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Abstract: 

We present a detailed analysis and comparison of four models describing the 
extension of the electron energy loss function from the optical limit of q→0 into the 
(q,ω)-plane to obtain the bulk and surface terms of differential inverse inelastic mean 
free paths. We found that the best model which describes accurately and times 
efficiently the calculation of the energy loss function of free-electron-like materials is 
the combination of the Penn algorithm (Phys. Rev. B 35 (1987) 482) with the 
Ritchie-Howie method (Phil. Mag. 36 (1977) 463). Applying this model in our 
reverse Monte Carlo method, we determined, with high precision, electron energy loss 
functions of silicon and germanium based on the theoretical analysis of the high 
energy resolution reflected electron energy loss spectroscopy (REELS) spectra, 
measured at 3, 4 and 5 keV incident electron energies. The refractive index n, the 
extinction coefficient k and the complex dielectric function (ε= ε1+iε2) were 
calculated from the obtained energy loss function in a wide energy loss range of 0-200 
eV. The accuracy of the obtained results is justified with various sum rules. We found 
that the calculated optical data of Si and Ge fulfill the sum rules with average 
accuracy of 0.11% or even better. Therefore, the use of this optical data in material 
science and surface analysis is highly recommended for further applications. 
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1. Introduction 

Silicon and germanium remain the key elements in microelectronics. These two 
materials are applied in some devices [1-3]. Nowadays, they are used as nanometallic 
memristors [4], photonic devices [5,6], optoelectronic devices [7], and spin qubit 
devices [8-10]. More devices are also being developed, indicating the need for better 
knowledge of the material properties of the elements of these devices. Therefore, in 
this work, we aim at a revision of the optical properties of silicon and germanium. In 
recent years, a well-established high precision technique, based on the combination of 
the reflection electron energy loss spectroscopy (REELS) measurements and the 
so-called reversed Monte Carlo (RMC) method [11], has been developed to obtain 
optical constants of elements in a wide range of electron energy loss. The key to 
obtaining good results by RMC is the high-precision theoretical analysis of the high 
energy resolution experimental data. 

The advantage of the REELS technique, compared to the standard optical techniques, 
is that the measurable electron energy loss range of REELS is about a hundred eV in 
one measurement, while optical measurement requires the multi-light sources, 
respective instruments and measurement methods to cover this wide wavelength range. 
The REELS spectrum, in general, contains not only the bulk electronic excitation but 
also the surface excitation [12,13]. For the accurate theoretical modeling of the 
REELS spectra, we must mimic all possible interactions and experimental conditions 
with high precision. Most importantly, one must pay special attention to the 
description of the inelastic cross-sections, including the surface and bulk 
contributions. 

Many approaches have been developed and used for the modeling of REELS spectra, 
where the surface effects were taken into account in various ways in the treatment of 
electron inelastic scattering during the last decades [14-23]. A dielectric response 
theory [24-25], in which the experimental optical dielectric data are used to describe 
the electron energy loss function (ELF), is the most frequently used theoretical 
approach for the description of the inelastic scattering processes. The surface 
excitation probability is related to the position, energy and moving direction of 
electrons [20]. Although significant improvements have been made in describing the 
inelastic cross-sections, a good model is still awaiting development. Below, we first 
review some of the previous models. 

Early simulations employed only the bulk ELF. It was found that the calculation can 
describe the experimental spectra at high primary energies and for large energy losses; 
however, the approach may yield a large discrepancy at low primary energies and for 
low energy losses. It was shown that the discrepancy is attributed to the fact that the 
optical ELF does not contain the information of surface excitations [26]. To improve 
the description of the inelastic cross-section and extract quantitative information on 
the electron inelastic scattering properties in a solid, the analysis of experimental 
electron spectra based on the extended Landau theory was developed. In this way, the 
so-called effective energy loss function (EELF) for including both the surface and 
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bulk excitations was obtained [26-28]. Though EELF enables good agreement 
between the calculated and experimental REELS spectra, such EELF is not a pure 
material property. Since it also relies on the specific experimental condition; it cannot 
be used in other measurement conditions. 

It was assumed that the surface and bulk excitations are two independent events and 
the corresponding probabilities can be linearly superimposed in a dielectric functional 
formulation with the surface and bulk ELFs [29-31]. A simple two-layer model for the 
interpretation of the measured backscattered electron spectra was first applied. This 
model was based on the assumption that the sample may be taken as a combination of 
two independent layers [30-31]: the top three atomic monolayers were characterized 
with the surface ELF and the others with the bulk ELF. This crude model seems to 
work for high energy electrons but not at low energies. Moreover, we note that 
surface excitations can in fact even happen when electrons are in vacuum and close to 
surface. 

Tougaard and Chorkendorff [32] developed a method to obtain differential inverse 
inelastic mean free path (DIIMFP) from REELS spectra. However, their analysis 
method considered neither the influence of the angular distribution of elastic 
scatterings nor the surface effect on the spectra. Hence, these effects cannot be 
deducted, and, the DIIMFP obtained by their method contains not only the bulk 
excitation but also the surface excitation and partial elastic scattering effect. The 
calculations of Al [32] and Si [33] show some non-physical results, in which the 
DIIMFP has a negative value around b sω ω+ , where bω  and sω  are the 
bulk-plasmon and surface-plasmon excitation energy, respectively. Yubero et al. [34] 
then improved this calculation by considering the surface effect. They used the 
trial-and-error procedure to find the best-fitting ELF, but there are still large 
deviations for the DIIMFP in the energy loss range up to b sω ω+ . 

Ding [20-21, 35] derived a formulation of electron inelastic scattering cross-section 
near the surface region via a complex self-energy formula based on a quantum 
mechanical approach, where the position- and velocity-dependent DIIMFP contains 
dielectric function but is no longer expressed as a simple linear combination of surface 
ELF and the bulk ELF. This quantum inelastic scattering model was used in the REELS 
spectrum simulation for different sample surface: Au, Si [36], Ag [37-39], SiO2 [40]. 
However, the calculation of this quantum inelastic cross-section is quite 
time-consuming. Therefore, recently a semi-classical model [19] has been frequently 
used instead. It has been verified that the quantum model and the semi-classical model 
yield quite the similar depth-dependent DIIMFPs in conventional experimental 
conditions, and there is no significant difference between the REELS spectra simulated 
by the two models [40]. 

Werner [41-42] assumed that bulk and surface excitations are uncorrelated. The 
energy loss distribution of a single surface effect from REELS spectra was obtained 
by (1) eliminating the multiple bulk scattering by an iteration formula and (2) 
eliminating the elastic peak. Later, Werner [43] considered a more detailed model for 
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describing the generation of REELS to extract the DIIMFPs. An important 
assumption of Werner’s model was that the REELS spectra can be convoluted with 
terms for various excitations and elastic peak. Novak et al. [44] then used Werner’s 
model to obtain the bulk and surface DIIMFPs from REELS spectra of Ge measured 
at 1200 and 4000 eV primary electron energies. Using these retrieved DIIMFPs they 
achieved an excellent agreement between simulated and measured REELS spectra of 
Ge for 3000 eV. 

Werner et al. [45] presented a method to extract the optical constants that is directly 
related to ELF, from measured REELS spectra. They first decomposed the 
experimental REELS spectra to obtain the bulk and surface DIIMFPs and found a 
theoretical expression for bulk and surface DIIMFPs as a function of the 
parameterized ELF based on dielectric function theory. 

Da et al. [11,46] developed a reverse Monte Carlo (RMC) technique to obtain the 
optical constants of material from the measured REELS spectrum. They used a 
parameterized ELF to calculate DIIMFP. Simulated REELS spectrum was compared 
with the experimental one for optimization of ELF, where a simple linear combination 
of surface and bulk ELF terms was used for DIIMFP. The simulated annealing 
method [47] was employed for adjusting the parameter set of ELF to obtain the best 
fit. Later Xu et al. [48,49] further improved the RMC method by considering the 
semi-classical electron inelastic scattering model. The extended RMC method has 
been successfully applied to various metallic solids [49-52]. 

When one employs RMC method to derive the optical constants, the accuracy of the 
elastic scattering cross-section and inelastic scattering cross-section will directly 
affect the final results. Because silicon and germanium are free-electron-like materials, 
for which a rather sharp plasmon peak dominates the optical ELF, it is generally 
difficult to accurately describe both surface and bulk excitations by conventional 
dielectric function models. In this work, we present a new modelling of the electron 
inelastic scattering cross-sections for free-electron-like materials by using the 
combined full Penn algorithm and Ritchie-Howie method for the calculation of bulk 
excitation cross-section and surface excitation cross-section, respectively. Though the 
improved calculation schema is primarily recommended for free-electron-like 
materials, however, it can also be adopted for other materials. We will show that this 
new modelling accurately describes the multiple scattering effects and, thereby, 
ensures a high-precision simulation of REELS spectrum. We apply these new 
inelastic cross-sections in our RMC simulation to improve the gained ELF and hence 
the optical data. By the combination of the high energy resolution REELS 
measurements and the new high-precision RMC method, the high-precision 
determination of ELFs of silicon and germanium was performed. The refractive index 
n, the extinction coefficient k and the complex dielectric function (ε= ε1+iε2) were 
calculated from these optical ELFs in the energy loss range up to 200 eV. The 
accuracy of the obtained results is justified by various sum rules. 
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2. Theory 

Reverse Monte Carlo method 

The RMC method combines a Monte Carlo modeling of electron transportation for 
REELS spectrum simulation with a Markov chain Monte Carlo calculation of 
parameterized ELF, ( )Im 1 ,qε ω−⎡ ⎤⎣ ⎦ , where ( ),qε ω  is the complex dielectric 
function of the material. The energy loss of electron, ω , corresponds to the photon 
energy in the optical measurements. 

The purpose of RMC simulation is to find an optimal ELF (or equivalently oscillator 
parameters), which satisfies that the simulated REELS spectrum has the smallest 
difference with the experimental one. The process of deriving ELF from an 
experimental REELS spectrum thus becomes a task of global optimization in 
oscillator parameter space. The simulated annealing method [47], one of the most 
popular probabilistic searching techniques, is employed for adjusting the parameter 
set to obtain the best ELF. 

In the Monte Carlo simulation of REELS spectrum, we used the Mott cross-section to 
describe the electron elastic scattering and the dielectric function theory for the 
description of the electron inelastic scattering processes. 

The relativistic representation of the differential elastic cross-section, i.e. the Mott 
differential cross-section [53], is expressed as, 

( ) ( )2 2ed f g
d
σ θ θ= +
Ω

, (1) 

where θ  is scattering angle, with scattering amplitudes, 

( ) ( ) ( ) ( ){ } ( )1 1 exp 2 1 exp 2 1 cos
2 l l l

l
f l i l i P

iK
θ δ δ θ+ −⎡ ⎤ ⎡ ⎤= + − + −⎣ ⎦ ⎣ ⎦∑ ; (2) 

( ) ( ) ( ) ( )11 exp 2 exp 2 cos
2 l l l

l
g i i P

iK
θ δ δ θ− +⎡ ⎤= −⎣ ⎦∑ , (3) 

where ( )coslP θ  and ( )1 coslP θ  are the Legendre and the first-order associated 
Legendre functions, respectively; lδ +  and lδ −  are spin-up and spin-down phase 
shifts of the lth partial wave, respectively. The phase shifts are numerically evaluated 
by solving the Dirac equation for the radial part of the wave function of the scattered 
electron using the Thomas-Fermi-Dirac atomic potential [54]. 

A semi-classical model [19] is employed for the electron inelastic scattering 
process, in which the surface excitation is fully described by the depth-dependent 
DIIMFP: 
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for an electron penetrating the surface from the solid/vacuum side into the 
vacuum/solid side, respectively, where sin cos sinqvω ω θ φ α= −% , sinq q θ=� , 

cosv v α⊥ =  and 2 2E v= . α  is defined as the angle between the surface normal 
towards the vacuum and the electron moving direction. The upper and lower limits of 
the integrals are ( )2 2q E E ω± = ± − . Throughout the paper, atomic units 
( 1e m= = ) are used, unless stated otherwise. 

Differing from a conventional simulation for electron-solid interaction [55-56], this 
simulation of electron-surface interaction has taken the surface effect, i.e. the inelastic 
scattering events occurred in vacuum along an electron trajectory part in approaching 
and leaving a sample surface, into account. A fast sampling technique [57] is used to 
determine the flight length in the Monte Carlo simulation of REELS spectra. 

The DIIMFPs in Eqs. (4) and (5) are composed of several terms that depend on depth 
z , moving direction α  and kinetic energy of electron E . The first term is due to 
bulk excitation, which is independent of depth and moving direction and represents 
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the scattering of electrons inside a semi-infinite material, while the remaining terms 
are for surface excitations. Then, Eqs. (4) and (5) can be written in a short form as 
[58]: 

( ) ( ) ( )| , , | , | , ,bulk surfE z E z E zσ ω α σ ω σ ω α= + , (6) 

The surface DIIMFP, surfσ , has different expressions when an electron is located at 
different positions, i.e. in the solid or vacuum, and in different moving directions, i.e. 
moving from the solid side into a vacuum or from the vacuum side into solid. The 
bulk DIIMFP, bulkσ , can be written according to the electron position as: 

( ) ( )'
, ;| , | , .bulk
bulk

zE z E zσ ω σ ω
>⎧= ⎨ <⎩

0 0
0  (7) 

The Drude dielectric function in the optical limit, 0q = , is written as: 

( ) ( )
2

; , 1 p
D p i

ω
ε ω ω γ

ω ω γ
= −

+
, (8) 

where pω  and γ  are the plasmon energy and the damping constant of the plasmon, 
respectively. In the RMC simulation, a trial optical ELF is parameterized as the sum 
of N Drude terms as: 

( ) ( )1

1 1Im Im
; ,

N

i
i D pi i

A
ε ω ε ω ω γ=

⎡ ⎤⎡ ⎤− −= ⎢ ⎥⎢ ⎥
⎢ ⎥⎣ ⎦ ⎣ ⎦

∑ , (9) 

where iA , piω  and iγ  are the oscillator strength, energy and width of the ith 
oscillator, respectively, in the 3N-parameter representation of the optical constants. 
The function ( )Re 1 ε ω−⎡ ⎤⎣ ⎦  can be written as, 

( ) ( ) ( )1

1 1 1Re Re Re
0 ; ,

N

i
i D pi i

A
ε ω ε ε ω ω γ=

⎡ ⎤⎡ ⎤ ⎡ ⎤− − −= + ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

∑ .

 (10
) 

For conductive materials, the first term, ( )Re 1 0ε−⎡ ⎤⎣ ⎦ , has a value of zero. The 
momentum transfer-dependent ELF, ( )Im 1 ,qε ω−⎡ ⎤⎣ ⎦  can be extended from the long 
wavelength limit, namely the from optical ELF, 

( ) ( )Im 1 Im 1 0,qε ω ε ω− ≡ − =⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ , by assuming a dispersion relation. 

Extension of ELF 

In our previous works [48-52], we used Ritchie and Howie’s scheme [24] to extend 
the momentum transfer-dependent ELF from an optical ELF. The numerical 
integrations in Eqs. (4) and (5) are easily obtained by using the Ritchie and Howie’s 
expression of ELF because the momentum transfer-dependent ELF is represented as 
the sum of N Drude type oscillators in a simple analytical form as: 
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( ) ( )1

1 1Im Im
, , ; ,

N

i
i D pi i

A
q qε ω ε ω ω γ=

⎡ ⎤⎡ ⎤− −= ⎢ ⎥⎢ ⎥
⎢ ⎥⎣ ⎦ ⎣ ⎦

∑ ,

 (11
) 

and the function ( )Re 1 ,qε ω−⎡ ⎤⎣ ⎦  can be expressed as, 

( ) ( ) ( )1

1 1 1Re Re , Re
, 0 , ; ,

N

i
i D pi i

B q A
q qε ω ε ε ω ω γ=

⎡ ⎤⎛ ⎞⎡ ⎤ ⎡ ⎤− − −= + ⎢ ⎥⎜ ⎟⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎝ ⎠ ⎣ ⎦
∑ ,

 (12
) 

where B  is a function depending on ( )Re 1 0ε−⎡ ⎤⎣ ⎦  and q , and it has a value of 
zero for conductive materials. In this work, dealing with semiconductors, we set B  
as a constant with the value of ( )Re 1 0ε−⎡ ⎤⎣ ⎦ . The Drude-type dielectric function 
assuming a dispersion relation can be written as: 

( ) ( ) ( )( )
2

2 2
, ; , 1

,
pi

D pi i
qi pi pi i

q
q i q

ω
ε ω ω γ

ω ω ω ω ω γ
= +

− − +
,

 (13
) 

where ( )2 2 2 4, 2 3 4qi pi pi Fq E q qω ω ω= + +  describes the plasmon dispersion, FE  is 
the Fermi energy. In our previous simulations [48-52], iγ  was taken into account as 
a constant. In this work, for a more general comparison, a dispersion relation [24] of 

( ) ( )1 22 4 4i iq qγ γ= +  is used. We note, that at 0q = , qi piω ω= , so that Eq. (13) is 
reduced to Eq. (8). 

To better distinguish and compare different extension methods of ELF, the model 
with setting iγ  as a constant is called simple Ritchie-Howie method, while the model 
with a dispersion relation of ( ) ( )1 22 4 4i iq qγ γ= +  is called Ritchie-Howie method. 
The key function for the determination of the surface DIIMFP term, surfσ , is 

( )( )Im 1 , 1qε ω⎡ ⎤− +⎣ ⎦� . According to Eqs. (11) and (12), we can calculate the 
dielectric function ( ),qε ω�

, and derive the functional form of 
( )( )Im 1 , 1qε ω⎡ ⎤− +⎣ ⎦� . 

One of the other scenarios frequently used for the extension of the momentum 
transfer-dependent ELF from the optical limit into the ( ),q ω -plane was proposed by 
Penn [25], which will be referred hereafter as the full Penn algorithm (FPA). 
Assuming the statistical approximation by neglecting the vertex correction, 
self-consistency, exchange, and correlation effects and considering the spherically 
symmetric charge distribution in the Wigner-Seitz cell, a formula is brought forward 
to expand the ELF, in terms of the Lindhard ELF, without using any fitting 
parameters: 
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) 

where the expansion coefficient ( )g ω  is related to the optical ELF by 

( ) ( )
2 1Img ω

πω ε ω
⎡ ⎤−= ⎢ ⎥
⎣ ⎦

,

 (15
) 

and ( ), ; r i
L p L Lq iε ω ω ε ε= +  is the Lindhard dielectric function of the free electron gas 

with plasmon energy pω , 
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⎪⎩

 (17
) 

where ( ) ( ) ( ) ( )21 ln 1 1F x x x x= − + − , FX Eω=  and 2 FZ q k= . 2 2F FE k=  
is the Fermi energy and Fk  is the Fermi wavevector. They are related to the plasmon 
energy through the electron density. 

Due to the complexity and necessity of the high computation capacity of the FPA 
method, the single-pole approximation (SPA) was introduced. Applying the SPA in 
the implementation of the extension of ELF, the calculations are much simplified [25]. 
By SPA the Lindhard ELF is written as [25,59], 

( ) ( )
21Im

2, ;
p

q
qL pq

ωπ δ ω ω
ωε ω ω

⎡ ⎤− ≈ −⎢ ⎥
⎢ ⎥⎣ ⎦

,

 (18
) 

where the plasmon dispersion qω  is defined by 
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( ) ( )
4

2 2 2 21
3 4q p p F p

qqω ω ω υ ω= + + ,

 (19
) 

and ( )2
F pυ ω  is the Fermi velocity of an electron gas with the plasmon frequency pω . 

The ELF then becomes 

( ) ( )
0

0

1 1Im Im
, qq

ω
ε ω ω ε ω
⎡ ⎤ ⎡ ⎤− −≈⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

,

 (20
) 

where 0ω  is the solution of equation ( )0qω ω ω= . 

In Eq. (9), when assuming vanishing damping constants, 0iγ → , and replacing the 
summation by integration the Ritchie and Howie’s method becomes the SPA. Hence, 
Ritchie and Howie’s method can be regarded as a general SPA method. Of all the 
extension approaches, the FPA should be more accurate because it contains explicitly 
both single-electron excitation and plasmon excitation. Mao et al. [60] compared the 
electron inelastic mean free paths (IMFPs) and stopping powers (SPs) calculated by 
FPA and SPA methods for Al and Cu, which are representative examples of a 
free-electron-like material and a non-free-electron-like material, respectively. They 
found only a small difference between the FPA- and SPA-computed SP and IMFP 
values for Cu, i.e. non-free-electron-like material. However, for Al a large difference 
was found between the FPA and SPA calculations of the SP and IMFP at energies 
below the plasmon energy. We note here that the IMFP is the integrated result of 
DIIMFP. In other words, extension of the ELF by SPA for free-electron-like materials 
for which a plasmon peak dominates, the single-pole extension of optical ELF cannot 
accurately describe the electron inelastic scattering process, especially at low energies. 
The simulations of energy spectra and secondary electron yields also support the same 
conclusion, i.e. little difference is found for the results calculated by FPA and SPA for 
Cu, while the simulation results based on FPA greatly improve the SPA calculation 
for Al. 

Considering the effectiveness of the FPA model for free-electron-like materials, we 
will use the FPA model to extend the ELF for the calculation of the bulk DIIMFP, 

bulkσ . However, we will still use the Ritchie-Howie method for the calculation of the 
surface DIIMFP, surfσ , due to its high efficiency for obtaining the surface energy loss 
function, ( )( )Im 1 , 1qε ω⎡ ⎤− +⎣ ⎦� . In the following, this combination of the calculation 
is known as the FPA-Ritchie-Howie method. 

We note that for the surface term, surfσ , the Ritchie-Howie method has been 
improved as compared with the simple Ritchie-Howie method used in our previous 
work. Using the Ritchie-Howie method is necessary for saving computation time in 
our RMC simulation. Furthermore, to reduce the surface effect for the extraction of 
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bulk optical data by RMC, we consider employing the experimental REELS spectra 
measured at high electron energies. In this work, therefore, the experimental REELS 
spectra of Si and Ge measured at 3000, 4000, 5000 eV are used. 

Sum Rules 

The accuracy of the calculated optical constants, dielectric function and ELF can be 
validated by several sum rules [61-63]. In this work, we use them to check the 
obtained results. 

a) The inertial sum rule 

It is known that, in addition to the most popular oscillator-strength-sum rule (f-sum 
rule) for absorption processes, there are companion sum rules for dispersive processes 
[63]. For example, the refractive index ( )n ω  satisfies an inertial sum rule written as, 

( ) ( )
0

' 1 'nR n d
ω

ω ω ω= −⎡ ⎤⎣ ⎦∫ .

 (21
) 

The theoretical nominal limit value is ( ) 0nR ∞ = . Hence, the conventional definition 
of relative error, i.e. the percentage error relative to the theoretical value, is invalid. A 
verification parameter nξ  can be defined as [61]: 

( )
( )

0

0

1

1
n

n d

n d

ω ω
ξ

ω ω

∞

∞

−⎡ ⎤⎣ ⎦=
−

∫
∫

.

 (22
) 

The absolute value of nξ  will be the goodness parameter of the refractive index 
( )n ω . If the calculated value of nξ  is less than 32 10−×  then it indicates a 

satisfactory self-consistency [62]. 

b) The dc-conductivity sum rule 

The second consequence of causality and inertia is the dc-conductivity sum rule 
[61-63], 

( ) ( )
1 10

' 1 'R d
ω

ε ω ε ω ω= −⎡ ⎤⎣ ⎦∫ .

 (23
) 

The theoretical limit value is ( )
1

2
02Rε π σ∞ = − , where 0σ  is the dc-conductivity. 

For semiconductors and insulators there are only interband transitions, and the 
theoretical nominal limit value is ( )

1
0Rε ∞ = . In this work we study the optical 

properties of Si and Ge, both semiconductors. Therefore, we use a similar definition 
of the verification parameter 

1εξ  for 1ε  as for the case of inertial sum rule: 



 13 / 34 
 

( )
( )1

10

10

1

1

d

d
ε

ε ω ω
ξ

ε ω ω

∞

∞

−⎡ ⎤⎣ ⎦=
−

∫
∫

.

 (24
) 

c) The oscillator-strength sum rule and perfect-screening sum rule 

More widely used sum rules are the oscillator-strength sum rule (f-sum rule) and 
perfect-screening-sum rule (ps-sum rule), which are limiting forms of the 
Kramers-Kronig integral [64,65]. The f-sum rule for the optical ELF, ( )Im 1 ε ω−⎡ ⎤⎣ ⎦ , 
imaginary part of the dielectric function, 2ε  and the extinction coefficient, k  are 
defined respectively as, 

( )2 0

2Z Im 1eff ELF
p

dω ε ω ω
π

∞
= −⎡ ⎤⎣ ⎦Ω ∫ ;

 (25
) 

( )
2

22 0

2Zeff
p

d
ε

ωε ω ω
π

∞
=

Ω ∫ ;

 (26
) 

( )2 0

4Zeff k
p

k dω ω ω
π

∞
=

Ω ∫ ,

 (27
) 

where 4p anπΩ = , an  is the atomic density of the sample. The theoretical values 
of all the three f-sum rules are the atomic number of the element. 

The Kramers-Kronig relations lead to ps-sum rule given by [64,65], 

( ) ( )
0

2 1 Im 1 Re 1 0eff ELF
P dε ω ω ε

π ω
∞

= − + −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦∫ .

 (28
) 

For conductors, ( )Re 1 0ε−⎡ ⎤⎣ ⎦  is zero, Eq. (28) then becomes, 

( )
0

2 1 Im 1eff ELF
P dε ω ω

π ω
∞

= −⎡ ⎤⎣ ⎦∫ ,

 (29
) 

which is the formula used in our previous works [48-52]. For nonconductors, the 
refractive index n  is much greater than the extinction coefficient k  at low 
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frequencies, ( )Re 1 0ε−⎡ ⎤⎣ ⎦  is approximately equal to ( )21 0n  and Eq. (28) 
becomes: 

( ) ( )2

0

2 1 Im 1 1 0eff ELF
P d nε ω ω

π ω
∞

= − +⎡ ⎤⎣ ⎦∫ .

 (30
) 

The theoretical value of eff ELF
P  is unit. The values of ( )0n  are set as 3.4155 and 

4.0043 for Si and Ge, respectively [63] for the calculation of eff ELF
P  in Eq. (30). 

d) The root-mean-square deviation of oscillator-strength sum rule 

In our previous work on the transition metals [52], we proposed a root-mean-square 
deviation (RMS) of oscillator-strength sum rule for describing the difference of all 
three f-sum rules. It is expressed as, 

( )
2

3
, ,mean

1 ,mean

Z Z1100 %
3 Z

eff i eff

i eff

RMS
=

⎛ ⎞−
= × ⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ,

 (31
) 

where ,Zeff i  represents the f-sum rules: Zeff ELF
, 

2
Zeff ε

and Zeff k
, and ,meanZeff  is 

the mean value of the three f-sum rule results. For most materials, the refractive index 
n  is very close to a unit at photon energy above a few keV. We then have 

[ ] 2Im 1 2kε ε− � � . The integration of three f-sum rules will give almost the same 
value in this energy loss range. The differences for three f-sum rules come mainly 
from the low energy loss range. Hence the small RMS value can prove the accuracy 
of ELF, 2ε  and k  in the low energy loss range. 

3. Experiment 

The high energy resolution REELS measurements of Si and Ge samples were 
performed at room temperature by using the ESA-31 type electron spectrometer 
developed in ATOMKI [66]. Before commencement, the measurement surfaces were 
cleaned by Ar+ ion sputtering with an ion flux of 120 μA×min/cm2 at 2 keV kinetic 
energy. In the REELS measurements, a LEG 62 (VG Microtech) type electron gun 
was used at a few keV electron energies. The energy width of the elastic peak was 
around 0.6 eV, at the full widths of half maximum which is coming from the electron 
energy analyzer caused line broadening and the primary electron beam energy 
broadening by the filament heating (hot cathode tungsten). The scattering angle of θ0 
was 130º using an angular range of Δθ0 = ±2º. The angle of the incident electron beam 
was 50º, the detection angle was 0º with respect to the surface normal, respectively. 
During the REELS measurements the vacuum in the analysis chamber was better than 
3×10-9 mbar. 

4. Result and Discussion 
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Comparing models describing the dielectric function 

To analyze the differences between the simple Ritchie-Howie, Ritchie-Howie, FPA 
and SPA methods in modeling dielectric function, we performed calculations of the 
momentum transfer-dependent ELFs of Ge based on these approximations. The 
optical data of Ge was taken from the measured data [63,67-68]. For the simple 
Ritchie-Howie model and the Ritchie-Howie model, we need 3N parameters of Drude 
type oscillators rather than the specific values of optical ELF as the inputs for the 
calculation. Hence, fitting the experimental data by Eq. (9) is necessary for further 
simulation and comparison. Fig. 1 shows the optical ELF of Ge obtained from the 
measured data and the fitting result with Drude type oscillators. 
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Figure 1. Comparison of the optical ELF of Ge between the measured data [63,67-68] (squares) 
with the fitting by Drude type oscillators. 

Fig. 2 shows the surface plots of the ELFs obtained by the simple Ritchie-Howie 
method, Ritchie-Howie method, FPA and SPA for Ge as a function of momentum 
transfer and energy loss. The differences between the four methods are significant in 
the region of the large energy losses and high momentum transfers. For Ge, the ELF 
obtained by the simple Ritchie-Howie method, Ritchie-Howie method and FPA 
method has a limited but nonzero intensity for a single-particle excitation even for 

pω ω< . This should be the most important source for the formation of the low energy 
secondary electrons. The plasmon excitation intensity in FPA decays quickly when 
the dispersion enters into the single-particle excitation region (Fig. 2(c)). SPA, on the 
other hand, completely ignores the single-electron excitation. This missing 
contribution is compensated by the intensity of plasmon excitation with a dispersion 
line that extends up to large q-values, while the ridge height decays very slowly (Fig. 
2(d)). The simple Ritchie-Howie method can give a similar result for plasmon 
excitation intensity as the SPA, i.e. the plasmon excitation intensity decays very 
slowly, as can be seen in Fig. 2(a). By considering a dispersion relation of iγ , the 
Ritchie-Howie method has improved ELF significantly. 
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Figure 2. Surface plots of the energy loss function of Ge as a function of momentum transfer and 
energy loss, calculated by (a) simple Ritchie-Howie method; (b) Ritchie-Howie method; (c) FPA 
method; (d) SPA method. 
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Figure 3. Comparison of the ELFs of Ge at given momentum transfers as a function of the electron 
energy loss: (a) 0.1 Å-1; (b) 0.5 Å-1; (c) 1.0 Å-1; (d) 1.5 Å-1. The ELFs are calculated from the 
optical ELF by using four different extension algorithms. Blue line: simple Ritchie-Howie method; 
green line: Ritchie-Howie method; red line: FPA method; purple line: SPA method. 
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Figure 4. Comparison of the ELFs of Ge at given energy losses as a function of the momentum 
transfer: (a) 5 eV; (b) 16 eV; (c) 30 eV; (d) 50 eV. The ELFs are calculated from the optical ELF 
by using four different extension algorithms. Blue line: simple Ritchie-Howie method; green line: 
Ritchie-Howie method; red line: FPA method; purple line: SPA method. 

Fig. 3 shows the detailed comparison of the ELFs of Ge calculated with four 
extension algorithms at given momentum transfers: 0.1, 0.5, 1.0 and 1.5 Å-1. All the 



 18 / 34 
 

ELFs are calculated from that in the optical limit, i.e. when 0q → . As expected, all 
algorithms gave almost the same ELFs for the case of the low momentum transfer as 
shown in Fig. 3(a). With the increasing momentum transfers, the differences between 
ELFs obtained by different methods increase. The differences in high-momentum 
transfer can be attributed to two main reasons. Firstly, the plasmon excitation peaks 
are located at different positions, which is mainly due to the effect of different 
plasmon dispersion relations. Secondly, the plasmon excitation peaks have different 
intensities, shapes and peak widths. As discussed above, both in the simple 
Ritchie-Howie method and SPA, the obtained plasmon excitation intensities are 
unrealistic. However, taking the dispersion relation of iγ  into account in the 
Ritchie-Howie method, we can achieve significant improvements for the plasmon 
excitation intensities and peak widths. However, it is noted that the Ritchie-Howie 
method leads only a symmetrical peak feature as seen in Fig. 3(d), which differs from 
the FPA result. Because the single-electron excitations are completely ignored in SPA, 
there is no energy loss for the low energy loss range for specific momentum transfer, 
which can be seen in Fig. 3(d). This becomes a serious problem for the description of 
the low energy electron inelastic scattering. The simple Ritchie-Howie method, 
Ritchie-Howie method and FPA method, however, include the single-electron 
excitations in a certain level. 

Fig. 4 shows the detailed comparison of the ELFs of Ge as a function of the 
momentum transfer calculated by four extension algorithms at given energy losses: 5, 
16, 30 and 50 eV. The ELFs obtained by the SPA method have zero values for large 
q  for a given energy loss. This is due to the limitations of dispersion relationship in 
Eq. (19), as will be shown below. For the SPA model, first we obtain a root of the 
equation of ( )0qω ω ω= , by solving the equation: 

( )
4

2 2 2 2
0 0

1
3 4F

qqω ω υ ω= + + .

 (32
) 

Then the q -dependent ELF can be determined according to Eq. (20). Because 2
0ω  is 

a non-negative value for a given energy loss of ω , Eq. (32) is unsolvable in the range 
of maxq q> , where maxq  can be determined by 

( )
4

2 2 2max
0 max

1 0
3 4F

qqυ ω ω+ − = .

 (32
) 

Hence, the ELFs obtained by the SPA model will have zero values for large q  for a 
given energy loss. This behavior can also be seen in Figs. 3(c) and 3(d) when the ELF 
have zero values for small ω  values for a given momentum transfer. The simple 
Ritchie-Howie model gives reasonable results, i.e. it has non-zero values in these 
regions. Both the simple Ritchie-Howie and SPA models give a very sharp plasmon 
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excitation peak in the ELF at energy losses of 30 and 50 eV, which proves the 
phenomenon that the plasmon excitation intensity decays very slowly for simple 
Ritchie-Howie and SPA method. The plasmon excitation peaks are much broader in 
Ritchie-Howie and FPA models than in the simple Ritchie-Howie and SPA models as 
shown in Figs. 4(c) and 4(d). 

Shinotsuka et al. [69] compared the experimental ELFs of liquid water for several 
specific momentum transfers with various theoretical results. They found that the FPA 
method can describe the q -dependent ELF accurately, while there are significant 
deviations between SPA results and the experimental ELFs. The FPA should be more 
accurate than other approaches for extension of ELF of free-electron-like materials, 
which have also been proven in Ref. [60]. From the comparison in Figs. 2, 3 and 4, 
we can draw the following conclusions: a) The simple Ritchie-Howie method has a 
better approximation for electron inelastic scattering than SPA for free-electron-like 
materials, like Ge. It contains the single-particle excitation even for pω ω< ; b) 
Although there are still deviations, the simple Ritchie-Howie method provides a better 
approximation for plasmon dispersion than that of SPA; c) The Ritchie-Howie 
method is improved compared to the simple Ritchie-Howie method by considering a 
dispersion relation of iγ ; d) The q -dependent damping constant in the 
Ritchie-Howie method can partially improve the broadening effect originated from 
the single-electron excitation. 

As a result of the previous comparison among the ELFs, the FPA-Ritchie-Howie 
method is proposed for modeling the inelastic interaction of free-electron-like 
materials while electrons are crossing a surface region, i.e. using the FPA model for 
the calculation of the bulk DIIMFP bulkσ , and the Ritchie-Howie method for the 
surface DIIMFP surfσ . Ritchie-Howie method is used due to its high efficiency for 
obtaining the surface ELF. We note that, as the extraction of ELF by RMC method 
from REELS takes a lot of iteration [113], the use of the Ritchie-Howie method for 
the surface DIIMFP surfσ  is a necessary compromising solution for saving 
computation time in our RMC simulation. 

Verification of the effectiveness of FPA-Ritchie-Howie method 

To check the effectiveness of FPA-Ritchie-Howie method, we performed the 
simulations of REELS spectrum of Ge at the primary energy of 5000 eV. As a 
comparison, the simple Ritchie-Howie method and Ritchie-Howie method are used to 
extend the ELF for both bulk DIIMFP and surface DIIMFP, respectively. Fig. 5(a) 
shows the comparison between the REELS spectrum of Ge measured at incident 
electron energy of 5 keV and the simulated spectra by these three models, using the 
optical ELF shown in Fig. 1. To highlight the differences between the experiment and 
simulations, a relative error has been defined as the difference between the intensities 
of the simulated REELS spectrum and the experimental one divided by the intensity 
of the experimental spectrum. Fig. 5(b) shows the relative errors where we mark by 
arrows four energy losses at 16, 32, 48 and 64 eV, respectively. These energies are the 
peak positions of the bulk plasmon excitations, i.e. the peak at 16 eV corresponds to 
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the single bulk excitation, and the others are the corresponding multiple component 
excitation peaks. The simulated REELS spectrum obtained by simple Ritchie-Howie 
method is in good agreement with the experimental data below 20 eV and has almost 
10% relative error for the energy loss larger than 20 eV. The Ritchie-Howie method 
gives a similar result with less error in energy loss range of multiple scattering peaks. 
In the energy loss range higher than 10 eV, the FPA-Ritchie-Howie method gives the 
best agreement with the experimental data. It can also be clearly seen from Fig. 5(b) 
that, while the errors are small for the first plasmon loss peak for all the three models 
used, the FPA-Ritchie-Howie model gives the smallest error for multi-plasmon loss 
peaks as indicated by arrows. From Fig. 5, we can have the same conclusion as before: 
The simple Ritchie-Howie method cannot give a good description of the electron 
inelastic scattering for free-electron-like materials. The Ritchie-Howie method has 
been improved compared to the simple one. The simulated REELS spectrum 
calculated by FPA-Ritchie-Howie method is in good agreement with the experimental 
one. The comparison of REELS spectra proves that the FPA-Ritchie-Howie method 
can provide a more accurate description of inelastic scattering processes than the 
simple Ritchie-Howie method and the Ritchie-Howie method, which is mainly 
reflected in the agreement of multiple scattering effect and the intensity of multiple 
scattering peaks. 

The FPA-Ritchie-Howie method is then considered as a high-precision model due to 
its effectiveness in describing the multiple scattering effect in the Monte Carlo 
simulation. By using this model in our RMC calculation, the multiple scattering effect 
can be well deducted and one can obtain the high-precision ELF, which is free from 
the multiple scattering effect. We note that the simple Ritchie-Howie method was 
used in our previous works [48-52], and accurate results were obtained. This is the 
direct consequence of the fact that, with the simple Ritchie-Howie model similar 
accuracy can be achieved, as with the FPA method for non-free-electron-like 
materials. The comparison between SPA and FPA [60] has obtained the same 
conclusion: that little difference is found between results of the stopping power, IMFP, 
energy spectra and secondary electron yields calculated by FPA and SPA for 
non-free-electron-like material like Cu. These comparisons also indicate that the 
multiple scattering effect plays a less important role in non-free-electron-like 
materials compared to free-electron-like materials. 

In conclusion, according to the following analysis, we apply the FPA-Ritchie-Howie 
method for the determination of the momentum transfer-dependent ELF of Si and Ge 
from the measured REELS by the RMC technique. 
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Figure 5. (a) Comparison of simulated REELS spectra of Ge based on simple Ritchie-Howie 
method (blue), Ritchie-Howie method (green) and the present FPA-Ritchie-Howie method (red) 
with the experimental REELS spectrum (black) measured at the incident energy of 5000 eV. (b) 
Comparison of the relative errors between the experimental data and the simulated REELS 
spectra. 

Si 

We have performed the RMC calculations of Si using the FPA-Ritchie-Howie method 
to determine the ELF from the high energy resolution REELS spectra measured at 3, 
4, and 5 keV incident energies. In Fig. 6(a), it is demonstrated that the agreement 
between the simulated and the experimental REELS spectra of Si for all investigated 
primary energies are excellent. The ELFs obtained from the experimental spectra are 
displayed in Fig. 6(b). All ELFs for the three energies have produced REELS spectra 
in good agreement within the experimental uncertainty. As we can expect and is 
shown in Fig. 6(b), the ELFs obtained from the experimental REELS spectra excited 
at the primary energies of 3, 4, and 5 keV are almost the same in the whole energy 
loss region studied. 

Fig. 7 shows the ELF, averaged over the three energies with a comparison of the data 
of Palik [63] and Henke [68]. The present ELF is in good agreement with Henke’s 
data above 140 eV. In the energy loss region of higher than 30 eV, the present ELF 
begins to approach the Palik’s data and basically coincides with Palik’s data near 80 
eV. The intensity of plasmon peak of the present ELF is slightly weaker than that of 
Palik’s data near 17 eV. A distinct difference occurs around 10 eV, where a stronger 
shoulder in ELF is obtained by the RMC method. At lower loss energies around a few 
electron volts, the present ELF rises smoothly without obvious structural features. 
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Figure 6. (a) The final simulated REELS spectra (dash lines) of silicon at 3000, 4000 and 5000 eV, 
in comparison with experimental results (solid lines). (b) The final ELFs, ( )Im 1 ε ω−⎡ ⎤⎣ ⎦ , obtained 
from the REELS spectra. 
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Figure 7. Comparison of the ELFs between the present data and other sources [63,68] for Si. 

The optical constants and dielectric function are determined from the averaged ELF, 
over three primary energies. Our present optical constants and dielectric function of Si 
together with data of Palik [63] and Henke [68] are shown in Fig. 8. A good 
agreement is shown above 140 eV with Henke’s data. The main difference lies in the 
range of 2-6 eV. There are three peaks in refractive index n , extinction coefficient 
k , and real and imaginary parts of dielectric function, 1ε  and 2ε . However, the 
positions and intensities of the three peaks are different for the present result and 
Palik’s data. 
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Figure 8. Comparison of the (a) optical constants and (b) dielectric functions between the present 
data and other sources [63,68] for Si. 

Ge 

We have performed the RMC calculations of Ge using the FPA-Ritchie-Howie 
method to determine the ELF from the high energy resolution REELS spectra 
measured at 3, 4, and 5 keV incident energies. Fig. 9(a) shows that the agreements 
between the simulated and the experimental REELS spectra of Ge for all the three 
primary energies are excellent. The ELFs obtained from the spectra at each primary 
energy are displayed in Fig. 9(b). All ELFs for the three energies have produced 
REELS spectra in good agreement within the experimental uncertainty. ELFs 
obtained from the experimental REELS spectra excited at the primary energies of 3, 4, 
and 5 keV are almost the same in the whole energy loss range studied. 

Fig. 10 shows the ELF averaged over the three energies with comparison of other 
experimental data [44,63,67-68]. The present ELF is in good agreement with Henke’s 
data above 100 eV. In the medium energy loss region, the present ELF agrees with 
Marton’s results from reflectance measurements [67]. The present ELF gives slightly 
smaller values in the energy loss range of 6-12 eV, which will lead to the reasonable 
simulation of the REELS spectra at about 8 eV and at 23, 38, 53 eV. At lower loss 
energies of less than 6 eV, the present ELF rises smoothly without obvious structural 
features. Fig. 10 also shows the comparison with Novak’s results [44], by fitting 
imaginary part of the dielectric function from the measured data [63,67-68]. Although 
the dielectric function is well fitted, there are still significant differences between their 
ELF and measured data [63,67], which can be seen in Fig. 10. Novak et al. had used 
their fitting result to perform a quantitative analysis of plasmon structure of Ge in 
XPS and Auger spectra. 
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Figure 9. (a) The final simulated REELS spectra (dash lines) of germanium at 3000, 4000 and 
5000 eV, in comparison with experimental results (solid lines). (b) The final ELFs, 

( )Im 1 ε ω−⎡ ⎤⎣ ⎦ , obtained from the REELS spectra. 
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Figure 10. Comparison on the ELFs between the present data and other sources [44,63,67-68] for 
Ge. 

The averaged ELF is used to determine optical constants and dielectric function. Fig. 
11 shows the comparison of our present optical constants and dielectric function of 
Ge together with Novak’s [44] and Henke’s [68] data. The present results generally 
agree well with Novak’s data as well as Henke’s data in the high energy loss region 
above 60 eV. 

In Figs. 8 and 11, the present data for n and k differ significantly from that of Palik 
below 6 eV. In the low energy loss region below 6 eV, according to the Palik’s data, 
there are roughly four peaks in refractive index n , extinction coefficient k , and real 
and imaginary parts of dielectric function, 1ε  and 2ε . However, the positions and 
intensities of the peaks are different between the present result and Palik’s data. It 
should be noted that the RMC is an analytic procedure based on experimental 
spectrum. No obvious structure was found in the experimental REELS spectra of Si 
and Ge below 6 eV. This may be due to several factors. Firstly, there is a strong signal 
background for low-loss-energy tail of surface- and bulk-plasmon peak even down to 
the energy loss ~6 eV. Secondly, the energy resolution of the present REELS spectra 
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still cannot compete with the resolution of HREELS and optical measurements to 
resolve the low energy loss features. Furthermore, electron beam excitation differs 
from optical excitation for some electronic excitation modes. 

Furthermore, to clarify our assumptions, we note that French et al. [70] compared the 
optical properties of aluminum oxide determined from vacuum ultraviolet 
spectroscopy and electron energy-loss spectroscopy. They found pronounced 
differences in certain optical properties obtained by optical and electron methods. The 
differences are considered mainly due to different energy resolution and minor 
variations in specimen preparation, data acquisition, or data analysis. Zhang et al. [71] 
investigated the localized surface plasmon modes of single Ag nanocube for optical 
and electron excitations in the frame of discrete dipole approximation. Their 
comparison between normalized optical extinction spectrum and electron energy loss 
spectra (see Fig. 1 in Ref. [71]) shows that electron beam excitation differs from 
optical excitation, especially on excitation intensity, for some electronic excitation 
modes. 

Although our present ELF data have slightly different fine structure below 6 eV with 
average values according to the model used in the simulations (FPA-Ritchie-Howie 
model for description of electron inelastic process), the perfect deduction of multiple 
scattering effect and the results of various sum rules show that these optical data are 
the best, with the highest accuracy. 
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Figure 11. Comparison of the (a) optical constants and (b) dielectric functions between the present 
data and other sources [44,68] for Ge. 

Proof of the obtained results by sum rules 

Sum rules were used to check the reliability of the present ELF, dielectric function 
and optical constants. In the comparison, Henke’s data for 200 eV - 30 keV [68] and 
the calculated data by atomic scattering factors for 30 keV - 10 MeV [72] are used for 
the calculation of all sum rules for all the dataset. In our present calculations, we set 
the upper limit of integration as 10 MeV, which can be considered effectively as 
infinite for both Si and Ge. 



 26 / 34 
 

Fig. 12 shows the inertial sum rule and dc-conductivity sum rule checks for Si in 
comparison with Palik’s data. Fig. 13 shows the inertial sum rule and dc-conductivity 
sum rule for Ge in comparison with Novak’s data. A more detailed numerical 
comparison is made in Table 1. 
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Figure 12. Inertial sum rule and dc-conductivity sum rule checks of Si in comparison with other 
source [63]. 
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Figure 13. Inertial sum rule and dc-conductivity sum rule checks of Ge in comparison with other 
source [44]. 
 
Table 1. List of inertial sum rule and dc-conductivity sum rule checks of Si and Ge. 

  ( )nR ∞  (×10-2) nξ  (×10-4) ( )
1

Rε ∞  (×10-2) 
1εξ  (×10-4) 

Si Present -4.372 -16.85 -0.453 -8.359 
Palik [63] 30.67 97.54 -4.688 -67.82 

Ge Present 0.183 0.676 0.010 0.195 
Novak et al. [44] -5.854 -19.99 -0.63 -10.07 

As can be seen in Table 1, all the present inertial sum rule and dc-conductivity sum 
rule results have an almost ideal value, i.e. zero, for two free-electron-like materials, 
indicating the high accuracy of the present n  and 1ε  data. The verification 
parameter values for both inertial sum rule and dc-conductivity sum rule for Si and Ge 
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are less than 31 10−× , also indicating that satisfactory self-consistency has been 
achieved. For Si, the present results obtained by the RMC method has the best 
accuracy with verification parameters of 49.626 10−− ×  and 45.084 10−− ×  for nξ  
and 

1εξ , respectively. The verification parameters nξ  and 
1εξ  calculated from 

Palik’s data are 39.754 10−×  and 36.782 10−− × , respectively, one order higher in 
magnitude compared with our results. This indicates that the values obtained from the 
Palik’s data did not meet the requirements of self-consistency judgment proposed in 
Ref. [62]. For Ge, both the inertial sum rule and dc-conductivity sum rule for present 
results and Novak’s data [44] are perfect. We note, however, that our results have 
smaller verification parameters nξ  and 

1εξ  than that of Novak’s data [44]. 

Table 2 lists the results of f-sum and ps-sum rules of Si and Ge for ELFs. The present 
ELF for Si has better accuracy with relative errors from the optical measurements 
being 1.14% and 0.09% for f-sum and ps-sum rules, respectively, as compared to that 
of the Palik’s data, 1.82% and -4.09%. For Ge, we also obtained a better ELF by 
RMC method. The deviations of the calculated f-sum and ps-sum rules of Ge from the 
nominal theoretical values are 0.67% and 0.04%, respectively, as compared with 3.87% 
and 0.52% for Novak’s data [44]. There are still some deviations about 0.6-1.2% from 
the f-sum rule for both Si and Ge. In our previous work [52], we have discussed 
similar issues in detail. Given that the ps-sum rule mainly emphasizes the low loss 
energy region of the ELFs and the f-sum rule contains uncertainties from other data 
sources, the present values are much improved from the previous ones. A more 
detailed comparison can be obtained from the comparison of RMS in Eq. (31). 

Table 3 lists the f-sum rule results for ELFs, 2ε , and k . It is found that Palik’s data, 
have a relative error of 1.82% for Zeff ELF

, a relative error of 3.01% for 
2

Zeff ε
 and a 

relative error of 3.44% for Zeff k
, showing larger deviation from theoretical value as 

compared with our results. The present f-sum rule results, 
2

Zeff ε
and Zeff k

, are very 
close to Z eff ELF

 for both Si and Ge. The small RMS values of 0.027% for Si and 
0.010% for Ge in Table 3 prove the accuracy of present results again in the low 
energy loss range. The corresponding RMS values from the Palik’s data of Si is 
0.663%, and the corresponding RMS value of Ge from the Novak’s data is 0.064%. 
 
Table 2. List of f-sum and ps-sum rule checks of Si and Ge for ELFs. 

  f-sum rule relative error ps-sum 
rule 

relative 
error 

Si Present 14.158 1.13% 1.0011 0.11% 
Palik [63] 14.256 1.82% 0.9591 -4.09% 

Ge Present 32.212 0.66% 1.0004 0.04% 
Novak et al. [44] 33.237 3.87% 1.0052 0.52% 

 
Table 3. List of the f-sum rule checks of Si and Ge for ELF, ε2 and k. 
  ELF ε2 k RMS (%) 
Si Present 14.158 14.146 14.149 0.036 
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Palik [63] 14.256 14.421 14.481 0.663 
Ge Present 32.212 32.204 32.206 0.010 

Novak et al. [44] 33.237 33.187 33.200 0.064 

5. Conclusion 

The energy loss function of free-electron-like materials is characterized by a very 
sharp plasmon peak dominating the whole optical energy loss function. This makes 
the accurate description of the bulk and surface excitations difficult in conventional 
models. So, the key to the improvement of the description of the energy loss function 
relies on how accurately we can treat the extension of the energy loss function from 
the optical limit into the ( ),q ω -plane. Along this line, the analysis and comparison 
of four extension methods, i.e., simple Ritchie-Howie method, Ritchie-Howie method, 
FPA and SPA have been performed. We found that the simple Ritchie-Howie method 
has a better approximation for electron inelastic scattering than SPA. It contains the 
single particle excitation even for pω ω< . Although there are still deviations, the 
simple Ritchie-Howie method provides a better approximation for plasmon dispersion 
than SPA. The Ritchie-Howie method has been improved compared to the simple 
Ritchie-Howie method by considering a dispersion relation of iγ . The q -dependent 
damping constant in Ritchie-Howie method can improve partially the broadening 
effect which originates from the single-electron excitation. It was proved, according 
to our analysis, that the FPA method is the best for the determination of the 
momentum transfer-dependent ELF for free-electron-like materials. Considering that 
the Ritchie-Howie method has a natural advantage for obtaining the surface energy 
loss function, we found that the best model which describes accurately and times 
efficiently the energy loss function of free-electron-like materials is the combination 
of FPA with the Ritchie-Howie method. In the so-called FPA-Ritchie-Howie model 
the FPA model is used for the calculation of the bulk DIIMFP, and the Ritchie-Howie 
model is used for the calculation of the surface DIIMFP. The FPA-Ritchie-Howie 
model has been proved to be a high precision model, which can accurately describe 
the multiple scattering effects in the simulation of REELS spectra. 

Applying the FPA-Ritchie-Howie model for the determination of the inelastic 
scattering cross-sections, we presented an improved version of RMC technique to 
obtain ELF for free-electron-like materials. However, the improved calculation 
schema is in principle not limited strictly to the free-electron-like materials, it can also 
be adopted for other solids. With the combination of the high-accuracy REELS 
measurements with the high-precision RMC method, the high-precision determination 
of electron energy loss functions of silicon and germanium from high energy 
resolution REELS spectra were performed. To reduce the surface effects during the 
calculations, we used the RELLS spectra measured at high energies, i.e. 3, 4 and 5 
keV. The refractive index n, the extinction coefficient k and the complex dielectric 
function (ε= ε1+iε2) were calculated from these electron energy loss functions in the 
energy loss range of 0-200 eV. The high accuracy of the obtained results is justified 
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with inertial sum rule, dc-conductivity sum rule, f-sum rule and ps-sum rule. We 
found that our present optical data of Si and Ge fulfill the sum rules with average 
accuracy of better than 0.11%. Therefore, the previously, either experimentally or 
theoretically, obtained optical data of these two elements can be replaced with our 
presently calculated optical data. The use of those in material science and surface 
analysis is highly recommended for further applications describing the properties of 
Si and Ge. 
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