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A common path to superconducting spintronics, Majorana fermions, and topologically-protected
quantum computing relies on spin-triplet superconductivity. While naturally occurring spin-triplet
pairing is elusive and even common spin-triplet candidates, such as Sr2RuO4, support alternative
explanations, proximity effects in heterostructures can overcome these limitations. It is expected
that robust spin-triplet superconductivity in magnetic junctions should rely on highly spin-polarized
magnets or complex magnetic multilayers. Instead, we predict that the interplay of interfacial
spin-orbit coupling and the barrier strength in simple magnetic junctions, with only a small spin
polarization and s-wave superconductors, can lead to nearly complete spin-triplet superconducting
proximity effects. This peculiar behavior arises from an effective perfect transparency: interfacial
spin-orbit coupling counteracts the native potential barrier for states of a given spin and wave vector.
We show that the enhanced spin-triplet regime is characterized by a huge increase in conductance
magnetoanisotropy, orders of magnitude larger than in the normal state.

I. INTRODUCTION

Realizing equal-spin triplet superconductivity provides
an important platform for implementing superconducting
spintronics and topologically-protected Majorana bound
states (MBS) [1–7]. While naturally occurring triplet
pairing remains elusive [8–11], transforming materials
through proximity effects [12] offers a promising path to
tailor desired forms of superconducting states [13–17].

For superconducting spintronics equal-spin triplet
supports pure spin currents and the coexistence of
superconductivity and ferromagnetism through long-
range superconducting proximity effects in ferromag-
net/superconductor (F/S) junctions [16–18]. Such junc-
tions typically rely on multiple ferromagnetic and super-
conducting regions [16, 17, 19–21], complex ferromagnets
with spiral magnetization [22], or complete spin polariza-
tion in half-metallic ferromagnets [23–25].

With alternative paths towards spin-triplet pairing,
where interfacial spin-orbit coupling (SOC) could relax
the requirement of a complex magnetic structure, it is
expected that both a strong spin polarization and strong
SOC are needed [26–29]. However, in a simple F/S junc-
tion as depicted in Fig. 1, we reveal that for nearly
complete spin-triplet proximity-induced superconductiv-
ity even weakly spin-polarized ferromagnet and smaller
SOC could be desirable. Our findings could complement
the paths towards MBS where proximity-induced spin-
triplet pairing is sought through strong SOC and half-
metallic ferromagnets [15, 30–32].

A microscopic understanding of a superconducting
proximity effect is obtained from the process of Andreev
reflection at interfaces with superconductors where an
electron is reflected backwards and converted into a hole
with opposite charge and spin. This implies the dou-
bling of the normal state conductance [33] since two elec-
trons are transferred across the interface into the S region

where they form a spin-singlet Cooper pair. Unlike this
conventional Andreev reflection, a spin-active interface
with interfacial spin-flip scattering also yields Andreev
reflection with an equal spin of electrons and holes [34],
responsible for spin-triplet pair correlations [16].

Following this introduction, in Sec. II we describe the
Hamiltonian and scattering states for F/S junctions. In
Sec. III we provide conductance calculations that sup-
port surprising trends for interfacial spin-triplet super-
conductivty and explain how simple normal-state trans-
port analysis can provide helpful guidance. Our conclu-
sions address related experiments and open questions.

FIG. 1. Ferromagnet/superconductor (F/S) junction, F and
S separated by a flat interface (I) with potential and Rashba
spin-orbit scattering (SOC). M is the magnetization and the
current flows normal to I. (b) Schematic band structure in
each region. Spin are denoted by arrows: In the F region
red (blue) for parallel (antiparallel) to M ; with interfacial
SOC, spins are parallel to the interface and ⊥ to the in-plane
component of the momentum, k‖. Excitation picture in the
S region, the dashed line shows the normal state dispersion.
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II. HAMILTONIAN AND SCATTERING STATES

We consider ballistic F/S junction, depicted in Fig. 1,
having a flat interface (I) at z = 0 with potential
and Rashba SOC scattering [35]. We generalize the
Blonder-Tinkham-Klapwijk formalism[33, 36, 37] to solve
Bogoliubov-de Gennes equation for quasiparticle states
Ψ (r) with energy E [38],

(
Ĥe ∆Θ(z)I2×2

∆∗Θ(z)I2×2 Ĥh

)
Ψ (r) = EΨ (r) , (1)

where the single-particle Hamiltonian for electrons is,

Ĥe = −~2

2
∇ 1

m (z)
∇− µ (z)− ∆xc

2
m · σ̂ Θ (−z) + ĤB ,

(2)

and for holes Ĥh = −σ̂yĤ∗e σ̂y. The interfacial scattering
is modeled by delta-like potential barrier,

ĤB = [V0d+ α(kyσ̂x − kxσ̂y)]δ(z). (3)

These terms contain the effective mass m(z), the chemi-
cal potential µ(z), and the exchange spin splitting ∆xc.
Magnetization, M , as shown in Fig. 1, has orientation
m = (sin θ cosφ, sin θ sinφ, cos θ), σ̂ are Pauli matrices,
and k is wave vector. The interface is characterized by
an effective barrier height V0 and width d and the Rashba
SOC with strength α, due to structure inversion asym-
metry [35]. The s-wave superconductor is described by
the constant pair potential ∆. A complementary diffu-
sive regime is extensively studied, including calculating
spin-triplet correlations [39–43].

Since the in-plane wave vector k‖ is conserved, the
scattering states for incident spin σ electron are given
by Ψσ (r) = eik‖·r‖ψσ (z) in a four-component basis [34]
where the “bar” symbol denotes the spin-flip contribution

ψσ (z) =


χeσe

ikeσz + aσχ
h
−σe

ikh−σz + bσχ
e
σe
−ikeσz + āσχ

h
σe
ikhσz + b̄σχ

e
−σe

−ike−σz for z < 0,

cσ


u
0
v
0

 eiq
ez + dσ


v
0
u
0

 e−iq
hz + c̄σ


0
u
0
v

 eiq
ez + d̄σ


0
v
0
u

 e−iq
hz for z > 0.

(4)

In the F region, the eigenspinors for electrons and holes
are χeσ = (χσ, 0)

T
and χhσ = (0, χ−σ)

T
with

χσ = (1/
√

2)
(
σ
√

1 + σ cos θe−iφ,
√

1− σ cos θ
)T
, (5)

where σ = 1(−1) refer to spin parallel (antiparallel)
to M and the z-components of the wave vector are

k
e (h)
σ =

√
k2
F + (2mF /~2) [(−)E + σ∆xc/2]− k2

‖, with a

spin-averaged Fermi wave vector, kF [44]. At an inter-
face, with conserved k‖, the eigenspinors of the barrier

Hamiltonian ĤB in the helicity basis are given by [45, 46],

χ± =
1√
2

(
1
∓ieiγ

)
, (6)

where where γ is the angle between k‖ and k̂x.
In the S region, coherence factors, u, v, sat-

isfy u2 = 1 − v2 =
(
1 +
√
E2 −∆2/E

)
/2, while

the z-components of the wave vector are qe (h) =√
q2
F + (−)(2mS/~2)

√
E2 −∆2 − k2

‖, with qF the Fermi

wave vector. Similar to Snell’s law [44], for a large k‖
these z-components can become imaginary representing
evanescent states which carry no net current. The van-
ishing of evanescent states at infinity requires Im[khσ ] < 0,
so the sign of the z-component of the wave vectors needs
to be chosen correctly.

III. CONDUCTANCE IN F/S JUNCTIONS

From the charge current conservation, we can express
zero-temperature conductance at applied bias, V ,

G(V ) =
∑
σ

∫
dk‖

2πk2
F

[
1 +Rhσ(−eV )−Reσ(eV )

]
, (7)

normalized by the Sharvin conductance GSh =
e2k2

FA/(2πh) [35], where A is the interfacial area. Only
the probability amplitudes from the F region are needed,
for Andreev Rhσ = Re[(kh−σ/k

e
σ)|aσ|2 + (khσ/k

e
σ)|āσ|2] and

specular reflection Reσ = Re[|bσ|2 + (ke−σ/k
e
σ)
∣∣b̄σ∣∣2].

We focus on the zero-bias conductance, G(0), where
there is no quasiparticle transmission and, from the prob-
ability conservation [34, 38], can be expressed using AR
such that in Eq. (7) the integration kernel is 2[Rhσ(0)].
The total G(0) can be decomposed into four processes
[see Eq. (4) and Fig. 2]: Conventional and spin-flip AR
for spin-up (spin-down) ↑ (↓) incident electrons corre-
sponding, respectively, to the spin-singlet and spin-triplet
superconducting correlations at the interface. It is con-
venient to introduce spin polarization P = ∆xc/2µF ,
and dimensionless parameters for barrier strength and
Rashba SOC,

Z = V0d
√
mFmS/(~2

√
kF qF ), λ = 2α

√
mFmS/~2, (8)



3

FIG. 2. The conductance ratio between the spin-flip and con-
ventional Andreev reflection as a function of barrier poten-
tial Z and Rashba SOC strength λ for spin polarization (a)
P = 0.2, (b) P = 0.7 (b) with in-plane M . The insets: out-of-
plane M . (c) The total conductance as a function of Z and λ
for in-plane and out-of-plane (inset) M with P = 0.7 and (d)
its contributions from different processes, solid (dashed) ar-
rows: incoming electrons (reflected holes), violet arrows: spin
parallel (up) and antiparallel (down) to M .

respectively. As we present trends for a large parameter
space, unless otherwise specified, we will consider the case
for mF = mS = m and kF = qF .

In Figs. 2(a) and (b) we show the conductance ratio
between the spin-flip and conventional AR, ḠAR/GAR,
our proxy for singlet and triplet interfacial pairing, as
function of the barrier strength and SOC. Remarkably,
ḠAR/GAR � 1, even for a small spin polarization,
P = 0.2, a nearly complete triplet pairing is possible,
> 90 % (96 %) for in-plane (out-of-plane) M . A striking
enhancement of the triplet contribution is feasible for a
wide range of barrier strengths, accompanied with a suit-
able SOC. As shown in Fig. 2, the triangle region of this
dominance increases considerably for a larger P = 0.7
and it is approximately delimited with lines T1 and T2,

T1: λ = 2Z/
√

1− P , T2: λ = 2Z, (9)

excluding the half-metals, P = 1. Our findings suggest
that even simple s-wave junctions with only one mag-
netic region of a small P and interfacial SOC can sup-
port robust spin-triplet currents. These trends are also
preserved for an out-of-plane M [Figs. 2(a), (b) inset].

To explore this peculiar behavior and the origin of the
triangle region with enhanced triplet pairing, in Fig. 2(c)
we consider the total G for P = 0.7 showing G1 and G2
which denote local maxima in G. This high-G region,
delimited by G1,2, shows a similarity, but not complete

overlap with the enhanced triplet region. Such a rela-
tively high-subgap G is in contrast to the common expec-
tation that for a strong barrier (Z � 1) normal metal/S
(N/S) junction would resemble a tunnel contact with a
small interfacial transparency T = 1/(1 + Z2)� 1 [33].

For highly-polarized F region, P = 0.7, conventional
AR is strongly suppressed [35, 47]. G for such F/S junc-
tion should be even lower than for the N/S counterpart
with the same large Z. A striking discrepancy with these
expectations comes from the neglect of the SOC and un-
conventional AR. Even for a strongly-polarized F region,
high G is compatible with large Z and strong SOC. In
the opposite regime of no SOC (λ→ 0), the triplet com-
ponent will vanish [Fig. 2(b)], but there is still a region
with only small SOC, λ ∼ 0.5, and a large triplet pairing.

In Fig. 2(d) we resolve G for four AR processes, re-
sponsible for proximity effects, to examine the evolution
of relative contribution of singlet and triplet pairing with
interfacial parameters. While local maxima of G along
G1 arise from singlet contributions |↑↓〉, |↓↑〉 and a tiny
minority spin-triplet pairing |↓↓〉, G2 occurs from major-
ity spin-triplet pairing |↑↑〉. This opens a path to tailor
junctions parameters which would selectively remove the
singlet contribution and ensure that transport properties
are dominated by (majority) spin-triplet pairing.

The origin the dominant triplet contribution bounded
by the T1 and T2 can be traced to the normal-state
properties in the corresponding F/N junction by taking
∆ = 0. This is further shown in Appendix A. At the
interface (barrier region), the dispersion relation is,

E = ~2(k2
z + k2

‖)/2m− µ+ V0 ± αk‖/d, (10)

where the energy band is split due to SOC [see Fig. 1(b)]
and shifted up by the barrier potential (assuming V0 > 0,
but V0 < 0 gives the same results). A spinor of an in-
cident electron with k‖ can be decomposed into barrier
eigenspinors, |χσ〉 = 〈χ+|χσ〉 |χ+〉+〈χ−|χσ〉 |χ−〉, where
χ± from Eq. (6) has helicity ±1. We recognize that these
two helicities for outer/inner band have inequivalent ef-
fective barriers, see Appendix A,

Z+
eff = Z +

λk‖

2
√
kF qF

, Z−eff = Z −
λk‖

2
√
kF qF

. (11)

Since Z, λk‖/(2
√
kF qF ) ≥ 0, for positive helicity the bar-

rier is enhanced, Z+
eff ≥ Z. However, for negative helic-

ity, at Z = λk‖/(2
√
kF qF ), Z−eff becomes effectively com-

pletely transparent and gives a dramatically increased G.

The effect of this selective barrier transparency and
the resulting open channels for a given k‖ and σ, can be
clearly seen in Fig. 3(a). The dominant contribution to
k‖-resolved conductance comes from the open channels
located on the circle of radius,

k0
‖ = (2Z/λ)

√
kF qF . (12)
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FIG. 3. Normalized σ and k‖-resolved G for different scatter-
ing processes in (a) F/N and (b) F/S junctions with P = 0.7,
Z = 4.4, λ = 20, M ‖ −y. Parallel (antiparallel) purple ar-
rows schematically denote no spin flip in the first and third
panels. The spin of an incident electron is collinear with M .
The red (blue) circle has a radius kF (k↓) of the spin-averaged
and spin-down Fermi wave vectors, respectively.

Focusing on the case kF = qF , to maximize G for the
F/N junction, there are several contributing factors. (i)
The number of open channels, N(Z, λ), should be large.
Located on the circle of radius k0

‖, their number increases

with the perimeter, N(Z, λ) ∝ k‖. (ii) The open chan-
nels should exclude evanescent waves for large k‖, not
contributing to G. This range of k‖ follows from the
Snell’s law [44], for incident ↓ (↑) electron: k‖ ≤ k↓
(k‖ ≤ kF ). In the extreme cases, k0

‖ = k↓ and k0
‖ = kF ,

we recover exactly T1 and T2 from Eq. (9). (iii) With
spin-momentum locking of interfacial helical states, an
enhanced F/N transmission depends also on the spin
matching with the incident spin, in addition to the usual
wave vector matching [34], see Appendix A.

From these considerations we can understand why, in-
stead of having full circles of open channels, in Fig. 3
we see crescent-like shapes. For the equal-spin transmis-
sions in Fig. 3(a) [first (third) process from the left], their
maxima are reached at k‖ = (∓k0

‖, 0), where the eigen-
spin at the interface matches the spins of both incoming
and outgoing particles. The different magnitudes of the
maxima (between the first and third process), are due to
the different matching of the wave vectors between the
incoming and outgoing particles in these two processes.

This picture can be additionally verified from a simple,
but accurate, analytical description of F/N transmission
using selective junction transparency. The transmission
decomposed into spin-conserving and spin-flip part,

Tσ = Tσσ + Tσ−σ, (13)

yields, as discussed in Appendix A,

Tσσ ∝ [1− σ cos (γ − φ)]
2
, (14)

Tσ−σ ∝ sin2 (γ − φ) , (15)

confirming π/2 and π symmetry from Fig. 3(a), respec-

tively. Here previously given angles φ and γ describe the
in-plane orientation of M and the barrier eigenspinor.

This analysis applies also to F/S junctions, revealing
in Fig. 3(b) a similar angular dependence of k‖-resolved
G due to conventional and spin-flip AR. Some quanti-
tive modifications from the F/N case, can be understood
already without SOC due to a different condition for a
perfect F/S transparency at normal incidence were all the
wave vectors can be unequal k↑k↓ = q2

F [34, 44]. For F/S
junctions the condition for open channels again requires
k‖ ≤ kF which excludes the evanescent states in AR. The
only subtlety is G↑↑ from spin-flip AR where we could ex-
pect that kF < k‖ ≤ k↑ is also possible. However, such a
large k‖ would result in a strongly decaying wave vector

in the S region [recall the expression for qe (h)] with its
inverse smaller than the BCS coherence length and thus
render ineffective any contribution for spin-majority pair-
ing with k‖ ≤ kF . This provides a guidance for a choice
of junction parameters giving an enhanced spin-triplet
paring between the lines T1 and T2 in Eq. (9), even for
previously unexpected regimes with only a small P .

IV. DISCUSION AND CONCLUSIONS

In addition to directly measuring the spin structure of
G or spin current, an experimental test of our predic-
tions for enhanced spin-triplet pairing could be realized
through probing magnetic anisotropy of conductance in
F/S junctions, referred to as magnetic anisotropic An-
dreev reflection (MAAR) [38]. MAAR and its better
studied normal-state analog, tunneling anisotropic mag-
netoresistance (TAMR) [45, 48], can be expressed for out-
of-plane rotation of M [Fig. 1(a)] as [38]

TAMR(θ), MAAR(θ) = [G(0)−G(θ)]/G(θ), (16)

where angle θ is between M and the interface normal.
From the evolution of MAAR, shown in Figs. 4(a) and (b)
for P = 0.2 and P = 0.7, we see that it closely follows the
trends of the enhanced majority spin-triplet pairing from
Figs. 2(a) and (b). It is this spin-triplet component that
is responsible for a large increase of MAAR compared to
TAMR, in the normal state, Figs. 4(a), (c), (d). Even
for P = 0.2 the resulting increase can reach an order of
magnitude and become much larger for P = 0.7 where it
was recently measured in all-epitaxial Fe/MgO/V junc-
tions [49] to exceed 1000! Rather than change MAAR to
TAMR by increasing the temperature above the critical
temperature (for vanadium ∼ 4 K), experimentally it is
more convenient to reach the normal state by increasing
the bias, V > ∆ at a fixed temperature [49].

Such Fe/MgO/V junctions simplify the analysis of the
observed magnetic anisotropy since they have two sta-
ble zero-field (B = 0) states with mutually orthogo-
nal M : in-plane and out-of-plane [49, 50]. This re-
moves common complications in other F/S junction by
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FIG. 4. Amplitude of out-of-plane magnetoanistotropic An-
dreev reflection (MAAR) as a function of interface parameters
Z and λ for (a) P = 0.2 and (b) P = 0.7. (c) The correspond-
ing tunneling anisotropic magnetoresistance (TAMR) when
superconducting gap vanishes for P = 0.2. (d) A compari-
son between out-of-plane TAMR (yellow) and MAAR (blue),
P = 0.2, Z = 5 and λ = 10.2.

decoupling the influence of the B-field required for ro-
tating M which could alter the magnitude of mag-
netic anisotropy and create spurious effects from vortices.
Junction parameters Z = 0.83 (V0 = 0.3 eV, d=17 nm),
λ = 0.79, 1.44 (α = 5.5 eVÅ2), describing two measured
Fe/MgO/V samples with MAAR of 10-20 % (TAMR only
∼0.01 %) [49] are marked in Fig. 4(b). This small SOC,
λ ∼ 1, smaller than in Fe/GaAs/Au TAMR studies [48],
is already sufficient for a dominant triplet pairing.

While we employ a simple approach which naturally
suggests a number of generalizations, from inclusion of
the self-consistent pair potential, finite B-fields, study
of critical temperature, noncentrosymmetric supercon-
ductors [51], more complex barrier description [52–57],
its transparency already reveals several important trends
and can support peculiar experimental observation of a
giant MAAR [49]. Our implications for enhanced triplet
pairing and MAAR detection could also be relevant for
two-dimensional materials, as supported by the work in
Refs. [58, 59]. Another extension of this work could in-
clude the role of magnetic textures which themselves re-
sult in synthetic spin-orbit coupling and could be used to
control Majorana bound states [60–69].

Similar to the advances in realizing large magnetoresis-
tive effect, not by employing complex ferromagnets with
nearly complete spin polarization, but rather choosing a
suitable nonmagnetic barrier [70, 71], our findings sug-
gest what could constitute a suitable interface to realize
enhanced spin-triplet proximity. In particular, to further
enhance such triplet pairing with only a very small spin

polarization of a ferromagnet, a challenge would be to
design interfaces which could simultaneously provide a
large spin-orbit coupling and large potential barrier.
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APPENDIX A: ANALYTICAL SOLUTION FOR
F/N JUNCTIONS

The Hamiltonian for the ferromagnet/normal metal
(F/N) junction with interfacial Rashba spin-orbit cou-
pling (SOC) can be written from Eqs. (2) and (3) [38].
Similar to the main text, we focus on the case of equal ef-
fective mass m (z) ≡ m and chemical potential µ (z) ≡ µ,
in the F and S region. Having these quantities unequal
was considered in Ref. [34]. The corresponding scatter-
ing states are given by Φσ (r) = eik‖·r‖ψσ (z), where
σ = 1 (−1) refer to spin parallel (antiparallel) to M with

ψσ (z) =


χσe

ikσz + rσσχσe
−ikσz

+rσ−σχ−σe
−ik−σz,

z < 0,

tσσχσe
ikNz + tσ−σχ−σe

ikNz, z > 0,

(17)

where the spinors χσ are given from Eq. (5), while
the z-component of the wave vectors are kσ =√
k2
F (1 + σP )− k2

‖, kN =
√
k2
F − k2

‖, with spin polariza-

tion P = ∆xc/2µ, where ∆xc is the exchange spin split-
ting. We use dimensionless barrier strength and Rashba
SOC, Z and λ, from Eqs. (8. In scattering coefficients,
rσσ (rσ−σ) denote the reflection without (with) spin flip,
while tσσ (tσ−σ) denote the transmission without (with)
spin flip.

Decomposing the incident state in the helicity ba-
sis from Eq. (6), {χ−, χ+}, the scattering wave func-

tion can be rewritten as ψσ (z) = 〈χ+ | χσ〉ψ(+)
σ (z) +

〈χ− | χσ〉ψ(−)
σ (z) with

ψ(±)
σ (z) =


χ±e

ikσz + r(±)
σσ χσe

−ikσz

+r
(±)
σ−σχ−σe

−ik−σz,
z < 0,

t
(±)
σσ χσe

ikNz + t
(±)
σ−σχ−σe

ikNz, z > 0,
(18)

where all the coefficients are split into two parts. For ex-

ample, tσσ′ = 〈χ+ | χσ〉 t(+)
σσ′ + 〈χ− | χσ〉 t(−)

σσ′ denotes the
transmission coefficient for scattering without (σ′ = σ)
or with spin-flip (σ′ = −σ). When the barrier potential
and SOC are relatively large, the transmission coefficient
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t
(+)
σσ′ from ψ

(+)
σ (z) will always be suppressed since the ef-

fective barrier Z+
eff cannot be reduced, see Eq. (11). As a

result, the transmission can be approximately written as

Tσσ′ = Re

[
kN
kσ

∣∣∣〈χ− | χσ〉 t(−)
σσ′ + 〈χ+ | χσ〉 t(+)

σσ′

∣∣∣2]
≈ Re

[
kN
kσ

∣∣∣〈χ− | χσ〉 t(−)
σσ′

∣∣∣2] ≡ T (−)
σσ′ ,

(19)

where σ′ = ±σ corresponds to transmissions without and
with spin-flip, respectively. We also define the magni-

tude of the residue T
(+)
σσ′ ≡ Re[(kN/kσ)

∣∣∣〈χ+ | χσ〉 t(+)
σσ′

∣∣∣2],

which indicates the accuracy of the approximation.
For clarity, the following analysis is based on the small

P . We focus on the states with k‖ satisfying the open
channel condition k0

‖, recall Eqs. (11) and (12). In
such cases, the barrier is almost transparent and we
can assume the reflection is negligible. Therefore, un-
der this approximation, by introducing a modified Ĥ ′B ,

such that ĤB = Ĥ ′Bdδ(z) [recall Eq. (3)], we obtain,

Ĥ ′Bψ
(−)
σ (0) ≈ Ĥ ′B 〈χ− | χσ〉χ− = 0, which means Z−eff =

0, see Eqs. (11).
The condition that determines the k‖ of the open chan-

nels is only affected by the barrier parameters. The rea-
son that we have kF , qF in the open channel condition
is that Z, λ are the dimensionless quantities that are de-
fined with the effective mass and wave vectors. The open
channel condition can also be written as V0 = αk‖/d,
which remains the same when the effective masses and
Fermi wave vectors are different in the F and N regions.

For a large barrier and strong SOC, Z, λ � 1,
the maximum transmission condition become Z =
λk‖/

(
2
√
kF qF

)
, which is consistent with the proposed

open channel condition, k0
‖ from Eq. (12). We notice

FIG. 5. Comparison of the approximate (T
(−)

σσ′ ) and accurate
(Tσσ′) results for transmissions at the open channels, where

λ=5, Z = 1.5, P = 0.2, k‖ = 0.6kF , σ = 1 and M‖−y. T
(+)

σσ′

are the magnitude of the residue.

that the wave vectors on both sides can only change the
magnitude of the transmission, rather than the condi-
tion for its maximum, when the barrier is large enough.
Therefore, introducing unequal Fermi wave vectors will
not affect the open channel condition. This conclusion
also applies to the systems with different effective masses
on both sides.

Now we can solve the system without any barrier
and obtain the approximate transmissions. For in-plane
M , θ = π/2 and |〈χ− | χσ〉|2 = (1/2) [1− σ sin (γ − φ)].
Thus the total transmission at the open channel is given
by Eq. (13), with

Tσσ =
kσkN [1− σ sin (γ − φ)]

2

(kσ + kN )
2 , (20)

Tσ−σ =



kN (kσ + k−σ)
2
cos2 (γ − φ)

4kσ(kN + k−σ)
2 , k−σ ∈ R,

kN

(
k2
σ + |k−σ|2

)
cos2 (γ − φ)

4kσ

(
k2
N + |k−σ|2

) , k−σ ∈ iR.

(21)
Figure 5 shows the comparison between the accurate

and approximate results. Two facts can be noticed: (i)
The transmission from the component with spinor χ+

is negligible, so the approximation in Eq. (19) is valid.
(ii) The transmissions for a simple F/N junction with-
out any barrier agree well with the accurate ones and
thus Eqs. (20) and (21), obtained using this model, are
valid. The different patterns of open channels in Fig. 3 of
the main text can now be understood. Since the trans-
mission without the spin flip, Tσσ ∝ [1− σ sin (γ − φ)]

2
,

has a 2π period, it forms a single crescent shape of
open channels. In contrast, the spin-flip transmission,
Tσ−σ ∝ cos2 (γ − φ), has a period of π and thus forms
two crescents.

We can also calculate the transmissions for out-of-
plane M . In this case, |〈χ− | χσ〉|2 = 1/2 and there
is no φ dependence due to the rotational symmetry. The
total transmission at a certain open channel is then given
by Eq. (13), with

Tσσ =
kσkN

(kσ + kN )
2 , (22)

Tσ−σ =



kN (kσ + k−σ)
2

4kσ(kN + k−σ)
2 , k−σ ∈ R,

kN

(
k2
σ + |k−σ|2

)
4kσ

(
k2
N + |k−σ|2

) , k−σ ∈ iR. (23)

When P is small, we can find the ratio between the
transmission with and without spin flip Tσ−σ/Tσσ = 1 +
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FIG. 6. Comparison of the open channel positions at the
maximum conductance between accurate numerical (solid)
and approximate analytical (dashed) results, where λ = 20,
Z = 7.6 (solid), Z = 8.9 (dashed), P = 0.7, σ, σ′ = 1 and
M ‖ z.

P 2/
[
4
(

1− k2
‖/k

2
F

)]2
+ O

(
P 4
)
≈ 1, and thus we can

estimate the total transmission for the incident particle
with spin σ and k‖ = ko‖, using

Tσ =
2
√

1 + σP − k2
‖/k

2
F

√
1− k2

‖/k
2
F(√

1 + σP − k2
‖/k

2
F +

√
1− k2

‖/k
2
F

)2 . (24)

This result also applies to the average transmission for
open channels with in-plane M .

Most of the conductance comes from the open chan-
nels and their neighborhoods (quasi-open channels), i.e.,
k‖ ∈ [(2Z/λ)kF −∆k/2, (2Z/λ)kF + ∆k/2] with ∆k the
width of the open channels. Therefore, to obtain maxi-
mum conductance, we need both a large amount of open
channels and small mismatch between the wave vectors.
As a result, we need to maximize the following normal-
ized conductance,

Gσ (Q) = 2πQkF∆kTσ/
(
2πk2

F

)
=

∆k

kF

2Q
√

1 + σP −Q2
√

1−Q2(√
1 + σP −Q2 +

√
1−Q2

)2 ,
(25)

with respect to Q = 2Z/λ. For spin-up (σ = 1) incident
electrons, we have Q = 0.89 with P = 0.7 and Q =
0.94 with P = 0.2. For spin-down (σ = −1) incident
electrons, we have Q = 0.46 = 0.83

√
1− P with P = 0.7

and Q = 0.83 = 0.93
√

1− P with P = 0.2. These are
the predicted conditions for Z and λ to achieve maximum
conductance.

However, as can be seen from Fig. 6, for theoretically
predicted conditions there is still some difference from

the accurate numerical results. The main reason is that
we neglect the change of the open channel width with
respect to its position. As it is shown in Fig. 6, when
the open channels are too close to kmax (see the main
text), their width will decrease and a part of the ex-
pected quasi-open channels disappear due to k‖ > kmax.
Therefore, to avoid such losses, the distance between the
open channels and kmax is required to be greater than
∆k/2. We introduce phenomenological correction W1

(W2) for spin-down (spin-up) incident electrons. These
corrections depend on the spin polarization and barrier
parameters. For P = 0.2 and λ = 20, we have W1 = 0.75
for spin-down incident electrons and W2 = 0.87 for spin-
up ones. Considering all the corrections above, the pa-
rameter range giving the maximum conductance should
be W1

√
1− P < 2Z/λ < W2.

We note that these conditions for maximum conduc-
tance are different from the condition for a large ratio
of the spin-triplet and spin-singlet contribution. In fact,
the large triplet region starts just from the region of the
vanishing singlet conductance and ends at the region for
vanishing of the triplet one. Therefore, the condition for
a large triplet contribution is

√
1− P < 2Z/λ < 1.
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I. Žutić, “Semiconductor spintronics,” Acta Phys. Slo-
vaca 57, 565 (2007).

[46] A. Matos-Abiague and J. Fabian, “Anisotropic tunneling
magnetoresistance and tunneling anisotropic magnetore-
sistance: Spin-orbit coupling in magnetic tunnel junc-
tions,” Phys. Rev. B 79, 155303 (2009).

[47] R. J. Soulen Jr., J. M. Byers, M. S. Osofsky, B. Nad-
gorny, T. Ambrose, S. F. Cheng, P. R. Broussard, C. T.
Tanaka, J. Nowak, J. S. Moodera, A. Barry, and J. M. D.
Coey, “Measuring the spin polarization of a metal with a
superconducting point contact,” Science 282, 85 (1998).

[48] J. Moser, A. Matos-Abiague, D. Schuh, W. Wegscheider,
J. Fabian, and D. Weiss, “Tunneling anisotropic mag-
netoresistance and spin-orbit coupling in Fe/GaAs/Au
tunnel junctions,” Phys. Rev. Lett. 99, 056601 (2007).
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