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We theoretically study the entanglement between two arbitrary spins in a magnetic material,
where magnons naturally form a general squeezed coherent state, in the presence of an applied
magnetic field and axial anisotropies. Employing concurrence as a measure of entanglement, we
demonstrate that spins are generally entangled in thermodynamic equilibrium, with the amount of
entanglement controlled by the external fields and anisotropies. As a result, the magnetic medium
can serve as a resource to store and process quantum information. We, furthermore, show that the
entanglement can jump discontinuously when decreasing the transverse magnetic field. This tunable
entanglement can be potentially used as an efficient switch in quantum-information processing tasks.

I. INTRODUCTION

Entanglement [1, 2] is a measure of how much quan-
tum information is stored in a quantum state and is one
of the most fundamental properties that distinguish a
quantum phenomenon from its classical counterpart. It
was under a severe skepticism, however, since the dis-
covery of quantum mechanics [3], due to its nonlocality
that appeared to violate the local-realism view of causal-
ity. Following the derivation of Bell’s inequalities, which
rendered the nonlocal features of quantum theory acces-
sible to experimental verification, numerous experiments
in different systems have been carried out, including pho-
tons, neutrinos, electrons, molecules as large as bucky-
balls, and even small diamonds, unequivocally demon-
strating the existence of quantum entanglement [4—10].
In parallel with these developments, quantum entangle-
ment has come to be recognized as a valuable resource
in quantum-information processing [11]. For example, a
quantum computer can be much faster and more power-
ful than a classical one for certain computational tasks,
by taking the advantage of the superposition and entan-
glement in a quantum system [12]. Moreover, we can
realize several quantum protocols, such as teleportation,
exclusively with the help of entangled states [13]. These
merits of entanglement in quantum information science
stimulate the research trying to coherently prepare and
manipulate it in various systems.

A magnon Bose-Einstein condensate (BEC) [141], where
quanta of spin waves condense into a single state, may
be taken as a platform to look for controllable entangle-
ment [15], since particles in a condensate are distributed
over space in a coherent way. Magnon BEC is attractive
in practice, as it can be driven by microwave | ] or
electronic [23, 24] pumping in an insulating ferromagnet
through a quasiequilibration process at room tempera-
ture. Without magnon pumping, we can also achieve
magnon BEC in equilibrium, by introducing an easy-
plane anisotropy in the magnetic system [25]. As we show
in this paper, magnons condense by forming a general
squeezed coherent state, when the system is subjected to
external magnetic fields and anisotropies. A squeezed co-

herent state [26], akin to a coherent state, is a minimum
uncertainty state but with uncertainties of conjugate op-
erators being different. This state has been investigated
extensively in quantum optics, resulting in many appli-
cations. For example, it can be used to improve the pre-
cision of atom clocks [27, 28] and quantum-information
processing in the continuous-variables regime [29].

In this paper, we study the entanglement of arbitrary
two spins in a magnetic system (assuming the number
of spin sites is Np), utilizing the concurrence C [2, 30]
as a measure of entanglement, where magnons are con-
densed into a general squeezed coherent state. The av-
erage number of condensed magnons in such a state can
be tuned by the external field and magnetic anisotropies
[26]. We distinguish between two types of magnons: co-
herent magnons related to a uniform order-parameter
tilting and squeezed magnons related to the anisotropic
squeezing effect [see Eq. (11) below]. From numerical
analysis, we find that the system transits abruptly to a
highly entangled state from an unentangled state, when
we decrease the number of coherent magnons (denoted
by N.) across a critical value that is determined by the
number of squeezed magnons (denoted by Ny):

N, = /2Ny Nj. (1)
This can be potentially used as a switch in quantum-
information processing tasks. Whereas a simple coherent
state has no entanglement, a squeezed vacuum state is
entangled with concurrence
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This concurrence will increase as the number of squeezed
magnons rises. Resembling squeezed light in quan-
tum optics [ , o1, ], our squeezed coherent magnetic
states can also serve as an essential resource to realize
continuous-variables protocols for quantum communica-
tion, unconditional quantum teleportation, and one-way
quantum computing. Apart from this, we also discuss
the entanglement when the condensate is in a Fock state
and we match our result with the entanglement of Dicke
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states [33], which has been well understood in quantum
spin squeezing [341-36]. In contrast to the entanglement
between macroscopic building blocks of cavity magne-
tomechanical systems [37, 38], we are considering the in-
trinsic spin entanglement within a quantum medium.

The paper is structured as follows: In Sec. II, we in-
troduce the model and discuss the ground state in terms
of coherent squeezing. In Sec. III, an entanglement mea-
sure, known as the entanglement formation is briefly re-
viewed, along with its relation to concurrence [30]. In
Sec. IV, we derive main results of this paper, namely, the
entanglement of a general squeezed coherent magnetic
state, including its two special cases: coherent states
and squeezed vacuum states. The entanglement of Fock
states and the distance dependence of entanglement in
the thermodynamic limit are also examined. A summary
and outlook are offered in Sec. V.

II. MODEL

Our model system is a set of localized spins interacting
through a nearest-neighbor exchange coupling on a three-
dimensional lattice, with axial anisotropies and a tilted
magnetic field, according to the following Hamiltonian

[39]:

H=-J)8;-S;-B-Y S;+H +H,, (3)
(i.9) i

== > (SrSy - 8YSY) (4)
w [} [ VAl

(i.3)
Hy=-h-) S, (5)

Here, S; = o;/2 is the spin operator on the ith site (o
are Pauli matrices and we have set i = 1 for simplicity),
w is the lattice coordination number (for example, w = 6
for a simple cubic lattice), J > 0 is the exchange con-
stant of a simple Heisenberg magnet (J > B, |K|), |K]
is the anisotropy strength, (i, j) stands for all nearest-
neighbor pairs, and B = Bz, h = hx are the external
fields (absorbing all constant factors). We will restrict
our discussion to the case B > |K|, so that quantum
spin fluctuations can be expanded around the z axis.
We will focus on the low-temperature limit, T < J,
where thermal magnons are dilute. It is convenient to
switch from the SU(2) spin algebra to the bosonic al-

gebra: S;“ = a;,Sf =1/2 — a;rai, where az,ai are the
magnon creation and annihilation operators in real space
that obey bosonic commutation relations. This transfor-
mation is exact, when complemented with the hard-core
repulsion for magnons [40]. In the dilute limit, where the
average magnon density is small (al-tai> < 1, as in our
case of J > B > |K|, we can relax the hard-core repul-
sion constraint and, as a result, the Hamiltonian H can
be linearized and rewritten as

H= Z(QJk2 + B)altak + g Z(aT_kaJ{{ + axa_x)

k k
_hTm(aT+a)+... . (6)
Here, a = a4—0, the ellipsis represents nonlinear terms,
and Ny is the total number of sites in the system. Note
we have set the lattice constant to be 1, which means
all quantities with length dimension will be measured in
unit of the lattice constant. The above Hamiltonian can
be diagonalized by applying Bogoliubov transformations
[41, 42] and rewritten as

H =" w(k)blbw +wb'b, (7)
k#0

where b7, b and bL, bk are bosonic operators, w(k) =
V/(2Jk2 + B)?2 — K2 and w = w(k = 0). The operator b
and by are related to a and ay via

b= D(a)S(r)aST(r)DT(a); (8)
bk = S(¢x/2)ar ST (¢xc/2), k # 0. 9)

S(ox/2) = elara-i=aial)é/2 5 5 two-mode squeezing
operator [43, 44] and ¢y is determined by tanh ¢, =
K/(2Jk* + B). S(r) = ela®=(@’I"/2 g a squeezing op-
erator [26] with r = ¢x—o/2. D(a) =
placement operator with a = hy/Nge 2" /2w.

The ground state [¢) is given by b)) = 0,bk [¢)) = 0
for all k and thus

) = (D(@)S() [0)) @ ( TT st6e/2)[0) ) (10)

k0

g . .
aei—a a4y g dis-

where |0) is the Fock vacuum defined by ax [0) = 0 for
any wavenumber k. The average number of magnons in
the ground state is

(alak) = Oy.0|a|? + sinh? % (11)

In the large exchange-coupling limit with the size of the
system being finite, the effect of nonzero wavenumber
modes is negligible and the ground state reduces to the so
called squeezed coherent state |¢) = D(a)S(r)|0). Un-
der the circumstances, <aLak> = Oc0(|of? 4 sinh?r). We
refer to the part related to the coherent parameter « as
coherent magnons and the part related to the squeezing
parameter r as squeezed magnons, denoted by

N. = |a? and N, = sinh®r, (12)

respectively.

Staying in the large-J limit, when we turn off both
the anisotropy K and the in-plane magnetic field h so
that » = a = 0, the ground state is the Fock vac-
uum of operators ay, corresponding to all spins aligned
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(a) coherent state  (b) squeezed vacuum (c) squeezed coherent
state state

FIG. 1. (a). A general coherent state |a) = D(«)|0),
where D(a) = exp{aaT — a*a} is a displacement operator
with a = |ale’, is the minimum uncertainty state (AS® =
ASY = 1/2 ). All spins deviate from B « 2z direction co-

herently. (b).

where S(¢) = 6[4*“27“‘”)2] /2 is the squeezing operator with
a squeezing parameter ¢ = re'®, is also a minimum uncer-
tainty state with uncertainties being squeezed (blue ellipse)
compared with the vacuum uncertainties (green disk). The
direction of the squeezing (the orientation of the semi-minor
axis of the ellipse with respect to the S® axis) is ¢/2. The
length of the semi-minor axis is e~"/2 and the length of the
semi-major axis is e” /2. The average direction of the spin in
such state is along B. (c). For the general squeezed coherent
state D(«)S(¢) |0), the degree of the deviation from z is de-
termined by the parameter a and the degree of squeezing of
the uncertainty is determined by the squeezing parameter (.

The general squeezed vacuum state S(¢) |0),

along B. If we turn on the in-plane magnetic field h
and keep the anisotropy off, there are finite number of
magnons in the ¢ = 0 mode forming a coherent state
[) = D(a)|0), where all spins deviate from B direc-
tion uniformly (see Fig. 1la). The number of magnons
(the degree of the deviation) is determined by the mag-
nitude of h via N. = Noh?/4B?, which is much smaller
than Ny in the dilute limit. We emphasize that this is
a minimum uncertainty state and equally balanced be-
tween S* and SY with AS® = ASY = 1/2 [45]. If we
turn on the anisotropy and keep the in-plane magnetic
field off, the ground state is a squeezed vacuum state
|tb) = S(r)|0), where spins align along B on average by
noting that (S*) = (S¥) = 0 but with finite number of
condensed magnons N, = sinh?r (see Fig. 1b). The un-
certainty is also minimized in this state, but not equally
balanced between S* and SY. This is also implied from
the Hamiltonian H; where the in-plane U(1) symmetry
is broken explicitly, which is the crucial ingredient for the
presence of entanglement. The degree of this squeezing
is measured by the squeezing factor r, more explicitly
ASY/AS* = e?". When both anisotroy and in-plane
magnetic field are present, all spins deviate from B on
average and the uncertainties in S* and SY have the

same behavior as the squeezed vacuum state. The av-
erage number of condensed magnons is N = N, + N,
consisting of coherent magnons and squeezed magnons
[see Eq. (11)]. The entanglement between two arbitrary
spins is determined by the interplay between those parts.
In other words, we can tune the entanglement by varying
the parameters, such as the anisotropy and the in-plane
magnetic field which determine N, and N,;. Note that
we refer to this global tilting state as a condensed state,
since the number of magnons in the =0 mode remains
to be finite under any spin rotation in the spin space.

In the thermodynamic limit, the contribution to the
entanglement due to ¢ = 0 mode is negligible and the ef-
fective ground state is the squeezed vacuum state |¢) =
[Txz0 S(¢x/2) |0). There are only squeezed magnons, be-
cause the uniform magnetic field only couples with the
¢ = 0 mode. The entanglement in this case is distance
dependent, since |¢) involves finite-wavenumber modes.
This will be addressed in Sec. IV E. Before delving into
that, let us introduce the entanglement measure we em-
ploy in our analysis: the concurrence.

IIT. ENTANGLEMENT MEASURES

The problem of measuring entanglement is a vast field
of research on its own [, 2]. Numerous different meth-
ods have been proposed to that end. For a pure bi-
partite state pap = |¥aB) (¥aB|, we usually adopt the
von Neumann entropy as the entanglement measure:
S(|YaB)) = —trpalnps = —trpglnpg. For a gen-
eral mixed state pap, this von-Neumann entropy is no
longer a good measure since the classical mixture in pap
will also contribute to the von Neumann entropy. There-
fore, many new measures have been introduced, such as
entanglement of formation, distillable entanglement, and
entanglement cost, which all reduce to the von Neumann
entropy when evaluated on pure states. In this paper, we
will use the entanglement of formation as the entangle-
ment measure as we can accomplish some analytic results
for problems we are interested in.

The entanglement of formation is defined as

Er(paB) Emiani S(‘wgB>), (13)

7

where the minimum is taken over all possible decompo-
sitions of pap = Y, pi [¥ig) (Vig| and S(|¥hg)) is the
von Neumann entropy of the pure state ’W\B>' Phys-
ically, Er(pap) is the minimum amount of pure state
entanglement needed to create the mixed state. This is
extremely difficult to evaluate in general since we need to
try all the decompositions. Quite remarkably an explicit
expression of Er(pap) is given when both A and B are
two-state systems (qubits). This exact formula is based
on the often used two-qubit concurrence, which is defined
as [30]

C(p) = max{07 )\1 - )\2 - )\3 - )\4}, (14)



where A;’s are, in decreasing order, the square roots of
the eigenvalues of the matrix p(o, ®0,)p* (0, ®0,), where

p* is the complex conjugate of p. The entanglement of
formation is then given by

Er(p) = h(l—’_i V;_Cz) (15)

h(z) = —xlogyx — (1 —x)logy(1 —z).  (16)

Er(p) is monotonically increasing and ranges from 0 to
1 as C(p) goes from 0 to 1, so that one can take the con-
currence as a measure of entanglement in its own right.
We include two examples in Appendix A and we will use
the result of the second example in our following analysis.
In the next section, we explore the entanglement between
two arbitrary spins for various states we discussed in Sec-
tion II.

IV. ENTANGLEMENT QUANTIFICATION

In the first four subsections, we discuss the entangle-
ment due to the ¢ = 0 mode in a finite size sample with
large exchange coupling where this mode dominates the
quantum fluctuation. In the last subsection, entangle-
ment and its distance dependence are examined in ther-
modynamic limit, where finite wavenumber modes must
be taken into account.

A. Fock States

We start with investigating the concurrence between
two spins in Fock states |IN) where N is the number of
magnons in the zero-momentum mode. For the Fock vac-
uum |0), the concurrence is zero since this is a prod-
uct state |11 ---1). When there is a finite number
of magnons, invoking the reduced density matrix (A5),
which is simplified for this specific case, we show the con-
currence (Eq. 14) between arbitrary two spins is given

by
CFock = QmaX{O, |<UZ+UJ_>| - <kz+k;_><kl_kj_> }

zz%u_ﬁ_mv). (17)
0

Note that the upper bound of the concurrence is 2/Ny,
which is known as the tight bound for symmetric sharing
of entanglement [46]. The concurrence reaches its maxi-
mum value when there is only one magnon, corresponding
to the state [JT--- )+ [Tl 1+ |11 ---]). This is a
generalization of the Bell state [¥T) ~ |1]) + [{1) and
thus maximally entangled. Another feature we should
pay attention to is that the concurrence is a decreasing
function of N and approaches 1/Ny as N — oo. This
is consistent with the analysis of the Dicke state [33]
|No/2, M) in quantum optics, which describes a system
consisting of Ny two-level systems (spin-1/2 particles)

4

and is a pure symmetric (with respect to permutations)
state. No/2 — M is the number of excited two-level sys-
tems (i.e., the flipped spins). The concurrence of such
Dicke state is given by [34-30)]

N —4M? — \/(Ng — AM?2)[(No — 2)% — 4M?]
2No(No — 1)
~ CFock7 (18)

where we have identified N = Ny/2 — M and specialized
to the case N < Ny by noting that the number of excited
two-level systems is exactly the number of magnons in
our context. It should be clear from our discussion above
that we must invoke the one-magnon state [N = 1) to
produce a maximally-entangled configuration.

In Ref. [47], it was found that the entanglement be-
tween two spins increases with the number of condensed
magnons N, which is contrary to what we discussed
above. This discrepancy can be traced to the second term
in Eq. (17), which, despite being comparable to the first
term, was omitted in Ref. [47]. In particular, we see that
the entanglement vanishes in the thermodynamic limit,
Ny — o0, in the Fock state | N) with any N, in agreement
with the tight bound for symmetric sharing of entangle-
ment. At a finite temperature T', when two spins sit at a
distance smaller than the thermal de Broglie wavelength
Ar o /J/T, we expect the concurrence to be inversely
proportional to the total number of sites within the corre-
sponding volume: C o< 1/A3. (crossing over to C oc 1/Ny
as T — 0 and Ap exceeds the system size). Beyond
the thermal de Broglie wavelength Ar, the entanglement
should decay exponentially, ~ e~ /AT with the distance
R between two spins, which agrees qualitatively with the
analysis of Ref. [47].

Cpbicke =

B. Coherent States

Let us turn on the in-plane magnetic field which will
lead to a coherent state |a) = D(«)|0) as the ground
state. We evaluate the elements of density matrix (A5)
in the coherent state and obtain

ploy @ oy)p™(oy @ 0y) < Lyxa. (19)

This implies the entanglement between any two spins
is zero and there is no quantum correlation stored in
spins according to the definition of the concurrence Eq.
(14). 1Indeed, this is not surprising and it has been
shown any bosonic coherent state is unentangled [15].
It is true as well for spin coherent states since |6, ¢) =
N, [cos & |1), +€sing|1),] is a product state where
0 and ¢ specify the direction of spins. Coherent states
have minimum uncertainty which are equally balanced
between S and SY with AS® = ASY = 1/2. Further-
more, any classical mixture of coherent states, such as
p = [d’a P,|a)(a| with P, > 0 being the probability
density in |a), can only increase the uncertainty and also
has zero entanglement since classical correlations do not



contribute to the entanglement. Such states are known
as classical light states in the quantum optics [48]. One
typical nonclassical light state is squeezed states and we
will examine the entanglement of those states below.

C. Squeezed Vacuum Magnetic States

By turning on the anisotropy in Hamiltonian H; and
keeping the in-plane magnetic field off, we can generate
the squeezed vacuum state 1)) = S(r)|0) as the ground
state, where the uncertainty in S is below the vacuum
level. There must be quantum correlations in such states
since they can never be achieved by mixing coherent
states. We show that the concurrence (14) between two
spins is given by

C—i— AL
- No /N, + 1+ VN,

where N, = sinh?r is the number of magnons in the
squeezed vacuum state. In contrast to the Fock state,
the concurrence of the squeezed vacuum state increases
as we increase the number of magnons. This can be
understood by noting that increasing N corresponds
to squeezing the vacuum more. Namely, the degree of
squeezing, ASY/AS® = e2" = (v/Ng + 1++/N;)?, equals
unity when Ng = 0, which corresponds to zero entangle-
ment. ASY/AS* approaches infinity as N rises, where
the vacuum is infinitely squeezed and has maximum con-
currence 1/Np, which is half of the tight bound for sym-
metric sharing of entanglement [16]. We remark that this
reduction in the entanglement is due to the odd parity
missing in the wave function.

(20)

D. Squeezed Coherent Magnetic States

Now let us turn on both the anisotropy and the in-
plane magnetic field, resulting in the squeezed coherent
state [) = D(a)S(r) |0) as our ground state. We will see
that in contrast to the coherent states that retain their
(trivial) entanglement character under displacement, dis-
placing a squeezed state does have a nontrivial effect.
Unlike states we discussed above, however, it is difficult
to obtain an analytic expression for the concurrence in
this case. Therefore, we obtain the concurrence C numer-
ically by plotting it as a function of r for different values
of || (see Fig. 2a), where we assume the anisotropy
K > 0 without loss of generality. As increasing the value
of || from zero, we have zero concurrence under a critical
value of r. = r.(]a|) (see Fig. 2b) and nonzero concur-
rence above r.. The maximal concurrence will increase
to 2/Ny from 1/Ny as we increase the number of coherent
magnons. Thus we can see that the coherent magnons
will unlink the quantum correlations between spins es-
tablished by a small number of squeezed magnons. This
is because the coherent magnons dominate the physics
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FIG. 2. (a). Concurrence C as a function of the number of

squeezed magnons N, = sinh? r for different number of coher-
ent magnons N. = |a|?. |a| = 0 corresponds to the squeezed
vacuum state (see Eq. (20)), where the maximal concurrence
is 1/No. As we increase the number of coherent magnons, the
physics is dominated by the coherent part when the number
of squeezed magnons is small. As a result, the concurrence
is zero. However, the presence of the coherent part can in-
crease the upper bound of the concurrence once the number of
squeezed magnons is above some critical value sinh? r., which
depends on the amount of coherent magnons we put into the
system. (b). Critical values (N;)/* = /sinhr. as a func-
tion of |a, which can be fitted using a linear relation. When
the number of coherent magnons is larger than /2Ny N, the
coherent part dominates the physics and the concurrence is
zero. Otherwise, we have a finite concurrence. In the numer-
ical study above, we set No = 10%.

when the number of squeezed magnons is small. How-
ever, coherent magnons will be beneficial for informa-
tion storage when the number of squeezed magnons is
large. The upper bound of the concurrence rises since
the coherent part involves states with both parities, un-
like squeezed vacuum states which only involve even par-
ity states {|2k)}, and thus increases the upper bound.
We remark that, in contrast to the discussion in Sec. IV
B where the displacement operation does not yield entan-
glement since it is acting on a trivial state (Fock vacuum
state), the displacement operator here results in nontriv-
ial entanglement behavior as it acts on a squeezed state
which is entangled.

To determine this transition, we study the critical

value N2 g v/sinh 7. numerically and plot it as a func-
tion of || which can be fitted well with a linear relation
(see Fig. 2b). We conclude that there is no entanglement



when

N. > /2Ny N5.

Otherwise we have nonzero entanglement. This transi-
tion is discontinuous as implied from Fig. 2a. When |«
is large, NoC is a step function of 7, which can be poten-
tially used as an efficient switch in quantum information
processing tasks.

(21)

E. Thermodynamic Limit

In the thermodynamic limit, one can see that the en-
tanglement between two arbitrary spins due to ¢ = 0
mode vanishes from our discussion above. Under the cir-
cumstances, nonzero wavenumber modes should be taken
into account and we can show that the concurrence be-
tween a spin at R; and a spin at R; in d dimension is
given by

Cij = max {0, T (v, \,n)}, (22)
where
T Am) ~ — / % neos(1R - a)
3\ N q
B R O N A ey erra e

1 / y [ 14 2)2¢? }
+— diq|1 — . (23
(27T)d B.Z. \/(1 + 2)\2(12)2 — 772 ( )

The derivation is given in Appendix B. Here v = |R| =
R, — R;| and A = \/J/B are the distance between two
spins and the exchange length. 7 = |K|/B < 1 is a
dimensionless parameter and R = (R; — R;)/|R|. B.Z.
represents the Brillouin zone. Figure 3a visualizes the
distance v dependence of concurrence C;; in dimension
d=1,d=2 and d = 3, respectively. It suggests that C;;
is smaller when the dimension is higher. From Fig. 3b,
we can see that, keeping other parameters fixed, C;; will
decrease to zero as we increase the distance « to a critical
value 7., which is proportional to the exchange length
A. In other words, spins within the exchange length can
communicate and entangle with each other. Note that,
in the limit of diverging exchange length A\ — oo, the
overall value of concurrence will vanish even though spins
can entangle with each other over a long distance.

F. Remarks

Let us modify the H; and Hs to allow for more general
squeezed coherent states,

Hy = 335 [costi(SPS — 87SY)

+25in0,575Y), (24)

Hy =—hcosby )y, S¥ — hsinby ), S7. (25)
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FIG. 3. (a). Concurrence as a function of the distance 7
between two spins in dimension d = 1, d = 2 and d = 3,
respectively. The overall value of the concurrence will de-
crease as we increase the dimension of our system. In a given
dimension, the concurrence is finite but will decrease as we
increase the distance between these two spins within a criti-
cal distance 7., beyond which the concurrence vanishes. We
have set A = 10, n = 0.5 and R = %X in higher dimension. (b).
Critical distance 7. as a function of the correlation length A,
which can be fitted well with a linear relation. We have set
n =0.5.

Compared with the original Hamiltonian (3), we have
rotated the in-plane magnetic field and anisotropy by 6o
and 6 /2, respectively, H; — U(0;/2)H,U(0;/2)" and
Hy — U(62)HaU(02)F with U(0) = [, e~ being the
rotation operator. Therefore, the entanglement should
only depend on the physical angle 05 — 61 /2. The ground
state of this Hamiltonian, in the large exchange-coupling
limit (so that we can neglect nonzero wavenumber modes
[49]), is given by [¢) = D(a)S(¢) |0) with ¢ = re'®* and
o = v/Noh[e?2 cosh 2r — ¢*(%1=92) sinh 27 /2w, where w =
VB2 — K? and r is determined by tanh2r = K/B. We
recover what we have obtained before [see Eq. (10)] when
01 = 05 = 0, as expected. We point out that, by taking
this angle dependence into account, the behavior of the
concurrence does not get modified qualitatively, since its
angular variation is much smaller than the absolute value
(see Fig. 5).

The above Hamiltonian realizes the general squeezed
coherent state D(a)S(¢) |0) with a = |a|e?® and ¢ = rei®
aat—a*a

being complex-valued, where D(a) = e is

the displacement operator and S(¢) = el¢"a®=¢(a")?)/2
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FIG. 4. Spin A and B are placed above a ferromagnetic in-
sulator subjected to magnetic fields h, B and anisotropies,
which realizes the Hamiltonian that we discussed in Sec. II.
Turning on the coupling J(¢) between spins and the insulator
adiabatically so that these spins behavior like a part of the in-
sulator and thus the concurrence Cap grows correspondingly.
This entanglement remains even after the coupling J is turned
off so long as this turnoff process is rapid enough.

is the squeezing operator. The entanglement in
such states only depends on |¢/2 — 6| instead of
depending on these two angles separately. This
is implied from the Fig. lc where the only phys-
ical angle is |¢p/2 — 0]. More explicitly, we have
D(|ale?)S(rei?) [0) — D(|ale?®=%/2))S(r)|0) under a
gauge transformation a — ae®/? which will not alter
any physics of the system. We find numerically the con-
currence is periodic with period 27 in ¢ (the pink curve
in Fig. 5) and 7 in # (the black curve in Fig. 5). This is
consistent with what we discussed above where ¢ = re'®t

and a = /Noh[e?® cosh2r — e917%2) sinh 2r]/2w.
Under the gauge transformation, we have the

ground state D(ae”"1/2)S(r)|0) where ae /2 =
VNoh[ei®2=01/2) cosh 2r — e=*(02=01/2) sinh 2r] /2w and
thus the entanglement only depends on the physical
angle 65 — 01 /2.

A few ways have recently been proposed to store and
control quantum information in magnetic systems. For
example, topological defects can be used as quantum in-
formation carriers [50] and two spins can be coupled via
the spin-superfluid mode harbored by an antiferromag-
netic domain wall [51]. Our discussion can be also applied
to entangle two distant spin qubits (see Fig. 4). Let us
consider the situation where two spin qubits are placed
in the vicinity of a ferromagnetic insulator. Then, turn
on the coupling J between spin qubits and the insula-
tor strong enough so that the two spins are entangled
as if they are part of the magnetic insulator. Upon the
sufficiently rapid turnoff of the coupling, we can obtain
the isolated system of the two spin qubits that remain
entangled.

E — =
1.003 $ :;
1.002¢
2 g
Z
1.001¢
1.000¢
L L & L L L '/I;
0 1 2 3 4 5 6

FIG. 5. Concurrence as a function of one angle (setting the
another angle to zero). For the pink dashed curve, we plot the
concurrence as a function of the angle ¢ and set § = 0. For
the black solid curve, we plot the concurrence as a function
of the angle 6 and set ¢ = 0. We find that concurrence is
periodic with period 27 in ¢ and 7 in . In both cases, we set
N, =sinh?4, N, = 9 x 10* and Np = 108.

V. SUMMARY AND OUTLOOK

The purpose of this paper has been to investigate the
entanglement generation and entanglement control in a
magnetic system. In the low temperature regime T' < J,
magnons form a general squeezed coherent state, which
is a minimum uncertainty state with the quantum noise
in one observable reduced below its vacuum level with
the sacrifice of enhanced uncertainties in the another ob-
servable. We showed these squeezed states can be fully
controlled by tuning applied external fields and in-plane
anisotropies. Utilizing the entanglement of formation, or
more specifically the concurrence, as a measure of en-
tanglement, we illustrated that in the large exchange-
coupling limit, a general squeezed coherent state, includ-
ing its special case of a squeezed vacuum state, exhibits a
high degree of entanglement between two arbitrary spins,
as opposed to a coherent state which is not entangled.
Therefore, a magnetic system can serve as a resource for
storing quantum information and processing quantum in-
formation, such as quantum teleportation, quantum net-
work and quantum logical encoding.

As temperature rises, we expect a thermal crossover
from squeezing dominated regime to simply Fock-
coherent regime discussed in Sec. IVA. A more sys-
tematic study of the temperature dependence of entan-
glement is left for a future work. In our analysis, we
ignored the dipole-dipole interaction. For the uniform
mode, the dipolar interactions would simply contribute
a shape-dependent demagnetizing field, which can be
absorbed into our anisotropy constants [52]. For the
large-k modes, the effective anisotropies would become



k-dependent, which would modify the quantitative de-
tails of our analysis. At this point, for simplicity, we are
focusing on the materials where dominant anisotropies
are crystalline. Two-mode squeezing arises naturally also
in Heisenberg antiferromagnets [53], resulting in a large
entanglement between two antiparallel magnetic sublat-
tices even in the absence of magnetic anisotropies. It may
be interesting to study the spatial distribution of this en-
tanglement as well as its possible tunability by external
parameters.

In the thermodynamic limit, the entanglement at-
tributable to the zero wavenumber mode vanishes due
to the existence of the tight bound for symmetric shar-
ing of entanglement 2/Ny. Thus nonzero wavenumber
modes should be taken into account and we studied the
distance dependence of the concurrence. The existence of
the tight bound is because we are considering the entan-
glement between two spins. How will the entanglement
bound change if we consider the entanglement between
two regions (that can contain many spins separately in
general) instead of just two spins? This scaling property
of the entanglement is well understood when the bipar-
tite system is a gapped ground state of a local Hamilto-
nian and known as the entanglement area law [54]. Its
constant correction is known as the topological entangle-
ment entropy [55] characterizing many-body states that
possess topological order. For a mixed state, however, as
in our case, the scaling property is far from being well
understood. Nevertheless, we would expect the upper
bound of the entanglement to increase as we consider
the entanglement between two regions in general, since
the Hilbert space is larger compared with the two-spin
case. Therefore, it can potentially store more quantum
information, with the exact scaling behavior remaining
to be explored.
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Appendix A: Examples of Concurrence
1. Two Qubits

Before delving into many body states, let us try out
the concurrence for a two-qubit system. Assuming the
density matrix is given by:

p = (L=p) [11) (11| + p[singlet) (singlet|, (A1)

with probability 1 — p in state |[11) and p in state
singlet) = ([14) — 1))/v2.  In the basis of

[T, 110 ), 1D,

1-p 0 0 0

_| 0 p/2 -p/20

P=1 0 —p/2 p/2 0 (A2)
0 0 0 0

We would expect the concurrence will increase as we
increase p since [11) is not entangled but [singlet) is en-
tangled. We can compute the square roots of the eigen-
values of the matrix p(o, ® oy)p* (0, ® 0y) exactly and
we have A\ = p, Ao =0, 3 =0, \y = 0, thus

C(p) = max{0, p} = p, (A3)

which is exactly what one might expect.

2. N Qubits

For a N-qubit system, whose dynamics is governed by
a Hamiltonian H, assuming the system is in a thermal
equilibrium, we can calculate the entanglement between
two arbitrary qubits ¢ and j. The reduced density ma-
trix of those two qubits is obtained by tracing out other
degrees of freedom and given by

1
a,
where 0% = {I,0%,0%,0%} and pos = (o ®U]§> -

tr (e*ﬁHaf‘ ® af)/Z is real. Z is the partition function

and 8 = 1/kgT. In the same basis as Eq. (A2), the
explicit form of p;; is given by [47, 56]

o; kj k;kj o; U; k;a;
Pi = oty (orat) (k) (orky |t A9
(of0)) (kiof) (o] k;) (ki k)

where k* = (1+0.)/2, 0F = (¢ +i0Y)/2 and we have
dropped the tensor product symbol. We are now ready to

evaluate the concurrence once the Hamiltonian is speci-
fied.

Appendix B: Concurrence in Thermodynamic Limit

Here we sketch the derivation of Eq. (22) (Eq. (17) and
Eq. (20) are similar). In state ) = [], S(¢x/2)[0),

where S(¢x/2) = elaxa—i—aal)@i/2 ig the two-mode
squeezing operator and ¢y is determined by tanh ¢y =
K/(2Jk? + B), we evaluate the reduced density matrix
Eq. (A5) for a spin at R; and a spin at R; in d dimension
and obtain



1—2(ala;) + <a;raia;r~aj> 0 0 <aja}>
0 (ala;) — (azaia;aﬁ <a;r.ai> 0
pij = t 1 ot (B1)
0 (aja;) (ajaj) — (a;a;aja;) 0
(a;a;) 0 0 (aiaia}aﬁ

Here we have used the fact that expectation value of any where
product of odd number of magnon creation or annihi-
lation operators vanishes (this is true for any squeezed
vacuum state), for example (1| a;faiaj |)) = 0. Then one
can determine the explicit form of p(oy ® 0y)p* (0, ® 7))

and show that the concurrence Eq. (14) is given by T_ (21)d / sinh % cosh %eiq»(R‘ifR;) diq
m B.Z.
_ Tt T [P
C(pij) = 2 max {O, (a; aj>| —(ajai) +(a; azajaj>} (B2) 1 / sinh2 Pq diq. (B6)
2m)? Jp.z. 2

Invoking identities

(W] aEaL |t)) = —0q,—k sinh % cosh %; (B3)
¥ _ . 22 @ Here B.Z. represents the Brillouin zone. Considering
(V] agac [1) = dqucsinh 2’ (B4) tanh ¢, = K/(2Jk? 4+ B) and introducing parameters
we obtain the explicit expression of the concurrence 7= R| = [Ri = R;|, A = +/J/B, n = |K[/B and
R = (R; —R;)/|R|, we can rewrite Eq. (B6) and obtain
C(plj) = max{O, T}v (B5) Eq. (22)

J

T(v, A m) =

dd 7 COS ('yR : q)
o

q\/(l i 2)\2q2)2 _ 772

1 1+ 2)2¢g2
+ / ddq[l - + X . (B
B.Z.

1
W \/(1+2)\2q2)2—772

(

Applying Wick’s theorem to <a1aia;r-aj> and using |<a;[a;>| ~ O(n/A?), |<ajaj>| < <ajai> ~ (’)(772+d/2/)\d),
which are all small, we see that the quartic correlator can
be neglected.
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