered that absorption
(emission) of a photon by a defect promotes (demotes) an
electron to the excited (ground) state, most probably with-
out altering the atomic configuration, based on the Franck-
Condon principle [3]. This is a consequence of the fact that
electrons are much lighter than nuclei. Thus, we can represent
the optical transition by a vertical arrow in the configuration
coordination diagram, and its transition energy is given as an
optical transition level or vertical transition level (VTL) with
respect to the valence band maximum (VBM) or the conduc-
tion band minimum (CBM) [4, 5].

First-principles calculations have become a powerful tool
to understand and predict the defect properties. In the cal-
culations of extended systems with defects, they are almost
always evaluated by a supercell approach nowadays, where
a charged defect interacts with its periodic images and back-
ground charge, which erroneously modifies the total energies
of charged defect supercells [6–9]. Methods to correct the en-
ergies to the dilute limit are well established, as represented
by the scheme proposed by Freysoldt, Neugebauer, and Van
de Walle (FNV) [7], and its extension to anisotropic systems
and/or relaxed geometries (eFNV) [9]. The correction energy
of the (e)FNV scheme is written as

Ecorr = EPC − Q∆VPC,Q/b|far. (1)

The first term is the point charge (PC) correction energy and
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the second is an alignment-like term, where ∆VPC,Q/b|far is the
potential difference between defect-induced and PC potentials
at a region outside of the defect in the supercell, and Q is
the defect charge state. The PC correction energy and poten-
tial are evaluated using the static dielectric tensor because a
charged defect in its ground state is screened by both elec-
trons and ions. The charged defect formation energy in the
dilute limit is accurately calculated using Eq. (1) as long as
the defect charge is enclosed in a supercell [7–9].

However, conventional corrections are not applicable to the
calculation of a VTL as this involves a non-trivial combina-
tion of ionic and electronic screening, as we will explain in
a moment. In general, a vertical transition starts from some
charge state Q in the equilibrium configuration coordination
S of that charge state, S(Q), which includes the ionic screen-
ing response to Q. The VTL to final charge state Q + ∆Q,
involving the VBM (CBM), is calculated as

µ(Q/Q + ∆Q; S (Q)) = {E (Q + ∆Q; S (Q)) − E (Q; S (Q))}

+ ∆Q · εV(C)BM,

(2)

where ∆Q is the additional charge, i.e., +1 or -1, and εV(C)BM

denotes the energy level of the VBM (CBM). Let us illustrate
the issues of the VTL calculations from supercells through the
example of the 1+ to neutral charge transition of the oxygen
vacancy (VO) in MgO. One would naively expect the VTL to
be well estimated by applying the conventional FNV scheme
to the initial state using the static dielectric tensor since the
final state is charge neutral. Unfortunately, this is incorrect.
As shown in Fig. 1(a), the eFNV corrected VTLs vary even
more with cell size than the uncorrected ones. As the total en-
ergy of the initial state should be well corrected by the FNV
method, the cell size dependence is attributed to the energy
of the final state although it is neutral. Indeed, the forma-
tion energies of V0

O at the V+O atomic configurations increase
with increasing supercell size as shown in Fig. 1(b). This is
an artifact purely caused by spurious electrostatic potential.
The reason is that the interaction of the added charge (∆Q=-
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FIG. 1: (a) Relative VTLs from 1+ to neutral charge transition of the
oxygen vacancy (VO) in MgO without corrections, with the eFNV
corrections using the static (eFNV) or high frequency dielectric ten-
sor (eFNV(ε∞)) [10], and with corrections using the present method.
(b) Relative formation energies of V0

O at the V+O atomic configura-
tions in MgO without corrections. The horizontal axis is the inverse
of the cube root of the number of atoms in the supercells. The un-
corrected values are fitted with a function of aN−1 + bN−1/3 + c, and
energy zeros are set at the respective extrapolated ones.

1) with the periodic images of the initial state (Q=1) are stat-
ically screened (electrons + ions), but the interactions with
its own periodic images (∆Q=-1) involve electronic screen-
ing only, and the two contributions do not cancel. Instead,
one might think the (e)FNV scheme using the high-frequency
(electronic contribution only) dielectric tensor works better as
the energy caused by the ionic displacement is cancelled out
when taking energy difference between the final and initial
states. Again, this is not correct as shown in Fig. 1(a), where
much worse cell size dependence remains.

Similar issues are of course present for any VTL. Although
there have been numerous numbers of theoretical reports on
the calculations of VTLs [11–14], surprisingly, none has re-
ferred to this issue. Therefore, we aim to formulate a correc-
tion method for the VTLs within the total energy framework.

To simplify the derivation, we will assume the cubic system
with isotropic screening. However, final correction energy ex-
pression is common to the anisotropic systems. A VTL or an
additional electrostatic energy, arising from adiabatically in-
troducing ∆Q with a spatial distribution ∆q(r) that excludes
the screening charge, becomes for the isolated defect

∆E =

∫

d3
r∆q (r) VQ (r) +

1
2

∫

d3
r∆q (r) V∆Q (r), (3)

where VQ (r) is the initial defect-induced electrostatic poten-
tial of a single defect, and V∆Q (r) an additional contribution to
the electrostatic potential, which is caused by addition of ∆Q.
The factor 1/2 arises only for the second term as V∆Q (r) builds
up while ∆Q is introduced, whereas VQ (r) is unchanged
throughout the process. Since Q and ∆Q are screened with
static (ε0) and electronic (ε∞) dielectric constants, respec-
tively, the asymptotic potential behaves like Q/ε0+∆Q/ε∞

r
when

the centers of Q and ∆Q are assumed to be the same. There-
fore, standard finite-size supercell corrections with a single
charge and a single dielectric constant, cannot capture this ef-

fect. Also, it is not a difference of simple electrostatic correc-
tions of initial and final state as demonstrated above.

In the dilute limit, VQ (r) is written as V
Q

lr (r)+V
Q
sr (r), where

V
Q

lr (r) is the long-range potential caused by point charge Q

and V
Q
sr (r) remaining part representing short range potential.

Similarly, V∆Q (r) is written as V
∆Q

lr (r) + V
∆Q
sr (r). Following

the discussion in Ref. [7], the short-range potential can be ob-
tained directly from the DFT electrostatic potentials ṼDFT as

V
Q
sr (r) = ṼDFT

initial (r) − ṼDFT
bulk (r) − Ṽ

Q

lr (r) −CQ, (4)

V
∆Q
sr (r) = ṼDFT

final (r) − ṼDFT
initial (r) − Ṽ

∆Q

lr (r) −C∆Q. (5)

The symbol Ṽ is used for periodic potentials defined within
the DFT supercell. The initial state is the defect-containing
supercell in charge state Q, while the final state the one in
charge-state Q + ∆Q. CQ and C∆Q are alignment constants
chosen such that the short-range potentials decay to zero far
from the defect [7, 15]. The correction potentials for charge
Q and ∆Q are therefore written as

V
Q
corr (r) =

(

V
Q

lr (r) + V
Q
sr (r)

)

−
(

ṼDFT
initial (r) − ṼDFT

bulk (r)
)

= V
Q,corr
lr (r) − CQ, (6)

V
∆Q
corr (r) =

(

V
∆Q

lr (r) + V
∆Q
sr (r)

)

−
(

ṼDFT
final (r) − ṼDFT

initial (r)
)

= V
∆Q,corr
lr (r) −C∆Q, (7)

where V
Q,corr
lr (r) = V

Q

lr (r)−Ṽ
Q

lr (r) and V
∆Q,corr
lr (r) = V

∆Q

lr (r)−
Ṽ
∆Q

lr (r) mean the sign-reversed Madelung potentials. The cor-
rection energy is then obtained by replacing the electrostatic
potentials to the correction potentials

∆Ecorr =

∫

d3
r∆q (r) V

Q
corr (r)+

1
2

∫

d3
r∆q (r) V

∆Q
corr (r). (8)

Here, we split the additional charge ∆q (r) to ρ∆Q

PC and ∆ρ∆Q,
where ρ∆Q

PC is the point charge ∆Q at the center of the defect
and ∆ρ∆Q is the finite size distribution. Based on the conven-
tional FNV scheme, the second term in Eq. (8) is written as
α(∆Q)2

2ε∞L
−∆QC∆Q [7, 8], where L and α are size of the supercell

and the Madelung constant, respectively. In the same manner,
the first term is rewritten as αQ∆Q

ε0L
−∆QCQ−

∫

d3
r∆ρ∆QV

Q
corr (r).

Here, the third term indicates interaction between finite size of
the additional charge and the correction potential for the initial
charge. When we assume Coulomb interactions are screened
by a dielectric constant independently of distance, V

Q
corr (r) can

be expanded as,

V
Q
corr (r) =

αQ

ε0L
−

2π
∫

d3
rq (r) r2

3ε0L3
−

2πQr2

3ε0L3
. (9)

Using

C∆Q =
2π

∫

d3
r∆ρ∆Q (r) r2

3ε∞L3
(10)

as derived by Komsa et al. [8],
∫

d3
r∆ρ∆QV

Q
corr (r) =

ε∞

ε0
QC

∆Q

. (11)
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FIG. 2: Relative VTLs without corrections, with point-charge (PC) corrections, and with PC plus alignment corrections of (a) VB(2-/3-), (b)
VB(3-/2-), (c) VN(2/3), and (d) VN(3/2) in c-BN, (e) VGa(2-/3-) and (f) VN(2/3) in GaN, (g) VMg(1-/2-), (h) VO(1/2), and (i) VO(2/1) in MgO,
and (j) VC(1/2) in 3C-SiC as a function of the inverse of the cube root of the number of atoms in the supercells.

By summing all the contributions, the correction energy can
be written as

∆Ecorr =
αQ∆Q

ε0L
+
α(∆Q)2

2ε∞L

−

(

∆QC∆Q + ∆QCQ +
ε∞

ε0
QC∆Q

)

.

(12)

For anisotropic systems, one needs to use the averaged di-
electric constant, i.e., 〈ε〉 = 1

3 (ε11 + ε22 + ε33), where εi j is a
component of dielectric tensor ε̄. Then, the correction energy
can be rewritten as

∆Ecorr =
2∆Q

Q
E

Q

PC (ε̄0) + E
∆Q

PC (ε̄∞)

−

(

∆QC∆Q + ∆QCQ +
〈ε∞〉

〈ε0〉
QC∆Q

)

,

(13)

where E
Q

PC (ε̄) is the point-charge corrections for charge Q

screened by ε̄. The first two contributions mean first-order
point-charge correction, while the third bracket corresponds
to the alignment term.

To test our correction method, we investigate the supercell
size dependence of the VTLs involving defects in prototyp-
ical non-metallic materials: cubic-BN (c-BN), GaN, MgO,
and 3C-SiC, with respect to the CBM and VBM [Eq. (2)]
for donor- and acceptor-type defects, respectively. All the
VTLs in this study were calculated with the Heyd-Scuseria-
Ernzerhof hybrid functional [16], and the Fock-exchange pa-
rameters were tuned to reproduce each experimental band
gap [12, 17–19]. We also confirmed that the formation ener-
gies of all the defects considered in this study were accurately
corrected with eFNV (see Fig. S1 in Supplemental Mate-
rial [20]), which indicated these defects were mostly enclosed
by relatively smaller, e.g., 64-atom supercells.

Figures 2(a) and (b) show both the corrected and uncor-
rected VTLs of VB in c-BN as a function of the supercell size.
Without any corrections, one can see the VTLs strongly de-
pend on the supercell size, and the absolute error is larger than
0.7 eV even with the largest 1000-atom supercell in our test
set. Conversely, the PC-level correction based on Eq. (13)
drastically reduces the cell size dependences, and the absolute
errors are only 0.1 eV at the smallest 64-atom supercell. Such
a small cell size dependence indicates the V2−

B and V3−
B defect

charges are very much localized. Indeed, their defect forma-
tion energies are satisfactorily corrected with the PC correc-
tions as well.

Figure 2 also shows the rest of the VTLs involving vacan-
cies in the four materials as a function of the supercell size.
Again, our PC corrections work well with reasonable accu-
racy on average. Regarding cation vacancies [Figs. 2(e) and
(g)], the corrected values are almost constant within 0.1 eV
even at the smallest supercells, as in the case of VB in c-BN
[Figs. 2(a) and (b)]. In contrast, the VTLs of anion vacancies
are not so well corrected especially at the smallest supercells
[Figs. 2(c), (d), (f), and (h)-(j)]: the worst case is VN(2/3)
in c-BN with a deviation of 0.8 eV at the 64-atom supercell
compared with the corrected VTL at the 1000-atom supercell
[Fig. 2(c)]. This means the PC corrections are not appropri-
ate for the anion vacancies, which is consistent with the fact
that their total energies are not corrected by the PC corrections
(see Fig. S1 in Supplemental Material [20]).

As shown in Fig. 2, corrections with the alignment term
successfully estimate the VTLs in the dilute limit even with
relatively smaller supercells and work better than the PC cor-
rections in most cases. Notable examples are VN(2/3) and
VN(3/2) in c-BN [Fig. 2(c) and (d)]; the PC corrections lead
to errors of 0.8 and 0.7 eV at the smallest supercells, respec-
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FIG. 3: Relative VTLs without corrections, with PC corrections, and
with PC plus alignment corrections estimated with the second small-
est supercells (128 atoms for GaN and 216 atoms for c-BN, MgO,
and 3C-SiC). The energy zeros are the same as that in Fig. 2. The
shaded area within ±0.12 eV highlights the errors of the PC plus
alignment corrections.

tively, while the errors are reduced to 0.0 eV when the align-
ment terms are incorporated. Exceptions are VB(2-/3-) in c-
BN [Fig. 2(a)] and VGa(2-/3-) in GaN [Fig. 2(e)], where the
alignment terms slightly increase the errors.

To see the overall performance of our correction methods,
we align the VTLs calculated with the second smallest super-
cells (128 atoms for GaN and 216 atoms for the others) to the
same scale in Fig. 3; such moderate size supercells are regu-
larly adopted for practical defect calculations nowadays. Al-
though the VTLs are reasonably well corrected even at the PC
correction level, addition of the alignment term reduces the
errors to be within 0.12 eV in all the cases. Another important
merit to consider for the alignment-like term is that it removes
the projector augmented wave (PAW) or pseudopotential core
radius dependences from the VTLs. Bruneval and co-workers
have reported that the charged defect formation energies de-
pend on the PAW or pseudopotential radii, because the stan-
dard of the electrostatic potential depends on the radii, and this
modifies the total energy of a charged system [21]. The VTLs
depend on these radii as well because the charge state is differ-
ent by +1 or -1 between the final and initial states, but such an
energy dependence is removed when an alignment-like term,
more specifically second term in the bracket in Eq. (13), is
considered.

Finally, we emphasize our correction method is adaptive
for evaluating any quantities involving different charge states
at fixed geometry. One of the most important examples is
the quantity relevant to the generalized Koopmans’ theorem

(gKT) [22]. On the basis of the gKT, the deviation from lin-
earity is evaluated at a fixed geometry as ∆XC

∆XC = {E (Q + ∆Q; S (Q))− E (Q; S (Q))}+∆Q · ε (Q; S (Q)) ,
(14)

where ε(Q; S (Q)) is a single-particle level of a localized
orbital such as a defect-induced state. ∆XC has recently
been actively used to evaluate the accuracy of the exchange-
correlation functional for studying point defects and small po-
larons [23–25]. The finite size correction to the eigenvalue
for the second term in Eq. (14) has been well established by
many authors [8, 26, 27]. Conversely, the correction to the first
bracketed term has not been discussed so far. This is indeed
the same as Eq. (2), and therefore the our newly developed
correction is applicable for it. We note here that the eigen-
values are not corrected as accurately as the total energies or
the VTLs as shown in Fig. S2 in Supplemental Material [20].
Therefore, we recommend the use of larger supercells when
one needs to accurately determine ∆XC.

In summary, we derived correction schemes for calculat-
ing VTLs using defect supercells, and tested the effective-
ness with 10 vacancies in prototypical materials: cubic-BN,
GaN, MgO, and 3C-SiC. At the smallest supercells, the PC
corrections satisfactorily evaluate the VTLs in the dilute limit
involving cation vacancies but do not work well for those in-
volving anion vacancies. We then verified that potential align-
ment terms reduce the absolute errors to less than 0.12 eV
at the second smallest supercells in our test set. Since our
method is routinely and automatically applied, systematic cal-
culations of VTLs are feasible. Furthermore, it is adaptive for
evaluating any quantities involving different charge states at
fixed geometry, as represented by the gKT-relevant quantity.

Computational methods. First-principles calculations were
performed using the PAW method [28], as implemented in
VASP [29, 30]. We used PAW data sets with radial cutoffs
of 0.91, 1.40, 1.52, 1.31, 0.74, 0.90, and 0.86 Å for B, Ga,
Mg, Si, N, O, and C, respectively. In the supercell calcula-
tions, a 2 × 2 × 2 k-points mesh was applied to the 216-atom
or smaller supercells, while Γ-only sampling was applied to
the others, and spin polarization was considered in all the de-
fect calculations. Note that all the VTLs considered did not
involve partial occupation at the VBM, CBM or defect local-
ized states.

Acknowledgements. Fruitful discussions with Naoki Tsun-
oda are deeply appreciated. This work was supported
by the Grants-in-Aid for Scientific Research B (Grant No.
19H02416), PRESTO (Grant No. JPMJPR16N4), CREST
(Grant No. JPMJCR17J2), and the Support Program for Start-
ing Up Innovation Hub MI2I from JST, Japan. The computing
resources of ACCMS at Kyoto University and Research Insti-
tute for Information Technology at Kyushu University were
used for part of this work.

T.G. and Y.K. contributed equally to this work.

[1] I. V. Rodnyi, P. A.and Khodyuk, “Optical and lu-
minescence properties of zinc oxide (Review),”

Opt. Spectrosc. 111, 776 (2011).
[2] D. Kan, T. Terashima, R. Kanda, A. Masuno, K. Tanaka,

http://dx.doi.org/10.1134/S0030400X11120216


5

S. Chu, H. Kan, A. Ishizumi, Y. Kanemitsu, Y. Shimakawa,
and M. Takano, “Blue-light emission at room temperature from
Ar+-irradiated SrTiO3,” Nat. Mater. 4, 816 (2005).

[3] J. Franck and E. G. Dymond, “Elementary processes of photo-
chemical reactions,” Trans. Faraday Soc. 21, 536 (1926).

[4] C. G. Van de Walle and J. Neugebauer, “First-principles calcu-
lations for defects and impurities: Applications to III-nitrides,”
J. Appl. Phys. 95, 3851 (2004).

[5] C. Freysoldt, B. Grabowski, T. Hickel, J. Neugebauer,
G. Kresse, A. Janotti, and C. G. Van de Walle,
“First-principles calculations for point defects in solids,”
Rev. Mod. Phys. 86, 253 (2014).

[6] S. Lany and A. Zunger, “Assessment of correction methods
for the band-gap problem and for finite-size effects in super-
cell defect calculations: Case studies for ZnO and GaAs,”
Phys. Rev. B 78, 235104 (2008).

[7] C. Freysoldt, J. Neugebauer, and C. G. Van de Walle, “Fully
Ab Initio Finite-Size Corrections for Charged-Defect Supercell
Calculations,” Phys. Rev. Lett. 102, 016402 (2009).

[8] H.-P. Komsa, T. T. Rantala, and A. Pasquarello, “Finite-size
supercell correction schemes for charged defect calculations,”
Phys. Rev. B 86, 045112 (2012).

[9] Y. Kumagai and F. Oba, “Electrostatics-based finite-size
corrections for first-principles point defect calculations,”
Phys. Rev. B 89, 195205 (2014).

[10] The VTLs are corrected using the high frequency dielectric ten-
sor with an assumption that the ionic contribution to ∆VPC,Q/b|far

is absent.
[11] J. L. Lyons, A. Janotti, and C. G. Van de Walle, “Shallow ver-

sus Deep Nature of Mg Acceptors in Nitride Semiconductors,”
Phys. Rev. Lett. 108, 156403 (2012).

[12] J. L. Lyons and C. G. Van de Walle, “Computation-
ally predicted energies and properties of defects in GaN,”
npj Comput. Mater. 3, 12 (2017).

[13] Y. K. Frodason, K. M. Johansen, T. S. Bjørheim, B. G. Svens-
son, and A. Alkauskas, “Zn vacancy as a polaronic hole trap in
ZnO,” Phys. Rev. B 95, 094105 (2017).

[14] Q. D. Ho, T. Frauenheim, and P. Deák, “Origin of photolumi-
nescence in β − Ga2O3,” Phys. Rev. B 97, 115163 (2018).

[15] C. Freysoldt, J. Neugebauer, and C. G. Van de Walle, “Elec-
trostatic interactions between charged defects in supercells,”
phys. status solidi (b) 248, 1067 (2011).

[16] J. Heyd, G. E. Scuseria, and M. Ernzerhof, “Hy-
brid functionals based on a screened Coulomb potential,”

J. Chem. Phys. 118, 8207 (2003).
[17] J. B. Varley, A. Janotti, C. Franchini, and C. G. Van de Walle,

“Role of self-trapping in luminescence and p-type conductivity
of wide-band-gap oxides,” Phys. Rev. B 85, 081109(R) (2012).

[18] L. Gordon, A. Janotti, and C. G. Van de Walle, “Defects as
qubits in 3C− and 4H−SiC,” Phys. Rev. B 92, 045208 (2015).

[19] L. Weston, D. Wickramaratne, and C. G. Van de Walle, “Hole
polarons and p-type doping in boron nitride polymorphs,”
Phys. Rev. B 96, 100102(R) (2017).

[20] See Supplemental Material at URL for supporting figures to
back up the discussion.

[21] F. Bruneval, J.-P. Crocombette, X. Gonze, B. Dorado, M. Tor-
rent, and F. Jollet, “Consistent treatment of charged sys-
tems within periodic boundary conditions: The projec-
tor augmented-wave and pseudopotential methods revisited,”
Phys. Rev. B 89, 045116 (2014).

[22] J. P. Perdew, R. G. Parr, M. Levy, and J. L. Bal-
duz, “Density-Functional Theory for Fractional Parti-
cle Number: Derivative Discontinuities of the Energy,”
Phys. Rev. Lett. 49, 1691 (1982).

[23] G. Miceli, W. Chen, I. Reshetnyak, and A. Pasquarello,
“Nonempirical hybrid functionals for band gaps and polaronic
distortions in solids,” Phys. Rev. B 97, 121112(R) (2018).

[24] A. R. Elmaslmane, M. B. Watkins, and K. P. McKenna,
“First-Principles Modeling of Polaron Formation in TiO2 Poly-
morphs,” J. Chem. Theory Comput. 14, 3740 (2018).

[25] T. Gake, Y. Kumagai, and F. Oba, “First-principles study
of self-trapped holes and acceptor impurities in Ga2O3 poly-
morphs,” Phys. Rev. Mater. 3, 044603 (2019).

[26] M. Jain, J. R. Chelikowsky, and S. G. Louie, “Quasiparticle
Excitations and Charge Transition Levels of Oxygen Vacancies
in Hafnia,” Phys. Rev. Lett. 107, 216803 (2011).

[27] W. Chen and A. Pasquarello, “Correspondence of defect energy
levels in hybrid density functional theory and many-body per-
turbation theory,” Phys. Rev. B 88, 115104 (2013).
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