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While many-body effects in flat-band systems are receiving renewed hot interests in condensed-matter physics
for superconducting and topological properties as well as for magnetism, studies have primarily been restricted
to multiband systems (with coexisting flat and dispersive bands). Here we focus on one-band systems where a
band is “partially flat” comprising flat and dispersive portions in k-space to reveal whether intriguing correla-
tion effects can arise already on the simplest possible one-band level. For that, the two-dimensional repulsive
Hubbard model is studied for two models having different flat areas, in an intermediate-coupling regime with
the FLEX+DMFT (the dynamical mean-field theory combined with the fluctuation exchange approximation).
We have a crossover from ferromagnetic to antiferromagnetic spin fluctuations as the band filling is varied, and
this triggers, for the model with a wider flat portion, a triplet-pair superconductivity favored over an unusually
wide filling region, which is taken over by a sharply growing singlet pairing. For the model with a narrower
flat portion, TC against filling exhibits an unusual double-peaked Tc dome, associated with different numbers
of nodes in the gap function having remarkably extended pairs in real space. We identify these as a manifes-
tation of the physics outside the conventional nesting physics where only the pair scattering across the Fermi
surface in designated (hot) spots is relevant. Another correlation effect arising from the flattened band is found
in a non-Fermi-liquid behavior as detected in the momentum distribution function, frequency dependence of the
self-energy and spectral function. These indicate that unusual correlation physics can indeed occur in flat-band
systems.

PACS numbers: 71.28.+d,71.10.Fd, 31.15.aq

I. INTRODUCTION

While there is a long history for the study of flat-band sys-
tems as initiated by interests in ferromagnetism1–5, there is a
recent surge of interests in flat-band superconductivity, where
possibilities are explored for unconventional superconductiv-
ity favored by the flat-band structure6–9. As for attractive
electron-electron interactions, Törmä’s group has shown that
a flat band can indeed favor superconductivity when the band
is topological, with the superfluid weight lower-bounded by
the topological number10–14. For repulsive interactions, on
the other hand, a key question is how the presence of flat
bands affects electron correlation processes. In repulsively-
interacting flat-band systems, spin alignment tends to lower
the total energy due to unorthogonalizable Wannier orbitals
through Pauli’s exclusion principle3,8. For unconventional
superconductivity, gap functions for both copper- and iron-
based superconductors, respectively with d and s± pairings,
are maximized by the pair scattering processes with specific
momentum transfers (see Fig. 1, top left), where the spin fluc-
tuations with these wave vectors glue electrons with opposite

spins15. For systems having a flat band coexisting with dis-
persive band(s), it has been suggested that a key process is
the quantum-mechanical virtual hopping of Cooper pairs be-
tween the flat and dispersive bands mediated by spin fluctu-
ations arising from the repulsive interaction6,8,16 (see Fig. 1,
top right). There, it is noticed that an optimum situation is
when the Fermi energy is close to, but away from, the flat
band, where the virtual pair scattering still occurs. In other
words, the flat band in this situation is “incipient”17. There,
one intriguing observation is that the pairing, as detected from
the density matrix renormalization group (DMRG), involves
large entanglement when the flat band is topological8.

These proposals for the flat-band magnetism and supercon-
ductivity have so far focused on multi-band systems, as ex-
emplified by Lieb’s, Mielke’s and Tasaki’s models, where one
of the multi-bands is flat while other(s) are dispersive. Now,
a fundamental question is: can interesting strong-correlation
phenomena such as high Tc superconductivity occur in sim-
pler one-band systems that have flat portion(s) in the disper-
sion in the momentum space? This is an interesting possi-
bility, since, even when the Fermi energy resides on the dis-
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Figure 1: We schematically compare ordinary single-orbital, one-band case (here for a d-wave SC; leftmost column) and
multi-orbital, multi-band case (here for s±; second column from left), both with specific “hot spots” (dashed circles in red)
across which the nesting vectors (yellow arrows) designate how pairs (blue and cyan arrows) hop. These are contrasted with
flat-band systems for single-orbital, one-band case (second from right) and single-orbital, multi-band case (rightmost). The top
row depicts k-space, while the bottom row displays pairs in real space18. The pairing for the multi-band case6 is an inter-band
s±, which is difficult to represent in real space.

persive part, quantum states are expected to be significantly
altered through the virtual pair-scattering processes between
the flat and dispersive portions of the band as well as the pair-
scatterings within the flat region, both with many channels
(which turns out to be allowed due to partial occupation of
the flat portion caused by correlation effects as we shall show;
see Fig. 2). This will be outside the conventional “nesting
physics” for dispersive bands where the processes occur on
Fermi surfaces. Thus it is intriguing whether the one-band
case can be as good as, or even better than, the multi-band
case. Motivated by these intuitions, here we explore two dif-
ferent flat-band models, where we start with a tight-binding
(“t-t′”) model with nearest and second-neighbor hoppings.
By controlling them, we have large flat regions in the disper-
sion with the vanishingly small group velocity. In the second
model, we truncate the dispersion below certain energy into a
flat one to single out the effect of the flat part. Since the den-
sity of one-electron states diverges in these flat regions, per-
turbative approaches, e.g., the Schrieffer-Wolff transforma-
tion19, might fail even in the weak electron-electron interac-
tion regime. In Ref.20 the truncated model is examined where
the unbiased determinantal quantum Monte Carlo method
(DQMC)21,22 is used to show a Mott-insulating physics for
a repulsive interaction and enhanced superconductivity for an
attractive interaction in the weak-coupling regime and at in-
termediate temperatures, whereas the present paper addresses
superconductivity for repulsive interactions. The flat portion
also poses an interesting question of whether non-Fermi liquid
behavior can arise due to the flatness.

Thus the purpose of the present work is to look into su-
perconducting and non-Fermi liquid properties upon varying
the band filling. For that, we adopt here, along with the

DQMC method, the FLEX+DMFT method23–25 which is a
combination of the dynamical mean-field theory (DMFT)26–28

and the fluctuation-exchange approximation (FLEX)29,30. The
DQMC is a numerically exact method but is applicable for
limited parameters. The FLEX+DMFT is a diagrammatic ap-
proximation and can deal with Mott’s insulation for strong
coupling, but here we focus on an intermediate coupling
regime. We shall show that magnetism exhibits a domi-
nant ferromagnetic spin correlation at small band fillings,
which crosses over to antiferromagnetic spin structures toward
half-filling. This concomitantly dominates superconductivity,
where the pairing symmetry is found to change from spin-
triplet to singlet. Remarkably, the gap function sensitively
depends on the Fermi energy sitting around the boundary be-
tween the flat and dispersive parts in such a way that (i) for the
truncated model with a wider flat portion, this triggers a triplet
pairing favored over an unusually wide filling region, which
is taken over by a sharply growing singlet pairing toward half-
filling. (ii) For the t-t′ model with a narrower flat portion, TC
against filling exhibits an unusual double-peaked TC dome as-
sociated with different numbers of nodes in the gap function.
The unusually large numbers of nodal lines exhibit signifi-
cantly extended pairs in real space in both models. Since these
come from pair scatterings that involve the flat portions, we
shall identify them as a manifestation of the physics outside
the conventional nesting physics (with only the pair scattering
across Fermi surface in designated (hot) spots being relevant).
We shall further reveal that a non-Fermi liquid behavior arises
as detected in various observables such as a momentum dis-
tribution function that is fractional over the flat region, and
the self-energy with a fractional-power-law frequency depen-
dence accompanied by a characteristic spectral function. Thus
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Figure 2: One-electron band dispersions for the t-t′ (a) and
PFB (b) models. Blue region in (b) represents εk = 0.

we shall conclude that partially-flat band systems can indeed
harbor quite different and versatile physics from the ordinary
bands.

II. MODEL AND METHODS

We consider the repulsive Hubbard model on the square lat-
tice,

H =
∑
kσ

εkc
†
kσckσ + U

∑
i

ni↑ni↓ − µ
∑
iσ

niσ, (1)

where c†kσ creates an electron with spin σ and momentum k,
εk is the noninteracting band dispersion, niσ = c†iσciσ , U(>
0) is the repulsive on-site interaction, and µ is the chemical
potential.

Here we consider two models (Fig. 2): the first one is the
t-t′ model on a square lattice with the nearest-neighbor (t) and
the second-neighbor (t′) hoppings with a dispersion,

εt−t
′

k = −2t[cos(kx) + cos(ky)]− 4t′ cos(kx) cos(ky). (2)

If we set t′ ' −t/2 we can flatten the dispersion along Γ-M
lines (with t′ = −0.548t here for minimizing the curvature)
as displayed in Fig. 2(a).

The second model has a dispersion truncated as

εPFB
k =

[
1 + F sign(εcosine

k )
]
εcosine
k , (3)

to have a perfectly flat bottom (ideal “partially-flat band”;
PFB). Here εcosine

k ≡ −2t[cos(kx) + cos(ky)] is the cosine-
band for the nearest-neighbor hopping model, and the param-
eter F controls the truncation, e.g., for F = 1 the negative-
energy part of the cosine band is flattened as displayed in
Fig. 2(b). To have the same total band width (= 8) as the co-
sine band, we set εPFB

k = 2εcosine
k for the positive part when

F = 1. In this paper, we take t as the unit of energy.
As for the band filling, 〈n〉 = 〈n↑〉 + 〈n↓〉, the non-

interacting Fermi energy lies close to the flat region for
〈n〉 . 1. Here we study paramagnetic phases with no spin
imbalance, basically with FLEX+DMFT. In FLEX+DMFT,
the local self-energy is obtained from the DMFT procedure,

with the FLEX local self-energy subtracted to avoid dou-
ble counting in a double self-consistent loop23. As an im-
purity solver for the DMFT, we adopt the modified iterative
perturbation theory31,32. With FLEX+DMFT we do not ad-
dress here the strong-coupling regime for U exceeding the
bandwidth, nor very dilute fillings for convergence reasons.
For U greater than the bandwidth, employing the continuous-
time quantum Monte Carlo33, or the one-crossing approxima-
tion34 as the impurity solver incorporates dynamical vertex
corrections more properly but, independent of the impurity
solver, our FLEX+DMFT formalism suffers from a lack of
spatial vertex corrections. To sanity-check and benchmark
our FLEX+DMFT results, we compare them with DQMC re-
sults at relatively high temperatures where the sign problem
is less severe. More precisely, in the DQMC, the fermionic
sign problem makes the accessible temperature (T ) for U ≤ 2
restricted to T ≤ U/15, see also Ref. 20, while we can go
to lower T s in FLEX+DMFT. DQMC simulations are per-
formed on a 16 × 16 periodic cluster, while FLEX+DMFT
is performed for a 64× 64 momentum grid.

III. RESULTS

Let us start with the double occupancy of electrons against
the band filling in Fig. 3. We first recall that, for the ordi-
nary cosine band, the double occupancy starts to increase in
the strong-coupling regime and above half-filling (〈n〉 > 1)
where the number of electrons exceeds the number of lattice
sites, see inset of Fig.3 and also Ref. 20. If we first look at
the result for the PFB model, we can see quite a different
behavior, where the double occupancy starts to grow already
around ' 0.6 well below half-filling, in both FLEX+DMFT
[squares in Fig. 3 (b)] and DQMC results (solid curves). We
can particularly note that even at a very weak U = 0.5 the
double occupancy arises when significantly less than half-
filled (〈n〉 & 0.6), which can only occur in the cosine band
above 〈n〉 ' 1 at strong U � bandwidth. Thus we deduce
that the flat region makes the weak interaction sufficient for
the emergence of the correlation effect. To endorse this, we
turn to the double occupancy for the t-t′ model obtained with
FLEX+DMFT [solid curves in Fig. 3 (a)]. We again encounter
the double occupancy well below the half-filling. The double
occupancy in the t-t′ model is greater than in the PFB, which
is understandable since the flat region in the former is much
narrower.

We can then examine the electron configuration in the
momentum space to compare between the flat and disper-
sive parts (i.e., how electrons doubly-occupy the flat re-
gions before the dispersive regions are filled). Figure 4
presents the momentum-dependent distribution function nk =
1
2

∑
σ〈c
†
kσckσ〉, where panel (a) is for the t-t′ model at a fill-

ing 〈n〉 = 0.5, while (b) is for the PFB at 〈n〉 = 0.62, both
for U = 2. The chosen fillings are respectively around the fill-
ings at which the double occupancy starts to rise in Fig. 3. The
figure is obtained with FLEX+DMFT, but we again observe a
qualitative agreement between DQMC and FLEX+DMFT re-
sults (see Appendix A). For the t-t′ model at 〈n〉 ' 0.5, the
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Figure 3: Double occupancy (normalized by the uncorrelated
value (〈n↑〉〈n↓〉 = 〈n〉2/4)) against the band filling 〈n〉 for
the t-t′ [solid curves in (a)] and iPFB [squares in (b)] models,
obtained with the FLEX+DMFT. Solid curves with error bars
in (b) represent DQMC result for the PFB model20. The
results are for U = 0.5− 2.0 at temperature T = U/15. Inset
in (b) is the double occupancy for the cosine band for
U = 12 at the same temperature with DQMC. Error bars are
determined by jackknife resampling.

occupation in the flat region along kx = 0 and ky = 0 is close
to, but smaller than, unity with 0.7 < nk < 0.85. For the
PFB model at 〈n〉 = 0.62, we can see an almost constant and
half-filled 0.52 < nk < 0.55 over the flat region bounded by
|kx| + |ky| ≤ π in that model. Larger occupation in the t-t′

model should again be related to its narrower flat region.
The above results show that the electrons are selectively

crammed into the flat portion causing double occupation be-
fore the dispersive portion starts to be occupied. This would
not be surprising since the flat portions are situated at lower
energies, but a remarkable point is the following: (i) The oc-
cupation is fractional, somewhere between the single and dou-
ble occupations, and (ii) the occupation occurs all over the flat
portions with basically the same occupied area as we vary the
total band filling (compare Fig.4 with Fig.12 in Appendix B)
in both models. In this sense Luttinger’s theorem35 does not
seem to apply here. To explore the Fermi surface formation,
we plot the Green’s function for both models in Figs. 5,6 (top
panels), where sharp peaks would define the Fermi surfaces.
While the Fermi surfaces are visible in the t-t′ model (Fig. 5),
they are not very well-defined for the PFB model (Fig.6). We
come back to this point below in terms of the frequency de-
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Figure 4: (a) Momentum-dependent distribution function nk
for the t-t′ model at 〈n〉 = 0.5. (b) The same for the PFB
model at 〈n〉 = 0.62. Results are computed with
FLEX+DMFT on a 64× 64 momentum grid. We have
U = 2 and an inverse temperature β = 7.5 for both results.
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Figure 5: For the t-t′ model, Green’s functions (top panels)
and spin susceptibilities (bottom) are color-coded in
momentum space for fillings 〈n〉 = 0.7 (a, d), 0.8 (b, e), and
0.94 (c, f). All the results are for U = 3, β = 33, but note
different color codes for different panels.

pendence of the self-energy.
Let us now turn to the spin structure against the band

filling. The static spin correlation function, χs(k) =

2
∫ β

0
dτ〈Szk(τ)Sz−k(0)〉36 is displayed for the t-t′ (Fig. 5) and

PFB (Fig. 6) models at U = 3, β ≡ 1/(kBT ) = 33 and
〈n〉 = 0.7 − 0.94. Overall, the spin correlation is seen to be
large over streaks or wide plateaus (rather than usual spots),
which should come from the flattened bands. More precisely,
reflecting the structure of Green’s function, the t-t′ model
shows streaks across some mid-points in the Brillouin zone,
which cross over to wider and more complex structures as we
approach 〈n〉 = 1. A smaller overall value of the spin suscep-
tibility in Fig. 5(f) may be attributed to coexistence of spin
fluctuations coming from occupied flat and dispersive por-
tions. The PFB model, on the other hand, shows a crossover
from ferromagnetic spin fluctuations, which is expected as in
the spin alignment in the half-filled flat branch in multi-band
models, to wider plateaus with peaks shifting away from Γ
point, and finally to antiferromagnetic spin fluctuations with
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Figure 6: The same as in the previous figure for the PFB
model. In panel (f) maxima exist at (±π,±π).

peaks around (±π,±π) as we approach 〈n〉 = 1. As for the
charge susceptibility, χc(q) =

∫ β
0

dτ〈nq(τ)n−q(0)〉, we ob-
serve a similar trend in both models, but χc is an order of
magnitude smaller than the spin susceptibility. We shall see
below that the spin structure governs the structures of the self-
energy, local spectral function as well as pairing.

Now we are in position to explore the superconducting
phases with the linearized Eliashberg equation for the gap
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function ∆,

λ∆(k) = − 1

β

∑
k′

Veff(k − k′)G(k′)G(−k′)∆(k′), (4)

where λ is the eigenvalue, k ≡ (k, iωn) with ωn being the
Matsubara frequency with

∑
k = 1, Veff = U + 3U2χs/2 −

U2χc/2 is the effective pairing interaction, and G is Green’s
function. The eigenvalue is a measure of superconducting
instabilities with λ = 1 marking TC . Figure 7, a key re-
sult of this work, plots λ for singlet (filled symbols) and
triplet (empty) pairings for the t-t′ and PFB models.

If we first look at the result for the PFB model, triplet pair-
ing is favored with larger λs over a remarkably wide region
of the filling, which indicates the importance of the wide flat
region accompanied by ferromagnetic fluctuations. Then a
singlet pairing rapidly dominates as we approach 〈n〉 = 1. In
the t-t′ model, with a narrower flat portion and associated spin
fluctuations (Fig. 5), singlet pairing dominates over the whole
region studied here, but with a curious double-dome structure
in TC . Both of these are in dramatic contrast with the usual
cosine-like bands, where the singlet d-wave pairing dominates
with a single dome in λ around 〈n〉 ≈ 0.923,25,37. The sharp
enhancement in the singlet pairing close to the half-filling in
the PFB, which should come from the prevailing antiferro-
magnetic fluctuations, has λ that is larger than t-t′ and even
the cosine-band counterparts. We note that this takeover (an
arrow in Fig. 7 (b)) occurs when the flat-band filling exceeds
about 3/4 (see Appendix B), which in fact coincides with a
critical filling, 〈n〉c, at which the DMFT spin susceptibility is
peaked (see Appendix C), and the exponent in the self-energy
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Figure 9: The same as in the previous figure in real space.
Dashed lines represent nodes.

is also peaked as we shall see in Fig. 10(b) below. As for the
singlet pairing in the t-t′ model, we can see that the left peak
in λ occurs around 〈n〉c for this model.

So let us now fathom these results in terms of filling-
dependent singlet and triplet gap functions in momentum
space in Fig. 8, or in real space in Fig.9, for the t-t′ and PFB
models. We can immediately see that all the gap functions
are anisotropic and possess nodal lines whose number sensi-
tively depends on the filling. In the t-t′ model, cases similar
to the usual d-wave [∆(k) ∼ cos(kx) − cos(ky)] exist [as
in Fig. 8(b), Fig.9(b)], but more generally admits structures,
∆singlet(k) ∼ cos(γkx) − cos(γky), where γ(= 1, 2, · · · )
characterizes the number of nodal lines. For instance, we have
γ = 1 → 2 for 〈n〉 = 0.94 → 0.7 in the t-t′ model. This
shows that, as we go away from the half-filing at which an-
tiferromagnetic fluctuations dominate, the usual dx2−y2 wave
changes into something more complicated.

If we turn to the gap functions in real space in Fig.9, we
can realize that the larger the number of nodal lines, the more
extended the pairs over several lattice spacings in real space.
Similar long-range pairings have also been explored for quasi-
one-dimensional and 2D systems38,39, where each pair be-
comes more spatially extended as we go from p-wave to d
and f with the number of nodes increasing. For the triplet gap
function40 in Fig.8 (c,d,g,h), we also tend to have unusually
extended pairing with larger numbers of nodes. In the litera-
ture, the random-phase approximation (RPA) has been used to
obtain the filling-dependent gap symmetry in the t-t′ model41,
but the present results exhibit different bahavior such as an
absence of s-waves seen in RPA, which should be due to the
self-energy effects incorporated more accurately here. For the
PFB model, triplet gap functions are close to a simple p-wave,
∆triplet(k) ∼ sin(kx)± sin(ky), but extra nodes are visible.

If we go back to Fig.7, the Eliashberg λ in our partially
flat-band systems can be smaller than those for the ordinary
cosine band, which may be related to less compact pairing in
the former, but we do have important effects peculiar to the
flat-band cases: For the PFB, (i) the singlet λ sharply blows
up toward the filling n = 1, and (ii) before this occurs the
triplet pairing are favored over an unusually wide region of n.
For t-t′, (iii) the peculiar double-peak structure arises from a
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Figure 10: Imaginary part of the DMFT impurity self-energy,
Σimp, against Matsubara frequency, ωn, for 〈n〉 = 0.7
(green), 0.9 (red), 0.94 (blue) in the t-t′ (a) and PFB (c)
models. (b) The exponent α in the fit |ImΣimp(iωn)| ∝ ωαn ,
for the t-t′ (blue circles) and PFB (red squares) models.
Arrows mark respective 〈n〉c for the spin susceptibility
peaks, which are seen here to coincide with the peaks in α.
(d) Local spectral functions in the t-t′ (solid lines) and
PFB (dotted) models for the band filling 〈n〉 = 0.7, 0.8, 0.94.
All the results are for U = 3 and β = 33.

change in the number of nodes around the dip of λ (marked
with a vertical dashed line in Fig.7 (a)). If we compare the
single-band and multi-band flat-band systems42, the former
sharply contrasts with the behavior of the multi-band case16

in which the Eliashberg λ is shown to have a sharp dip when
EF becomes too close to the flat band, but this does not occur
in the present single-band case.

Fermi-liquid properties We finally look into the Fermi-
liquid properties. In Fig. 10(a,c) we plot the imaginary part of
the DMFT self-energies against Matsubara frequency in the
t-t′ (a) and PFB (c) models, for band filling 〈n〉 = 0.7 − 1.0
at U = 3, β = 33. We notice that the self-energy exhibits
a peculiar frequency dependence. We can actually quantify
non-Fermi liquid behavior by fitting the imaginary part of the
self-energy to

|ImΣimp(iωn)| ∝ ωαn ,

for low Matsubara frequencies. Then α = 1 character-
izes the Fermi liquids, while α < 0.5 will signify a “bad-
metallic” behavior43–45. Here we take the DMFT impurity
self-energy, Σimp, since we want to look at the local self-
energy, which we shall later compare with the DMFT impurity
spin-susceptibility. We can see in Fig. 10(b) that the exponent
α increases up to a critical filling 〈n〉c that depends whether
we have the t-t′ or PFB models. It is notable that the 〈n〉c for
the self-energy coincide with the critical 〈n〉c (= 0.82 for t-t′,
〈n〉c = 0.94 for PFB at U = 3, β = 33) at which the spin-
susceptibility for the DMFT impurity, χimp

s , has a peak in each
model, as shown in Appendix C. For further increase of the
filling, α starts to decrease. The value 〈n〉c = 0.94 in the PFB
corresponds to the filling at which the flat part of the band
is about 3/4-filled, namely we have 0.71 < nk < 0.83 on
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the flat portion in the momentum-dependent distribution func-
tion (see Appendix B). A bad-metallic behavior also appears
as deformations in the local spectral functions in Fig. 10(d),
obtained via analytic continuation with the Padé approxima-
tion. In particular, the local spectral functions undergo large
changes for 〈n〉 > 〈n〉c with an emergence of multi-peaks that
are separated by ω � U , see also Appendix D.

IV. CONCLUSION AND DISCUSSIONS

To summarize, we have studied two partially flat-band mod-
els (t-t′ and PFB) to reveal that a manifestation of the flat por-
tion in the band gives a dramatic difference from the ordinary
band to produce a peculiar sequence of the dominant pairing
symmetries. This occurs in both models, in a manner that is
dominated by the size of the flat region. For PFB with a wide
flat area, triplet pairings are favored over a wide filling region,
while for t-t′ with a narrower flat area, a double-dome struc-
ture in TC emerges associated with different numbers of nodes
in the gap function. Concomitantly, pairings can become un-
usually extended in real space with large numbers of nodes.
We have finally shown that non-Fermi-liquid like behavior ex-
ists in a power-law frequency dependence of the self-energy,
etc. We identify these as a peculiar emergence of correlation
effects in partially flat-band systems that can occur even for
intermediate electron-electron interactions.

As Fig. 1 suggests, the different pairings revealed here
should come from quite different configurations of pair-
scattering channels in the partially-flat band models: In reg-
ular bands the key process is the pair scattering specifically
between the “hot spots” (anti-nodal regions in the cuprates,
and Fermi pockets in the iron-based superconductors15, re-
spectively giving rise to the d and s± pairings), which is con-
trasted with the flat bands that have the whole bunch of pair-
scattering channels involving, so to speak, an “extended hot
regions”.

This now leads us to make an observation: For ordi-
nary bands, we can show, from a general phase-space vol-
ume argument46,47, that the superconductivity mediated by
spin fluctuations should work much more efficiently in two-
dimensional (layered 2D) systems than in 3D. By contrast,
the flat bands with (i) extended hot regions (with wide areas
in k-space for large spin fluctuations), (ii) wide areas for large
gap function amplitudes, and (iii) also wide areas for large
Green’s functions (which are involved in Eq.(4)) may evade
the above theorem to render 3D systems as good as in 2D.
This will make 3D partially flat band systems interesting.

An important question of course is whether flat bands can
enhance TC . For the attractive Hubbard model, the sign-free
DQMC actually indicates that TC is nearly doubled when
the band is flattened into PFB20. A general question then is
whether TC is enhanced in the repulsive model, which is an
important future problem. For ordinary (cosine) bands, Ki-
tatani et al. have used DΓA (dynamical vertex approxima-
tion) to identify the vertex correction as the reason why TC(∼
0.01t) in the spin-fluctuation mediated pairing is two orders
of magnitude smaller than the starting electronic energy37. It

will be interesting to see whether the vertex correction in the
flat-band systems can act to overcome this. In the present flat-
band models, the spin susceptibility can have broad structures
such as plateaus. One possible hint is that Yanase et al.48 show
that the vertex correction becomes significant in a model that
has a featureless spin structure.

As for vanishing group velocity, this also occurs point-
lie at van Hove singularities, and its effect on correlation
physics has been discussed49, where topological superconduc-
tivity such as d+id wave is suggested. So it is intriguing to
examine whether the present systems, where the group ve-
locity vanishes in finite areas rather than at points, can ac-
commodate topological superconductivity. The present work
has shown transitions between different pairing symmetries
(within singlets with different numbers of nodes in t-t′ and
singlet-triplet transition in PFB). In fact, it is known that the
boundary between different pairing symmetries is a promis-
ing venue for looking for time-reversal-broken topological
superconductivity50–52.

As for possible realizations of the present model, we can
raise an example which is the τ -type organic salt family,
D2A1Ay , based on D (=P-S, S-DMEDT-TTF or EDO-S, S-
DMEDT-TTF) in combination with anions A (=AuBr2, I3, or
IBr2), studied by Papavassiliou et al. 53,54, which are two-
dimensional metals in the τ crystal form. The band struc-
ture of a single layer of the τ phase contains a flat-bottomed
band just as in the present t-t′ model. Indeed, a checkerboard-
patterned organic molecule in the layer makes its effective
model a tight-binding system with t′ ' −0.5t53–56. The par-
tially flat-band models proposed here require distant hopping
amplitudes. In real materials, an organic τ -type conductor,
for instance, has been investigated experimentally, and dis-
tant hoppings are theoretically shown to gives rise to a par-
tially flat band53–55. As for inorganic materials, ruthenate
superconductors57,58, and some iron-chalcogenides59,60 have
partially flat bands. They are multi-band systems, where
competition between various pairing symmetries61,62, frac-
tional power-law behavior in the optical conductivity63–65, and
(anti)ferromagnetic spin structures66,67 have been discussed.
On the other hand, there is a recent upheaval of interests in
the twisted bilayer graphene, where the band structures are
shown to have flat portions on hexagonal lattices68–79. This
further highlights the need to understand partially flat bands
more generically. As for the space group we can extend the
present idea on tetragonal lattices to hexagonal cases, which
is underway.
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Appendix A: Comparison of DQMC and FLEX+DMFT results
for momentum-dependent distribution functions

Let us here compare the momentum-dependent distribu-
tion functions obtained with the DQMC and FLEX+DMFT
approaches for the PFB model at 〈n〉 = 0.62 for U = 2,
β = 7.5 in Fig. 11. The occupancy and shape of the oc-
cupied regions are seen to accurately agree between the two
results. More precisely, the electron occupancy in the flat por-
tions ranges 0.52-0.55 in the DQMC (a), and 0.52-0.57 in the
FLEX+DMFT (b).
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Figure 11: Momentum distribution function for the PFB
model computed with DQMC on a periodic 16× 16
cluster (a), as compared with the result in FLEX+DMFT on a
64× 64 momentum grid (b), for U = 2, inverse
temperature β = 7.5, and filling 〈n〉 = 0.62.

Appendix B: Momentum-dependent distribution functions
at 〈n〉c for the t-t′ and PFB models

We display in Fig. 12 how the momentum-dependent distri-
bution function, nk, behaves right at the critical filling 〈n〉c =
0.82 for t-t′, and 0.94 for the PFB model. The occupation
of the flat portion of the band in the PFB system ranges from
0.71 to 0.83, i.e., about 3/4. In the t-t′ model, the flat portion
is close to fully occupied, associated with the narrower size
of the flat region of this band. These results should be com-
pared with Fig.4 in the main text, where the flat portion is an
occupation about 1/2 in PFB.

Appendix C: DMFT impurity spin-susceptibility

Let us display in Fig.13 the DMFT spin-susceptibility χimp
s ,

obtained from the DMFT impurity Green’s functions, for
U = 3 and inverse temperature β = 33 in the t-t′ and PFB
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Figure 12: Momentum-dependent distribution function, nk,
at the critical fillings, 〈n〉c = 0.82 for the t-t′ (a) and 0.94 for
the PFB (b) models, for U = 3 and β = 33.

models. The result exhibits a peak (marked respectively with
an arrow) in each model, which is seen to coincide with the
critical filling 〈n〉c for the self-energy behavior introduced in
the main text, see the arrows in Fig.7 and Fig.10(b).
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Figure 13: DMFT impurity spin-susceptibility against band
filling for the t-t′ (green circles) and PFB (blue squares)
models for U = 3 and β = 33. Arrows indicate the critical
filling 〈n〉c in the two models, respectively.

Appendix D: Momentum-dependent spectral functions
at 〈n〉c

We present the momentum-dependent spectral functions at
Γ (0, 0) and X (0, π) points in the Brillouin zone right at the
critical band filling, 〈n〉 = 0.81 in t-t′ and 〈n〉 = 0.94 in
PFB models, in Fig. 14. The spectrum is obtained with Padé
approximation. In both panels, shoulder-like features are seen
at Γ point as a correlation effect. Such a feature also appears
at (0, π) in the PFB model. The result should be compared
with the local spectral functions in Fig. 10(d) in the main text.
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Figure 14: Spectral function, A(k, ω), at Γ (red solid lines)
and X (blue dotted) points in t-t′ (a) and PFB (b) models, for
U = 3, β = 33, and band filling 〈n〉 = 0.81 (a) or 〈n〉 =
0.94 (b). Spectral function at X point in (a) is devided by a
factor of 5.


