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We derive an exact renormalization group recursion relation for the Loschmidt amplitude of
the quantum Q-state clock model and the quantum Q-state Potts model in one dimension. The
renormalization group flow is discussed in detail. The fixed-points of the renormalization group
flow are found to be complex in general. These fixed-points control the dynamical phases of the
two models, giving rise to non-analyticities in its Loschmidt rate function, for both the pure and
the disordered system. For the quench protocols studied, dynamical quantum phase transitions are
found to occur in the clock model for all Qs considered, while in the Potts model, they only occur
when Q < 4.

I. INTRODUCTION

In recent years, there has been a surge of interest in the
critical phenomena identified in the post-quench out-of-
equilibrium dynamics of a quantum system [1–17], known
as the dynamical quantum phase transition (DQPT) [18–
21]. The Loschmidt amplitude G(t) has emerged as a
fundamental quantity in DQPT:

G(t) = 〈ψ(t)|ψ0〉 = 〈ψ0|e−iH1t|ψ0〉 (1)

where |ψ0〉 is typically the ground state of a pre-quenched
Hamiltonian, H0. |ψ(t)〉 is the quantum state evolv-
ing under the post-quenched Hamiltonian H1 for time t.
When |ψ0〉 is not an eigenstate of H1, G(t) measures the
return probability of the system due to a sudden change
in the Hamiltonian. G(t) scales with the system size, L,
such that the following rate function is intensive in the
thermodynamic limit [18]:

l(t) = − 1

L
log |G(t)|2 = − 2

L
<{LogG(t)} (2)

where Log is the principal complex logarithmic function.
It was first found in [18] that l(t) of the transverse field
Ising chain (TFIC) exhibits singular dependence on time
in the thermodynamic limit. Later on, the universal-
ity, scaling, and robustness of the DQPT in the TFIC
was explained by a renormalization group (RG) [22, 23]
calculation [24] on the system Hamiltonian. So far, no
other examples have been treated with an RG analysis.
The two RG fixed-points found in [24] are the stable
infinite-temperature fixed-point and the unstable zero-
temperature fixed-point of the classical Ising chain. It
is thus not clear whether genuine non-equilibrium fixed
points appear in a general setting [19].

In this paper, we generalize the RG procedure in [24] to
the transfer matrices of the Loschmidt amplitude, which
avoids the mathematical complication of the complex log-
arithmic function. As a result, the fixed-point structure
of the RG procedure becomes clearer. For example, we
will discover a non-equilibrium fixed-point that went un-
noticed in [24]. As we will show, the non-equilibrium RG
fixed-points determine the singularities in the Loschmidt

rate function of both the pure and the disordered system.
In the cases that we will consider for this paper, the sin-
gularities determined by the RG analysis take the form
of linear-cusps, in consistency with the generic crossing
of the leading eigenvalues of the transfer matrix. Our
emphasis here will be to explain the RG procedure in de-
tail and provide the RG origin of these singularities. The
RG procedure, however, can be carried out in more so-
phisticated cases where the critical exponent in the rate
function differs from one. We present this case elsewhere
[25].

It will turn out that in general the RG fixed-points
form a continuous line, indicating the presence of
marginal scaling operators (explained in Sec. III A). Spe-
cial cases, however, can be constructed for which the RG
fixed-points are isolated. Because these special cases de-
scribe the same universality class as the line of fixed-
points, we will study them instead. In particular, we
study the quench protocol of the quantum clock model
and the quantum Potts model where the transverse field
is infinite in H0 and zero in H1. In the clock model, we
will discover that DQPTs occur for all the Qs considered,
i.e. Q = 2, 3, 4, 5 and 6. In the Potts model, however,
DQPT will only occur for Q < 4.

The paper is organized as follows. In section II, we
present the RG procedure, using the clock model as an
example. In section III, we present the results for the
pure clock model. In section IV, we give the results of
the pure Potts model, using the RG procedure introduced
in section II. In section V, the disordered clock model is
solved with the knowledge of the RG fixed points found
in III. In section VI, we discuss and conclude.

II. THE RENORMALIZATION GROUP
PROCEDURE

Consider first the Q-state clock model of L sites in
one dimension with periodic boundary condition with the
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Hamiltonian [5],

Hclock = −
L∑
i=1

Ji(σ
†
iσi+1 + σ†i+1σi)− f

L∑
i=1

(τ †i + τi) (3)

where the operators σi and τi act on the Q states of
the local Hilbert space at site i, which we label by
|0〉i, ..., |m〉i, ...|Q−1〉i. In this local basis, the σi is a diag-
onal matrix with diagonal elements ωm where ω = ei2π/Q

and m = 0, · · · , Q−1. τi permutes |0〉i → |Q−1〉i, |1〉i →
|0〉i, · · · , |Q − 1〉i → |Q − 2〉i, and together with τ † acts
as a transverse-field. Note that while the Hamiltonian in
Eq. 3 is called the Potts model in [5], it should be called
the clock model, because it is the Hamiltonian limit [26]
of the classical clock model [27]. The Hamiltonian limit
of the classical Potts model [28] is given in Eq. 18 and
will also be studied later.

For the Loschmidt amplitude, in order for the RG
equation to be exactly solvable, following [24], we take
the paramagnetic direct product state as the initial state:

|ψ0〉 = |ψ〉prod =

L⊗
i=1

1√
Q

(|0〉i+ |1〉i+ ...+ |Q−1〉i), (4)

and the ferromagnetic Hamiltonian as the evolving
Hamiltonian:

H = −
∑
i

Ji(σ
†
iσi+1 + σ†i+1σi). (5)

In this case, G(t) becomes formally identical to a classical
partition function [24]:

G(t) =
∑
m

T[1]
m1m2

T[2]
m2m3

· · · = Tr(T[1]T[2] · · · ) (6)

where m = {m1,m2, ...,mL} is the set of degrees of free-
dom of this partition function and mi = 0, 1, ..., Q − 1

takes the value of a spin at site i. Here T
[i]
mimi+1 is the

transfer matrix of the system between sites i and i + 1
and depends only on the difference between mi and mi+1

modular Q, m ≡ (mi+1 −mi)|Q [24]. That is,

T[i]
mimi+1

≡ E[i]
m =

1

Q
eitJi2 cos( 2π

Q m). (7)

Anticipating the disordered system, we allow the transfer
matrix to depend on the lattice site i.

To analyze l(t), we perform the decimation coarse-
graining [23], i.e. every other spin is summed away while
keeping G(t) invariant. In equilibrium RG calculations,
upon coarse-graining, one typically considers the trans-
formation of Hamiltonians, i.e. the logarithms of trans-
fer matrices, as is also done in [24]. Here, however, be-
cause of the complex logarithmic function, renormalizing
Hamiltonians brings significant complication. We will
thus directly deal with the transfer matrices. The dec-
imation coarse-graining is equivalent to multiplying two

neighboring transfer matrices into one:

step 1: T
′[i′]
tmp = T[i]T[i+1]

step 2: T′[i
′] =

T
′[i′]
tmp

(T
′[i′]
tmp)0s

(8)

where (T
′[i′]
tmp)0s is the first nonzero (T

′[i′]
tmp)0m, counting

m from 0, 1, .. to Q − 1. Step 2 of Eq. 8 serves to iso-
late out the overall multiplicative growth of T[i] and is
necessary for the existence of the RG fixed-points for the
pure system. As one can check, the renormalized transfer

matrix T
′[i′]
mi′mi′+1

still only depends on (mi′+1 −mi′)|Q.

Thus, the E
[i]
m s form a complete set of coupling constants,

and will be used to parametrize the renormalization.
The Jacobian of the RG transformation in Eq. 8 will

be needed to compute the critical exponent [23]. It is
given by:

∂E′m
∂En

=
2Em−n

∑Q−1
l=0 ElEs−l − 2Es−n

∑Q−1
l=0 ElEm−l

(
∑Q−1
l=0 ElEs−l)2

.

(9)

III. THE PURE CLOCK MODEL

We now present the RG calculation for the pure clock
model with Ji = 1, for Q = 2, 3, 4, and 5.

A. Q = 2

To find the fixed-points of Eq. 8, let s = 0, E0 = 1
and E1 = x, and solve the equation E′m = Em:

x =
2x

1 + x2
. (10)

There are three solutions: E1 = x = ±1 and 0. One
can also check that there are no fixed-points with s = 1.
There are thus three fixed-points of Eq. 8: E∗a = (1, 1),
E∗b = (1,−1), and E∗c = (1, 0). E∗a and E∗c correspond
to the infinite-temperature and zero-temperature fixed-
point Hamiltonians found in [24]. The logarithm of E∗b is
not real, and is thus a genuine non-equilibrium RG fixed-
point. It is the missed fixed-point in [24]. The leading
eigenvalues of the RG Jacobian at E∗a,E

∗
b , and E∗c can

then be computed to be respectively 0, 0, and 2, sug-
gesting they are respectively stable, stable, and unstable
fixed-points. Indeed, simulating the RG flow according
to Eq. 8 from the initial transfer matrix in Eq. 7, one
discovers that the system flows into E∗a for t ∈ (−π8 ,

π
8 ),

and into E∗b for t ∈ (π8 ,
3π
8 ), and that the RG flow is the

same for t and t + π
2 . Separating the two stable phases

controlled by E∗a and E∗b are two critical times tc,1 = π
8

and tc,2 = 3π
8 which flow into the unstable fixed-point E∗c .

The singular behavior of l(t) is controlled by the eigen-
value of the RG Jacobian at E∗c , which is λ = by = 2,
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where b = 2 is the block size of the coarse-graining and
y = 1. This gives the singular behavior of l(t):

l(τ) ∼ |τ |d/y = |τ |, τ ≡ t− tc (11)

where d = 1 is the spatial dimension of the system.
Here we explain the significance of the symmetry of the

clock model, i.e. the fact that Tmimi+1
depends only on

(mi+1 −mi)|Q. As one can check, the fixed-point equa-
tion of Eq. 8 only imposes one constraint on a generic
fixed-point transfer matrix T∗ = ((1, x∗), (y∗, z∗))T :
z∗ = x∗y∗. The system symmetry imposes two addi-
tional ones: z∗ = 1 and x∗ = y∗. Thus, for the transfer
matrix in Eq. 7, there are a finite number of RG fixed-
points, and if not crossing any DQPT, the RG flow from
different t will land on the same fixed-point. This is also
true for Q > 2. However, in the absence of the system
symmetry, there will be a manifold of solutions to the
fixed-point equation of Eq. 8 and the RG fixed-points
will in general depend on t [25].

B. Q = 3

Consider now Q = 3. To look for the fixed-points with
s = 0, we let E0 = 1, E1 = x1, E2 = x2 and solve the
fixed-point equation of Eq. 8:

x1 =
2x1 + x22
1 + 2x1x2

, x2 =
x21 + 2x2
1 + 2x1x2

(12)

This system of equation can be solved by Mathematica,
giving seven roots including x1 = x2 = 1 and x1 = x2 =
− 1

2 . These two solutions correspond respectively to two

RG fixed-points, E∗a = (1, 1, 1) and E∗b = (1,− 1
2 ,−

1
2 ).

No fixed-points are found with E0 = 0. The eigenvalues
of the RG Jacobian in the nontrivial eigen-directions at
E∗a and E∗b are found to be

λ1 = λ2 = λ3 = 0 at E∗a, λ1 = 2, λ2 = λ3 = 0 at E∗b
(13)

Simulating the RG flow starting from Eq. 7 finds that E∗a
and E∗b each controls a non-critical phase of l(t). Surpris-
ingly, despite the nonzero eigenvalue at E∗b , the system
does manage to flow into it for finite periods of t. In
fact, the system flows into E∗a for t ∈ (− 2π

9 ,
2π
9 ), and

E∗b for t ∈ ( 2π
9 ,

4π
9 ), and the RG flow is the same for t

and t + 2π
3 . There are thus two critical times tc,1 = 2π

9

and tc,2 = 4π
9 . These two critical times, however, do not

flow into the other fixed-points found by solving Eq. 8.
For both of them, the system oscillates between a fixed-
pair of points: E∗c,1 = (1, 12 (−1 − i

√
3), 12 (−1 − i

√
3))

and E∗c,2 = (1, 12 (−1 + i
√

3), 12 (−1 + i
√

3)), shown in Fig.
1. The singularity in l(t) is thus not controlled by the
fixed-points of the RG transformation in Eq. 8, but by
the fixed-points of two iterations of Eq. 8. Multiplying
the RG Jacobian computed at E∗c,1 and E∗c,2 gives the

Jacobian of the composed RG transformation:

∂E′′

∂E
=

 0 0 0

2− 2i
√

3 4 0

2− 2i
√

3 0 4

 (14)

which has a pair of degenerate eigenvalues λ = 4. The
block size of the composed coarse-graining, however, is
b′ = b2 = 4. Thus, the critical exponent of l(t) around
tc is still d

y = d
logb′ λ

= 1, giving l(τ) ∼ |τ |. The Q = 3

clock chain has been studied in [5] using transfer matrix
techniques, whose results we agree with exactly.
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FIG. 1. The renormalization flow for Q = 3. The left panel
is slightly below tc = 2π

9
, while the right panel is slight above

tc. Here we show the real and imaginary parts of E1 during
the RG flow.

The appearance of metastable fixed-points E∗b is
generic and also seen for other Qs. As t is varied along
the real line in the non-critical region, there must be some
symmetry of the RG flow which prevents the variation of
t from causing any movement along the eigen-direction
of the nonzero RG eigenvalue at the metastable fixed-
points. When Q = 3, for example, this symmetry is the
equality between the coupling constants E1 and E2. In-
deed, the equality of the initial E1 and E2 is preserved
along the entire RG flow. Thus, the direction in the cou-
pling space which is relevant to the quantum dynamics
of the clock model is always only along δE = (0, 1, 1), or-
thogonal to the unstable eigen-direction at E∗b , (0, 1,−1).

C. Q = 4

Consider now Q = 4. The fixed-point equation of
Eq. 8 for s = 0 yields 15 fixed-points, including E∗a =
(1, 1, 1, 1), E∗b = (1,−1, 1,−1), and E∗c = (1, 0, 0, 0). The
leading eigenvalues at these these points are respectively
0, 0, and 2, suggesting that E∗a and E∗b are stable while
E∗c is not. The system flows into E∗a for t ∈ (−π4 ,

π
4 ),

and into E∗b for t ∈ (π4 ,
3π
4 ), and the RG flow is the same

for t and t + π. There is one critical time tc = −π
4 sep-

arating the non-critical phases which flows into E∗c . The
singularity of l(t) is again a linear cusp, suggested by the
leading RG eigenvalue λ = 2 at E∗c .

D. Q = 5

Now consider Q = 5, which, as we will see, exhibits
a chaotic RG flow. The fixed-points obtained from solv-
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ing the fixed-point equation of Eq. 8 that will interest
us are E∗a = (1, 1, 1, 1, 1), E∗b = (1, 14 (−1 +

√
5), 14 (−1 −√

5), 14 (−1 −
√

5), 14 (−1 +
√

5)), and E∗c = (1, 14 (−1 −√
5), 14 (−1 +

√
5), 14 (−1 +

√
5), 14 (−1 −

√
5)). Here E∗a

is stable while both E∗b and E∗c are metastable, as sug-
gested by the spectrum of the RG Jacobian: all of the
RG eigenvalues at E∗a are zero, while both E∗b and E∗c
have one eigenvalue equal to 2 and four zero eigenvalues.
In fact, the system flows into E∗a for t ∈ [0, tc,1), E∗b for
t ∈ (tc,1, tc,2), and E∗c for t ∈ (tc,2, tc,3), and appears to
repeatedly revisit E∗a, E∗b , and E∗c afterwards in the same
order. However, there are no simple relations among
the various critical times. Numerically, one finds tc,1 =
0.7172921525032698574(1), tc,2 = 1.25663706143591(1),
and tc,3 = 2.23933357406560946(1). Unlike the previous
cases, the RG flow starting from the critical times does
not seem to go into an unstable fixed-point, but appears
to be chaotic, as shown in Fig. 2.
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FIG. 2. The renormalization flow for Q = 5. The left panel is
for t = 0.7172921525032698574, slightly below tc,1, while the
right panel is for t = 0.7172921525032698575, slight above
tc,1. Here we show the real and imaginary parts of E1 during
the RG flow.

These critical times are confirmed by an exact compu-
tation of l(t) by the transfer matrix of G(t). The l(t) cal-
culated also appears to be singular at a random sequence
of critical times, shown in Fig. 3. Because there is not
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FIG. 3. The rate function l(t) for Q = 5.

an unstable fixed-point which controls the RG flow at the
critical times, the value of the critical exponent cannot
be obtained straightforwardly. However, numerically in-
specting the singularity of l(t) in Fig. 3 shows that l(t)
still has a linear cusp near the critical times. This can
be related to the “escape time” of the chaotic RG flow in
the following way. For t close to a critical time, define the
escape time, ne, of the chaotic part of the RG flow to be
the number of RG iterations before the flow eventually
settles into the vicinity of the (meta)stable fixed-point.
For example in the left panel of Fig. 2, for t in the left

vicinity of t1,c, we operationally define ne as the first RG
iteration at which the real part of E′1 exceeds 1. In one
RG iteration, because the RG transformation preserves
the value of the Loschmidt amplitude (up to a regular
quantity associated with (T′tmp)0s) and that the system

size decreases by a factor of bd, the singular part of the
rate function increases by a factor bd. Thus, after n levels
of RG iterations, the singular part of the rate function,
ls(τ), scales as

ls(τ) = b−ndls(E
(n)) = b−nedls(E

∗) (15)

where E(n) is the coupling constant after n RG itera-
tions. E(n) eventually becomes close to E∗, the coupling
constant at the (meta)stable fixed-point, after ne steps.
Here ne depends on τ . Thus, assuming a power-law sin-
gularity of l(τ) ∼ |τ |α, we obtain

ned = − logb |τ |α + c = − α

log b
log |τ |+ c (16)

Fitting the numerical data for t on the left vicinity of t1,c
gives

ne = −1.439 log |τ |+ 1.595 (17)

whereas 1/ log(2) = 1.4427. Despite the crude definition
of ne, the two results agree quite well. As the singularity
of l(t) arises from the level crossing of the dominant and
sub-dominant eigenvalues of a finite dimensional transfer
matrix, it should generically be a linear cusp. Thus, quite
remarkably, the above RG analysis serves as a proof to
the relation between τ and ne in the chaotic behavior
of the recursion relation Eq. 8, which would have been
difficult to guess.

E. Q > 5

We very briefly sketch the results forQ > 5. ForQ = 6,
l(t) = l(t + 2π), and there are four (meta)stable fixed-
points, each of which controls a noncritical phase. At the
critical times which separate these noncritical phases, the
system flows into unstable RG fixed-points whose lead-
ing RG eigenvalues are all 2. For Q > 6, however, the
rate function seems to generically have an aperiodic se-
quence of critical times, starting from which the RG flows
are chaotic. The aperiodicity of the rate function can be
understood from the fact that in the initial coupling con-

stant Em = eit2 cos( 2π
Q m), the exponents cos( 2π

Qm) are

rational for all m only when Q = 2, 3, 4 and 6. It, how-
ever, remains to be understood why the aperiodicity of
the rate function and the chaos of the RG flow occur
together. We defer this question to future study.
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IV. THE PURE POTTS MODEL

Consider now the Q-state Potts model with Hamilto-
nian

HPotts = − 1

Q

L∑
i=1

Q−1∑
q=0

σqi σ
Q−q
i+1 − f

L∑
i=1

Q−1∑
q=0

τ qi (18)

where σi and τi are the same as in Eq. 3. We again
take the transverse field, f , to be infinite in the pre-
quenched Hamiltonian, and zero in the post-quenched
Hamiltonian. Instead of Eq. 7, the transfer matrix of
the Potts model is

Tmimi+1
= Em =

1

Q
eitδm0 . (19)

One can always normalize the transfer matrix such that
T00 = 1. Then there is only one independent coupling
constant, x, in the transfer matrix:

Tmimi+1
=

{
1 mi = mi+1

x mi 6= mi+1
(20)

where x is a complex number. As one can check, the
renormalized transfer matrix T′ by Eq. 8 still takes the
form of Eq. 20. This reduces the renormalization of
the transfer matrix to the renormalization of just one
coupling constant:

x′ =
2x+ (Q− 2)x2

1 + (Q− 1)x2
, (21)

whose starting point is x(0) = e−it. The fixed point equa-
tion of Eq. 21, x′ = x, has three solutions: x1 = 0,
x2 = 1, and x3 = 1

1−Q . The Jacobian of the RG trans-

formation at these three fixed-points are respectively 2,
0, and 0, suggesting that they are respectively unstable,
stable, and stable RG fixed-points.

When t = 0, x flows into x2 = 1 for all Q. Since a
DQPT separates different stable dynamical phases of the
system, in order for the DQPT to happen, there must
be time at which x flows into x3 = 1

1−Q . However, for

infinitely large Q, Eq. 21 becomes x′ = 1 regardless
the value of x, and x3 can never be reached. Thus, for
sufficiently large Q, DQPTs can never occur. When Q =
2, the Potts and the clock model are equivalent, and the
DQPT does occur. Therefore, there must exist a Qc for
which the DQPT occurs for Q < Qc and does not occur
for Q > Qc. Although Qc does not have to be an integer,
it turns out to be exactly 4.

In Fig. 4, we show the Loschmidt rate function for
Q = 2, 3, 4, and 5. It is clear that 3 < Qc ≤ 4. At t = π,
x(0) = −1 for all Q, and simulating Eq. 21, one discovers
that x tends to 1

1−Q for Q < 4, which would imply a

DQPT if Q were integral. We thus conclude Qc = 4.
When Q = 3, note also that the stable RG fixed-point
of the clock model E∗a = (1, 1, 1) and E∗b = (1,− 1

2 ,−
1
2 )

coincide respectively with x2 and x3. Thus, the DQPTs
that the Potts chain does experience are identical to the
ones in the clock chain.
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FIG. 4. The rate function for the Q-state Potts model, ob-
tained through the dominant eigenvalue of the transfer matrix
in Eq. 19. Note that this transfer matrix is 2π-periodic in t.

V. THE DISORDERED MODEL

In equilibrium critical phenomena, RG analysis often
sheds light on the effect of disorder on phase transitions
of the pure system. In the Harris criterion [29, 30], for
example, one checks whether the distribution of random
couplings becomes narrower or broader as the coarse-
graining iterates at the unstable fixed-point of the pure
model, which determines whether disorder is relevant
at the phase transition. Here we show that the non-
equilibrium RG fixed points also control the DQPT of
the disordered systems, which are started to be studied
only very recently in DQPTs [31, 32]. Unlike the Harris
criterion, as will be shown, it is the stable fixed points
that control the DQPT of the disordered system. We will
modify Eq. 8 to treat the disordered system.

Because the DQPTs in the Potts chain are the same
as the ones in the clock chain, we study here only the
latter. Consider now the disordered clock chain where the
nearest-neighbor bonds at different lattice sites are drawn
independently from a probability distribution, P (Ji). We
take |ψ0〉 = |ψ〉prod. In analogy with the free energy,
the self-averaging quantity here should be the quench-
averaged rate function:

[l(t)] =

∫
dJP (J)lJ(t). (22)

J = {J1, J2, ...} is one realization of the bonds with a rate
function lJ(t), and P (J) =

∏
i P (Ji) is the probability

density of this realization. [·] denotes quench-averaging
under P (J).

For concreteness, let us take Q = 2 and generalize the
results later for other Qs. When Q = 2, the coupling
constants can be made all real by coarse-graining the
transfer matrix once:

T[i′] ∝
(
ei2Jit e−2Jit

e−i2Jit e2Jit

)(
ei2Ji+1t e−2Ji+1t

e−i2Ji+1t e2Ji+1t

)
= 2

(
cos(2(Ji + Ji+1)t) cos(2(Ji − Ji+1)t)
cos(2(Ji − Ji+1)t) cos(2(Ji + Ji+1)t)

)
.

(23)
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We will thus take T[i] to be real in the following for nota-
tional convenience. As seen for Q = 2, there are two sta-
ble RG fixed points, E∗a = (1, 1) and E∗b = (1,−1). The
attractive basin for E∗a is E = (1, a), a > 0, and for E∗b is
E = (1, b), b < 0. After step 1 of Eq. 8 of the coupling
constants at two lattice sites, E[i] = (1, xi) and E[i+1] =

(1, xi+1), one obtains E
′[i′]
tmp = (1 + xixi+1, xi + xi+1).

Thus, within the attractive basin of each stable fixed-

point, E
′[i′]
0,tmp ≥ 1 and the RG equation is perfectly reg-

ular. In addition, as long as both of E[i] and E[i+1] are
in the same attractive basin, their renormalized coupling
constant will be closer to the respective stable fixed-point
than either E[i] or E[i+1]. However, when E[i] = E∗a and
E[i+1] = E∗b , step 1 of Eq. 8 gives, in the form of transfer
matrices, (

1 1
1 1

)(
1 −1
−1 1

)
=

(
0 0
0 0

)
, (24)

which makes the second step of Eq. 8 singular. As the
RG procedure proceeds, the coupling constants of the
disordered chain very quickly settle into the vicinity of
one of the two stable fixed-points, and the RG procedure
eventually fails.

To overcome this failure, one first notes that the trans-
fer matrices at different sites commute. Consequently, we
can move all the transfer matrices in the attractive basin
of E∗a to the left side of the chain, and those in the attrac-
tive basin of E∗b to the right side. The E∗a and E∗b side of
the chain can then be respectively renormalized into one
transfer matrix without incurring any singularity:

Ta =

(
1 1 + εa

1 + εa 1

)
,Tb =

(
1 −1 + εb

−1 + εb 1

)
(25)

where if there are sufficiently many transfer matrices
on both sides before the renormalization, |εa| � 1 and
|εb| � 1. In the process, regular parts of the rate func-

tion, (T
[i′]
tmp)0s, will be extracted due to step 2 of Eq. 8.

All of the singularity resides in Ta and Tb.
To clarify the above RG procedure, we decompose the

quench-averaged rate function as follows

[l(t)] = l0 + [ll(t)] + [lr(t)] + [ls(t)] (26)

where l0 = − 2
L log(QL), and [ll(t)] and [lr(t)] are the two

regular parts extracted from [l(t)] by the RG procedure
on the two sides of the chain. [ls(t)] is the singular part
of the rate function and is given by

[ls(t)] = − 2

L
[<{Log Tr(Ta(t)Tb(t))}]

= − 2

L
[log |Q(−εa + εb + εaεb)|]

(27)

Any chain can also be viewed as an assembly of n chains
of length L0 = L

n . One can independently renormalize
these n parts and will end up with a chain composed of
transfer matrices Ta,1, ...,Ta,n, and Tb,1, ...,Tb,n. These

transfer matrices may be different due to the fluctuation
in the realization, but are the same in distribution. The
final εa of the full chain will then be

εa =
the off-diagonal element of (Ta,1...Ta,n)

the diagonal element of (Ta,1...Ta,n)
− 1

= (
−1

2
)n−1εa,1...εa,n + higher-order terms

,

(28)

where εa,1, ..., εa,n are defined by Ta,1, ...,Ta,n in the
same way as in Eq. 25. εb can also be similarly written.
In the thermodynamic limit, εa and εb both approach
zero, and the singular part of the quench-averaged rate
function will be

[ls(t)] = − lim
L0,n→∞

2

nL0
[log(Q|εa,1...εa,n − εb,1...εb,n|)]

= − lim
L0→∞

2

L0
[log(max(|εa,1|, |εb,1|))]

= lim
L→∞

[min(− 2

L
log |εa|,−

2

L
log |εb|)]

(29)

Here we have used the fact that there is no difference
between εa and εa,1 in the thermodynamic limit. As εa
and εb scale exponentially with L, as seen in Eq. 28, the
above limit exists, and [ls(t)] can finally be written as

[ls(t)] = min(la(t), lb(t)) (30)

where

la/b(t) ≡ − lim
L→∞

2

L
[log |εa/b(t)|]. (31)

In Eq. 30, the order of min and [·] can be swapped,
because of the self-averaging property of la(t) and lb(t).
Now, here is the point: because la(t) and lb(t) are respec-
tively calculated from the renormalization of the system
in the same stable phase, they should be smooth func-
tions of t, provided that εa or εb does not become zero.
[ls(t)] thus generically has a linear singularity when la(t)
and lb(t) intersect. However, when εa and εb both become
zero, the rate function diverges logarithmically.

Consider first random bonds of a chain given by

Ji = 1 + 0.1g, g ∼ Q(0, 1) (32)

independently at each site i. Here g is a unit Gaussian
random variable. For any realization of the bonds, the
various terms of the rate function in Eq. 26 can be nu-
merically calculated by the RG procedure. An arbitrary
precision arithmetic package, such as TTMath [33], which
we use, will be necessary for the calculation of a long
chain. The result of the calculation is presented in Fig.
5 (left) and Fig. 6.

If the chain is composed of transfer matrices which
renormalize into E∗a and E∗b in finite RG iterations, then
both εa(t) and εb(t) become zero. For example, when
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FIG. 5. Left: The quench-averaged rate function of the disor-
dered clock model defined by Eq. 32. The calculation is done
for L = 216, and is averaged over 210 realizations. Right:
The rate function of a chain with Ji = 1 and 0.5 each with
probability 1

2
.

	0.088

	0.0883

	0.0886

	0.0889

	0.0892

	0.0895

	0.3924 	0.3926 	0.3928 	0.393

l(t
)

t

ls(t),	L=216
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la(t)
lb(t)

	0.298

	0.2985
	0.299

	0.2995

	0.3
	0.3005
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	0.3015

	1.1775 	1.1778 	1.1781 	1.1784 	1.1787
t
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FIG. 6. [ls(t)], [la(t)], and [lb(t)] around the first and the
second peaks of the [l(t)] in Fig. 5 (left panel). The [ls(t)] is
computed for 216 and 218 respectively with 214 and 213 realiza-
tions. The [la(t)] and [lb(t)] have very weak size dependences
and are only shown here for L = 218.

Q = 2, consider a chain with Ji = 1 and 1
2 with proba-

bility p and 1 − p. At t = π
2 , Ji = 1 and 1

2 respectively
give coupling constants El = (−1,−1) and Er = (i,−i).
Under just one iteration of the RG procedure in Eq. 8,
El goes into E∗a and Er goes into E∗b . This means that
εa(t) and εb(t) are both strictly zero at tc = π

2 . Thus, for
t in the vicinity of tc, the rate function is

ls(t) ∝ − log(|t− tc|), for t close to tc. (33)

This is shown in Fig. 5 (right).
We now generalize the result to other Qs. First note

that the commutativity of the clock model transfer ma-
trices still holds for Q > 2. In addition, at least for
Q = 3, 4, and 5, multiplying the stable RG fixed-point
transfer matrices with one another gives the zero ma-
trix. For example, when Q = 3, there are two stable
RG fixed-points, E∗a = (1, 1, 1) and E∗b = (1,− 1

2 ,−
1
2 ),

corresponding to two fixed-point transfer matrices, T∗a
and T∗b . As one can check, T∗aT

∗
b = 0. Then, the argu-

ments from Eq. 25 to Eq. 31 follow identically, giving
[ls(t)] = min(la(t), lb(t)), where la(t) and lb(t) are analo-
gously defined as in Eq. 31.

VI. CONCLUSION

In this paper, we studied the renormalization of the
transfer matrices of the Loschmidt amplitude of the clock
model and the Potts model. The fixed-points of this RG
procedure are found to determine the DQPT of both the
pure and the disordered system. Many problems can be
investigated in the future under the RG framework es-
tablished. For example, a universality class of DQPT
with critical exponent 1

2 is identified using the current
RG procedure [25]. Another question that is most in-
teresting concerns with the dynamical quantum critical
region described in [21, 34, 35], for which the RG proce-
dure seems a particularly useful tool.
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