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We propose many-body order parameters for bulk multipoles in crystalline systems, whenever the
bulk multipole moments can be defined in terms of the nontrivial topology of the nested Wilson
loop. The many-body order parameters are designed to measure multipolar charge distribution in
a crystalline unit cell, and they match the localized corner charge originating from the multipoles
when the symmetries quantizing the multipoles are protected. Our many-body order parameters
provide complementary view to the nested Wilson loop approaches and even go beyond, as our
many-body order parameters are readily applicable to interacting quantum many-body systems.
Furthermore, even when the symmetries quantizing multipoles are lost so that the nested Wilson
loop spectrum does not exactly reproduce the physical multipole moments, our many-body order
parameters faithfully measure the physical multipole moments which is confirmed numerically during
Thouless pumping processes. We provide analytic arguments and numerical demonstration of the
order parameters for various higher-order insulators having bulk multipole moments. Finally, we
discuss the applicability of our many-body order parameters in the cases where the Wannier gap is
absent so that the bulk multiple moments cannot be defined in terms of the nested Wilson loop.

I. INTRODUCTION

Theory of macroscopic polarization in a crystal lies at
the heart of the modern development of topological band
insulators.1 The theory provides a classic example of how
the non-trivial topology of bulk ground states can deter-
mine the quintessential properties of the quantum phases
such as symmetry-enforced boundary states.2,3 Further-
more, it nicely illustrates how the associated topology
can and cannot be diagnosed; the topology cannot be
measured by a local operator, but only through a gauge-
invariant number defined in a momentum space referred
as the Zak phase,4 or through a non-local many-body or-
der parameter.5 In particular, the discovery of the many-
body order parameters, or equivalently “invariants”, for
various topological insulators drastically increased our
understanding of topological states and expanded the
range of the search for the topological states beyond
free-fermion limits, e.g., strongly-correlated systems and
bosonic models.6–10

Recently, a new class of topological states, namely
higher-order topological insulators, has been discov-
ered.11–19 Interestingly, these higher-order states are con-
structed out of the electric multipoles, which material-
ize as topologically-protected modes at the corners and
hinges of the physical boundary. To characterize such
higher-order topology, the so-called “nested Wilson loop”
approach12 has been put forward and used to detect the
quantized multipoles, by keeping track of all the relevant
crystalline symmetries. However, a new class of higher-
order topological insulator has been introduced under the
name an anomalous topological insulator19 whose non-
trivial multipole moments cannot be diagnosed by a naive
application of the nested Wilson loop approach. More-
over, the nested Wilson loop is genuinely a free-fermion
quantity and thus cannot be a generic diagnosis for the

higher-order topology in a general many-body condensed
matter system. This opens a question how to measure
multipole moments going beyond the nested Wilson loop
picture.

Motivated from these, we propose a new set of many-
body order parameters for the multipoles in crystalline
systems, which are presented in Sec. II. In Sec. III, we
explain our order parameters based on effective field-
theoretic interpretation. In Sect. IV, we demonstrate
that our many-body order parameters successfully mea-
sure the quantized bulk multipole moments for various
higher-order topological insulators. In Sec. V, we dis-
cuss the applicability of our order parameters to the
cases where the quantizing symmetries are lost. We
have demonstrated numerically that using our many-
body order parameter as the measure for quadrupole mo-
ment, the bulk-boundary correspondence holds for vari-
ous models having non-quantized quadrupole moments.
We conclude in Sec. VI, which are followed by Appendices
where we discuss various aspects of our order parameters
as well as the applicability of our order parameters in
the cases where the Wannier gap is absence so that the
bulk multipole moment cannot be defined in terms of the
nested Wilson loop.

II. MANY-BODY ORDER PARAMETERS

A. Resta’s Operator for Multipole Moments

We now introduce a set of many-body order parame-
ters for multipole moments in solids. In stark contrast
to the nested Wilson loop approaches, we utilize real-
space charge distribution, which can be evaluated even
for strongly-correlated systems. To this end, we extend
Resta’s general definition of polarization5 to the multi-
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poles:

Px =
1

2π
Im
[
log〈Û1〉

]
, Û1 = e2πi

∑
x p̂x , (1)

where p̂x = xn̂(x)
Lx

is the polarization density (relative to

x = 0) in the system of the length Lx with n̂(x) be-
ing the electron number operator at site x, and the sum
is running over the whole system. Here the expectation
value 〈Û1〉 is over the many-body ground state subject to
the periodic boundary condition, i.e., x ∼ x+ Lx. Com-
pared to the Berry-phase expression4 defined in momen-
tum space, the above formula Eq. (1) provides a clearer
picture of the macroscopic polarization Px by relating it
to the local microscopic polarization density p̂x.

Here, we propose an order parameter for quadrupole
moment in a crystal as following:

Qxy =
1

2π
Im
[
log〈Û2〉

]
, Û2 = e2πi

∑
r q̂xy(r). (2)

Here q̂xy = xy
LxLy

n̂(r) is the quadrupole moment density

(relative to x = y = 0) per unit cell at the site r. Similar
to Eq. (1), Lx and Ly are the sizes of the system, and
the sum is over (x, y) ∈ (0, Lx] × (0, Ly]. Analogously,
the macroscopic octupole moment can be measured as:

Oxyz =
1

2π
Im
[
log〈Û3〉

]
, Û3 = e2πi

∑
r ôxyz(r). (3)

Here ôxyz = xyz
LxLyLz

n̂(r) is the octupole moment density

per unit cell; the generalizations to higher-order poles
follows immediately. As in the Resta’s formula, we use
a many-body ground state defined on the torus with pe-
riodic boundary conditions and each multipole moment
density is summed over the whole space. Our real-space
formula provides a complementary view to the momen-
tum space approach, the nested Wilson loop indices.12

In the remaining paper, we present supporting evidences
that these many-body order parameters correctly mea-
sure the bulk multipole moments whenever the bulk mul-
tipole moments can be defined in terms of the nontrivial
topology of the nested Wilson loop.12 On the other hand,
when the Wannier gap is absent so that the bulk multi-
pole moments cannot be defined in terms of the nested
Wilson loop, we find that our formula Eq. (2) does not
show stable values against adiabatic deformations that
preserve the bulk gap. (Please refer to Appendix E

for more details on the behavior of Û2 on various C4-
symmetric insulators.20)

A few remarks are in order. First, the multipole mo-
ments defined as above are ambiguous up to “mod 1”
because of the periodicity of complex phases; this am-
biguity reproduces the observation made in the previous
studies.11,12 Second, we emphasize that the above ex-
pressions are truly many-body quantities because, when
the exponentials are expanded, they require to measure
∼ ∑

r1,r2,··· ,rJ 〈n̂(r1)n̂(r2) · · · n̂(rJ)〉, and this does not
reduce to the product of the few-particle observables. To

evaluate Eq. (2) and Eq. (3), we need the full knowledge
of the many-body ground state. On the other hand, the
expressions are gauge-invariant, i.e., it is independent of
the basis choice, and thus they measure physical quanti-
ties.

We can also show that the expressions Eq. (2) and
Eq. (3) are invariant under the superposition of the triv-
ial atomic insulator to the system. For example, let us
take Eq. (2) and Lx · Ly being odd. Now, first consider
a ground state |GStriv〉 = ⊗x|n̂x = 1〉 of an atomic triv-

ial insulator, which has 〈Û2〉 = 1. When such a ground
state is superposed with the topological state |GStop〉,
i.e., |GSnew〉 = |GStop〉 ⊗ |GStriv〉, the quadrupole mo-
ment remains the same as before

Im log〈GStop|Û2|GStop〉 = Im log〈GSnew|Û2|GSnew〉,

and hence showing the stability against addition of trivial
bands (without turning on the coupling to the topological
states).21 This shows that our order parameters Eq. (2)
and Eq. (3) measure certain topological properties of the
insulators. To further identify them as the “order pa-
rameters” for the multipoles, we need a few more steps,
which we present below.

B. Symmetry Considerations

We argue that Eq. (2) and Eq. (3) capture the sym-
metries of multipole moments properly. Let us con-
centrate on the quadrupole moment Eq. (2) for clar-
ity. Below we choose our system to be on a torus
(x, y) ∈ (0, Lx] × (0, Ly] and subject to the periodic
boundary conditions x + Lx ∼ x and y + Ly ∼ y. The
effect of other coordinate parametrization is discussed in
Appendix D 2 b.

First, note that under the mirrors {Mx,My}, our

Eq. (2) transforms as Û2 → Û∗2 , where asterisk denotes
the complex conjugation, and thus Qxy → −Qxy. (We
defer a more careful analysis of the symmetry actions
including C4 symmetry to Appendix A.)

Second, we can also intuitively understand why the
polarization must vanish for the quadrupole moment to
be well-defined. To this end, we perform x → x + Lx
globally, which maps Û2 → Û ′2 = Û2Û1;y where Û1;y =

exp[2πi/Ly
∑
y yn̂(r)] = exp(2πiP̂y). Although 〈Û2〉 6=

〈Û ′2〉 in general (because the ground state is not generally

an eigenstate of Û1;y), we find

〈Û ′2〉 = 〈Û2〉〈Û1;y〉+O(
1

Egap
),

where Egap is the excitation gap, which is inversely pro-
portional to the correlation length.6,22 In the ideal limit
Egap → ∞, we can see that the quadrupole moment,

which is the imaginary part of 〈Û2〉, is well-defined when
the polarization vanishes. Similarly, the total polar-
ization P̂x along x must vanish to have a well-defined
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FIG. 1. Charge configuration in real space with multipole
moments

quadrupole moment. By passing, we note that this in-
variance of 〈Û2〉 up to the perturbative correction is
weaker than the original Resta’s formula Eq. (1) where
x → x + Lx is an exact symmetry. Though we have
shown that the polarization at Egap → ∞ must vanish
to have a well-defined quadrupole moment, the polariza-
tion is invariant under the adiabatic change of the gap
when the quantizing symmetries present and thus the
same conclusion should apply to the finite-gap systems
with quantizing symmetries.

III. EFFECTIVE FIELD THEORY OF THE
MULTIPOLES

In this section, we derive the effective response from
the semi-classical picture and then use it to reproduce the
essential features12 of the topological quadrupolar insu-
lators. Furthermore, we also show the link between the
ground state expectation value 〈Ûa〉 and the partition
function. Motivated from the effective field theories, we
also provide the generalization of our many-body order
parameters Eq. (2) and Eq. (3) by introducing many-
body operators acting on subsystems rather than full sys-
tems. Although we mainly focus on the quadrupolar case,
we remark that all the discussions here can be straight-
forwardly generalized to the octupolar and higher-polar
cases.

A. Derivation of Effective Action: Multipolar
Electromagnetism

We start from the effective responses for electric mul-
tipoles. First, the uniform monopole or charge density ρ
in a spatial region M has the following response:

Seff =

∫
dτ

∫

M
ddr ρV (r) (4)

Second, a single dipole at the site r with the polariza-

tion ~P = qd has the following response:

Sdipole =

∫
dτ q

[
V (r + d)− V (r)

]
≈
∫
dτ qd · ∂V (r)

=

∫
dτ ~P · ~E. (5)

Hence, when there are uniform polarization density ~P
over the area M, we find

Seff =

∫
dτ

∫

M
ddr ~P · ~E. (6)

Third, a single quadrupole Qxy = qd2 at the site r =
(x, y) (see FIG. 1 (c)) has the following response:

Squadrupole =

∫
dτ q

[
V (x, y)− V (x+ d, y)

− V (x, y + d) + V (x+ d, y + d)
]

≈
∫
dτ qd2∂x∂yV (x, y)

=

∫
dτ

Qxy
2

[
∂xEy + ∂yEx

]
. (7)

Thus, when there are uniform quadrupole density Qxy
over the area M, we find

Seff =

∫
dτ

∫

M
ddr

Qxy
2

[
∂xEy + ∂yEx

]
, (8)

which is the effective action for the quadrupole insulator.
It is straightforward to show that the uniform octupole

density Oxyz over the region M has the following re-
sponse:

Seff =

∫
dτ

∫

M
ddr

Oxyz
3

[
∂x∂yEz + ∂z∂yEx + ∂z∂xEy

]
.

(9)

B. From 〈GS|Ûa|GS〉 to Partition Functions

Here we relate the ground state overlaps and the parti-
tion functions, which has been extensively used in many-
body order parameters for symmetry-protected topologi-
cal states9,10 on the relation of the ground state expecta-
tion values of the symmetry operators and the partition
functions. Our approach is nothing but a small variation
of the Dyson formula, which can be found in standard
quantum field theory textbooks.

We first start by noting that

|GSβ〉 =
1√
Z

∑

n

e−
β
2H |n〉, Z = Tr[e−βH ], (10)

where the true ground state |GS〉 can be obtained by
letting the “temperature” 1/β → 0. This implies that

〈GSβ |Ûa|GSβ〉 ∝
1

Z

∑

n

〈n|e− β2H Ûae−
β
2H |n〉

=
1

Z
Tr
[
e−βH Ûa

]
. (11)
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FIG. 2. Interpretation of partition functions with the inser-
tion of Ûa. Ûa acts at τ = 0 followed by the imaginary time
evolution along τ . Periodic boundary condition is used along
τ direction.

Now, in order to relate Eq. (11) to the effective func-
tional against the gauge potential configuration A0;a(r)

set by Ûa, we need to properly interpret the partition
function in the RHS of Eq. (11). Pictorially, this can
be represented as the imaginary time evolution (See
FIG. 2). For a proper interpretation, let us break the
partition function into the two parts. The first part is
the action of Ûa. Note that these Ûa’s involve complex
phase factors proportional to the particle number, i.e.,

Ûa ∼ exp
[
iφa(r)n̂(r)

]
. This means that Ûa appearing

on the partition function Eq. (11) is the same as the ac-
tion of the gauge potential A0;a(r, τ) on the states at
τ = 0, i.e., A0;a(r, τ) ∝ δ(τ). In the second part, we act
exp(−βH), which is the imaginary time-evolution on the

states after the action of Ûa.
Because the RHS of Eq. (11) can be interpreted as the

evolution of the states under the gauge potentials, the
RHS should be equivalent to the following:

〈GSβ |Ûa|GSβ〉 ∼ |Z| exp
(
iSeff [A0;a(r, τ)]

)
, (12)

in which Seff [A0(r, τ)] is the effective response against

A0;a(r, τ), which is set by Ûa. Here, we also used the
fact that the multipolar electromagnetic responses are
topological (or Berry phase) because they involve a sin-
gle time-derivative ∼ ∂τ . Thus, this multipolar response
against A0;a(r, τ) contributes to the imaginary part of

the 〈Ûa〉.

C. From Effective Field Theory to Corner Charge

We now relate the corner charge and effective field the-
ory for quadrupole insulators Eq. (8) which justifies why
our many-body order parameter Eq. (2) captures the cor-
ner charge originated from bulk quadrupole moment.

Let us begin with the well-known dipole case. Previ-
ously, we have derived

A0;a=1(x, τ) = 2π
x

Lx
δ(τ), Seff =

∫ Lx

0

dx

∫ β

0

dτ Px · Ex

using the semi-classical electromagnetism response of the

polarization Seff =
∫
~P · ~E. Remarkably, despite of its

semi-classical origin, we note that it is equivalent to the
fully-quantum theory23,24 of one-dimensional topological
insulator. Explicitly evaluating the value of the effective
action, we find 〈Û1〉 ∝ e2πiPx . This can be further iden-
tified with the edge charge, which we derive by solving

the equation of motion qedge =
∫
dx

δLeff
δA0

= Px.
For the quadrupole case, the effective response is

Seff =

∫ β

0

dτ

∫ Lx

0

dx

∫ Ly

0

dy
Qxy

2
(∂yEx + ∂xEy),

(13)

where Qxy is the physical quadrupole moment density
and Ex,y are electric fields. Implementing A0;a=2 =
2π

LxLy
xyδ(τ), we find:

〈Û2〉 ∝ e2πiQxy (14)

It is straightforward to show that this quadrupole mo-
ment Qxy is precisely the corner charge qc, i.e., Qxy = qc,
by solving the equation of motion for the probe gauge
field δA0 as done in the polarization case. Similar rea-
soning can be applied to the octupole case, too.

D. Corner Charge and Thouless Pumping

The effective theory Eq. (8) captures defining charac-
teristics of the quadrupole insulator, the corner charge
and the charge current pattern generated from an adi-
abatic Thouless pumping. To demonstrate these, let us
consider a rectangular regionM = (−Lx, Lx)×(−Ly, Ly)
with uniform Qxy 6= 0, which has an open boundary with
the vacuum Qxy = 0 as described in Fig. 3 (a).

1. Corner charge

We first revisit the corner charge. It can be done by
computing the equation of motion for A0 in the effective
response:

ρ(r) =
δLeff
δA0(r)

= ∂x∂yQxy (15)

Obviously, the RHS of the above equation, ∂x∂yQxy, is
non-zero only at the corners of M. Hence, we find

ρ(r) = Qxy

[
δ(x− Lx)δ(y − Ly)− δ(x+ Lx)δ(y − Ly)

− δ(x− Lx)δ(y + Ly) + δ(x+ Lx)δ(y + Ly)
]
.

(16)

This is consistent with the intuitive picture of the corner
charge generated from the quadrupolar moment density.



5

M

(a)

(𝑄𝑥𝑦 ≠ 0) M

(b)

(𝜕𝜏𝑄𝑥𝑦 ≠ 0)

+q

-q

-q

+q

FIG. 3. (a) Corner charges of quadrupolar insulator de-
rived from the effective action. Charges are only localized at
four corners of the rectangular region M, which has nonzero
quadrupole moment Qxy 6= 0. Note that the vacuum has
trivial quadrupole moment Qxy = 0. (b) Charge current con-
figuration derived from the effective action under the Thouless
pumping. In this case, charges flow only along the boundary
of M and their directions are denoted as arrows.

Integrating over the quadrant of the M, we finally find
that

qc = ±Qxy, (17)

whose sign depends on which quadrant of the space that
we integrate over.

2. Thouless pumping

Next we imagine that the uniform quadrupolar mo-
ment density Qxy depends on time, i.e., we have Qxy =
Qxy(τ). This allows the charge currents to flow along the
boundary of the topological quadrupolar insulators. To
see this, we calculate

Jx =
δLeff
δAx

= −∂y∂τQxy, Jy =
δLeff
δAy

= −∂x∂τQxy,
(18)

which is essentially equivalent to the charge flow in
the process of Thouless pumping in the topological
quadrupolar insulator, obtained in Ref. [12]. See FIG. 3
(b) for the direction of current along the boundary ofM
during the Thouless pumping.

In summary, within the effective field theory approach
using semi-classical electromagnetic responses, our many-
body order parameters applied to fully quantum sys-
tems would capture the corner charges qc, i.e., 〈Ûa〉 ≈
exp(2πiqc), a = 1, 2, 3, which are the physical manifesta-
tion of the multipole moments even in the absence of any
quantizing symmetries.

E. Generalizations of Many-Body Order
Parameters

With the effective theory in hand, we can now gen-
eralize our order parameters to arbitrary boundary con-
dition, since the (semi-classical) relation Eq. (14) holds

independently of which boundary condition being used.
Furthermore, we can generalize the unitary Ûa to other
unitaries saturating the effective action. For example, we
can use

V̂1(l) =

{
exp

[
2πi
l

∑
x xn̂(x)

]
for x ∈ (0, l]

1 for x ∈ (l, Lx],
(19)

to measure the polarization.25 Here the whole system
may be subject to the open boundary condition or to
the periodic boundary condition. Similarly, we can de-
fine the generalized measure for the quadrupole moment
as follows:

V̂2(l) =

{
exp

[
2πi
l2

∑
r xyn̂(r)

]
for r ∈ (0, l]× (0, l]

1 otherwise.

(20)

Again, the whole system may be subject to the periodic
or open boundary conditions.

IV. NUMERICAL DEMONSTRATION OF
MANY-BODY ORDER PARAMETERS

We now proceed to the numerical demonstration for
our many-body order parameters by testing the formula
on the non-interacting topological quadrupolar states.
We emphasize here again that, though the models are
non-interacting, the quantity that we are computing is
intrinsically a many-body quantity which requires the full
knowledge of the many-body ground state.

A. Topological Quadrupole Insulators

In the momentum basis, the Hamiltonian for a topo-
logical quadrupole insulator12 is

h(k) =
(
γx + λx cos(kx)

)
Γ4 + λx sin(kx)Γ3

+
(
γy + λy cos(ky)

)
Γ2 + λy sin(ky)Γ1 + δ Γ0.

(21)

Here, Γa=0,··· ,4 is a proper set of gamma matrices. When
δ = 0, there are two anti-commuting mirror symmetries
M̂x and M̂y which quantize the quadrupole moment Qxy
to either 0 or 1/2 mod 1. If λx = λy and γx = γy are

imposed (while keeping δ = 0), there is an additional Ĉ4

symmetry which also quantizes the quadrupole moment
Qxy to either 0 or 1/2 mod 1. Introduction of δ 6= 0

breaks both the mirror symmetries and Ĉ4 symmetry,
which quantize the quadrupoles, but Ĉ2 symmetry re-
mains intact which enforce the total polarization to van-
ish.

In FIG. 4 (b) and (c), we present how the complex

phase of 〈Û2〉 changes along different cuts in the param-
eter space of Eq. (21) as described in FIG. 4 (a). The
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FIG. 4. (a) The phase diagram of the quadrupole insulator
Eq. (21) when δ = 0 and λx = λy = 1. The shaded region
denotes topologically nontrivial phase (quadrupole moment
equals 0.5) and black dots denote bulk energy gap closing
points. (b) and (c) are evaluation of Qxy Eq. (2) for the
quadrupole insulator Eq. (21). We set λx = λy = 1 and
δ = 0, and evaluate Qxy (b) along the cut γx = γy and (c)
along the cut γx = 0.5. We see in both cases there is a sharp
change at γy = 1, which is consistent with the phase diagram
(a). (d) Anomalous topological quadrupole insulator.19 Here,
the ground state is known to be topological if Vz√

∆2+µ′2
> 1

and trivial if Vz√
∆2+µ′2

< 1, and this is well captured by Û2.

See the main text for details on the model and the numerical
values of the parameters.

many-body order parameter Eq. (2) reproduces the quan-
tized quadrupole moments as well as the sharp phase
transitions between topological and trivial quadrupole in-
sulator, even when the bulk energy gap does not close at
the transition point.

To define the quadrupole moment using the nested
Wilson loop, the existence of the Wannier gap is crucial
as we can then separate a Wannier band to evaluate the
Wanner-sector polarization. In the case of Eq. (21) with
δ = 0, the phase transition between topological and triv-
ial quadrupole insulator happens when the Wannier gap
(instead of physical energy gap) closes and re-opens. On

the other hand, |〈Û2〉| always vanishes at phase bound-
ary, where the Wannier gap closes i.e., |λx/γx| = 1 or
|λy/γy| = 1 (Note that the energy gap closes only when
|λx/γx| = 1 and |λy/γy| = 1). This highlights the rela-

tion between the Wannier gap and |〈Û2〉|.

B. Anomalous Topological Quadrupolar Insulator

Given the success of our many-body formula in repro-
ducing the phase diagram of Eq. (21), we apply it to
the anomalous topological quadrupole insulator,19 where
the naive application of the nested Wilson loop approach

fails to predict the non-zero quantized quadrupole mo-
ments and the related phase transition.

A minimal model for an anomalous topological
quadrupole insulator is given by Ref. [19]

HATQI(k) =
[
2tx
(
1− cos(kx)

)
− µ

]
σ3 ⊗ σ0 ⊗ σ0

+ Vzσ0 ⊗ σ3 ⊗ σ0 + ∆σ1 ⊗ σ0 ⊗ σ0
+ α sin(kx)σ3 ⊗ σ2 ⊗ σ0
−
[
β1 − β2 cos(ky)

]
σ3 ⊗ σ1 ⊗ σ2

− β2 sin(ky)σ3 ⊗ σ1 ⊗ σ1, (22)

where tx is the nearest neighbor hopping strength
in x-direction, µ is the chemical potential, Vz is
the Zeeman energy, ∆ is the superconducting pairing
strength, α and β1/β2 are the Rashba spin-orbit cou-
pling strengths in x- and y-direction. In FIG. 4 (d),
we set (tx, µ,∆, α, β1, β2) = (1.7,−0.9, 1.6, 3.7, 0.8, 6.2)
and tune Vz ∈ [0.7, 2.7] following Ref. [19]. When

Vz >
√

∆2 + µ′2, the half-filled ground state is topologi-

cally nontrivial and when Vz <
√

∆2 + µ′2, the half-filled
ground state is trivial where µ′ ≈ 0.46 for our choices
of parameters. As can be seen in FIG. 4 (d), we find
remarkably that both the expected quadrupole moment
and phase transition are successfully reproduced with our
many-body order parameter Eq. (2).

C. Topological Octupolar Insulator

A minimal model for an octupole insulator is given
by12

hoctupole(k) =λy sin(ky)Γ′1 +
[
γy + λy cos(ky)

]
Γ′2

+ λx sin(kx)Γ′3 +
[
γx + λx cos(kx)

]
Γ′4

+ λz sin(kz)Γ
′
5 +

[
γz + λz cos(kz)

]
Γ′6,

(23)

where Γ′i = σ3 ⊗ Γi for i = 0, 1, 2, 3 with Γi being
the same set of Gamma matrices appearing in Eq. (21),
Γ′4 = σ1 ⊗ I4×4, Γ′5 = σ2 ⊗ I4×4, Γ′6 = iΓ′0Γ′1Γ′2Γ′3Γ′4Γ′5,
and γx,y,z and λx,y,z are intra- and inter-site hopping
strengths. When |λi| > |γi| for all i = x, y, z, the half-
filled ground state has topologically nontrivial octupole
moment.

We present the numerical evaluation of the expecta-
tion value of Û3 with respect to the half-filled ground
state of the octupole insulator Eq. (23). As done in the
quadrupole insulator case [FIG. 4 (a)], we see that the

complex phase of 〈Û3〉 correctly captures the topological
and trivial phases as the parameter passes through the
phase transition between the topological octupole insu-
lator and the trivial insulator [FIG. 5 (a)].

D. Edge-Localized Polarization Model

One of the key characteristic of the tight-binding
quadrupole insulator model Eq. (21) is that the following
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FIG. 5. (a) The complex phase of 〈Û3〉 for topological oc-
tupole insulator Eq. (23). We set λx = λy = λz = 1.0 and
tune γ ≡ γx = γy = γz ∈ [0, 2]. When γ < 1.0 (γ > 1.0),
the ground state is in topological (trivial) octupole insula-

tor phase, which is indeed captured by 〈Û3〉 up to finite-size
effect. (b) Edge-localized polarization model Eq. (24) with
(γ, λx, λy) = (0.1, 1.0, 0.5) and change δ ∈ [0, 0.6]. The corner
charge comes solely from the boundary localized polarization
and the bulk quadrupole moment vanishes. We indeed see
that the complex phase of 〈Û2〉 is trivial up to finite size ef-
fects.

four physical observables are identical even when δ 6= 0:
qc = |pedgex | = |pedgey | = Qxy, where qc is the corner
charge localized at one edge in the case of full open

boundary condition, pedgex(,y) is edge localized polarization

along x-direction (y-direction) in the case of open bound-
ary condition along x-direction (y-direction) and periodic
boundary condition along y-direction (x-direction), and
Qxy is the bulk quadrupole moment. In contrast, there
exists model, edge-localized polarization model, in which
qc = |pedgex | + |pedgey | and Qxy = 0 instead. A minimal
model for this edge-localized polarization model is given
by12

h(k) =

(
δτ0 q(k)
q†(k) −δτ0

)
,

q(k) =

(
γ + λxe

ikx γ + λye
iky

γ + λye
−iky γ + λxe

−ikx

)
, (24)

where τ0 is the 2×2 identity matrix and γ and λ are intra-
and inter-layer hopping strengths. To see our many-body
order parameter Eq. (2) in terms of Û2 indeed not sensi-
tive to the edge-localized polarization that is not coming
from the bulk quadrupole moment, we numerically com-
pute the complex phase of 〈Û2〉 for the minimal model
Eq. (24). In FIG. 5 (b), we set (γ, λx, λy) = (0.1, 1.0, 0.5)
and change δ ∈ [0, 0.3]. As we tune δ, the corner
charge changes and equals |pedgex |+ |pedgey |, while the bulk
quadrupole moment vanishes. As can be seen in the fig-
ure, the complex phase of 〈Û2〉 is negligible, hence cap-
turing the vanishing bulk quadrupole moment.

E. Generalized Many-Body Order Parameters

We perform the numerical check for the generalized
many-body order parameters Eq. (19) and Eq. (20),
which is presented in FIG. 6. We compute the phases

�
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FIG. 6. Evaluation of the phase of 〈V̂a=1,2(l)〉 of Eq. (19) and
Eq. (20) for various values of l in the case of (a) Su-Schrieffer-
Heeger chain Eq. (25) and (b) Quadrupole insulator Eq. (21).
We set γ = 1.0 (γx = γy = 1.0) and δ = 0.2 and change λ
(= λx = λy).

of these order parameters for various l’s for the Su-
Schrieffer-Heeger chain26 and topological quadrupolar
insulators Eq. (21), which are both subject to the
nonzero δ that breaks the quantization of polarization
and quadrupole moments. For the Su-Schrieffer-Heeger
chain, we used

hSSH(k) =

(
δ γ + λe−ik

γ + λeik −δ

)
. (25)

Surprisingly, the overall trend is insensitive to which
boundary condition is used and insensitive even when
l is less than a half of the system size. Remarkably when
δ = 0, i.e., the bulk multipole moment is quantized, and
when the periodic boundary condition is used, we have
confirmed numerically that (at least up to the system
size L ∼ 20) the generalized many-body order parame-
ters Eq. (19) and Eq. (20) reproduce the original many-
body order parameters Eq. (1) and Eq. (2) even when l
is an order of the half of the system size [please refer to
Appendix D 2 a for more details].

V. BULK-BOUNDARY CORRESPONDENCE
AND THOULESS PUMPING

A. Corner Charge, Nested Wilson Loop
Quadrupole Moment, and Physical Quadrupole

Moment

Here we discuss a few related but distinct quantities
when the symmetries quantizing the multipole moments
are lost, by restricting ourselves to the quadrupolar case.
(1) corner charge qc, which is the total electric charge
near the corner when the system is subject to the open
boundary conditions. (2) Wannier-sector polarizations12

{pωx , pωy } (when they can be defined) and associated
“nested Wilson loop quadrupole moment” Qωxy = 2pωxp

ω
y ,

which are defined by nested Wilson loops, and (3) phys-
ical quadrupole moment Qph

xy. In general, all these three
can be different from each other.

However, if the bulk and boundary-alone polarizations
are absent (so that the quadrupole moments are well-
defined) and if the quadrupolar charge distribution per
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unit cell is the only source of the corner charge, then the
corner charge qc would agree with a sensible quadrupole
moment Qph

xy.12

In general, if we assume the strongest form of the bulk-
boundary correspondence,11,12,27,28 we expect

Qph
xy = pedgex + pedgey − qc (mod 1), (26)

where pedgex and pedgey are edge-localized polarizations
along x-and y-directions, even in the absence of quan-
tizing symmetries. We note that this form of the bulk-
boundary correspondence is insensitive to dressing po-
larization chains along the open boundaries. When the
boundary polarization of the systems of the open bound-
ary condition is fully determined by the bulk quadrupole
moments,12 the bulk-boundary correspondence reduces
to Qph

xy = qc.
In the remaining section, we would like to see to what

extent our many-body order parameter Qxy, which is the

complex phase factor of the expectation value of Û2, can
capture the physical bulk quadrupole moment for the
cases where the gap in the nested Wilson loop spectrum
is present (i.e., Qωxy can be defined).12 We will see that,
at least for the examples that we considered below, Qxy
reproduces the bulk quadrupole moment Qph

xy, while Qωxy
cannot, in the absence of quantizing symmetries.

We would like to comment that the nested Wil-
son loop quadrupole moment Qωxy is originally de-
signed as “topological index” with quantizing crystalline
symmetries.11,12 Hence, once the quantizing symmetries
are relaxed, the nested Wilson loop quadrupole moment
Qωxy may not agree with the physical quadrupole moment

Qph
xy as already exposed in [12]. See the detailed discus-

sion and explanation on this point in [12]. Indeed, in
the presence of quantizing symmetries, we consistently
find that Qωxy does serve both as the index and also the
physical measure of the quadrupole moment.

B. Thouless Pumping

1. Topological Quadrupole Insulator with π-flux per
Plaquette

In this section, we consider one of the first tight-
binding model for the quadrupole insulator12 which has
π-flux per plaquette. In the momentum basis, the explicit
form of the Hamiltonian is presented in Eq. (21). As pre-
viously mentioned, δ 6= 0 breaks both the mirror symme-
tries and Ĉ4 symmetry, which quantize the quadrupoles,
but Ĉ2 symmetry remains intact which enforces the total
polarization to vanish. We now ask what would happen if
we break symmetries that protect the quantization of the
quadrupole moment by introducing non-zero δ. In this
case, the quantization of the quadrupole moment is lost
and the quadrupole moment can take any value. How-
ever, due to the bulk-boundary correspondence,12,27,28

we expect that the corner charge is still determined by
the bulk quadrupole moment.
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FIG. 7. Comparison between three different physical quan-
tities, complex phase of 〈Û2〉, the nested Wilson quadrupole
moment Qωxy, and corner charge qc for (a) isotropic Thou-
less pumping Eq. (27) and (b) anisotropic Thouless pumping

Eq. (28). While the complex phase of 〈Û2〉 and the corner
charge qc agree with each other with almost no discernible
differences, Qωxy given in terms of the Wannier-sector polar-
izations agrees with the two only at θ = π/2, 3π/2, i.e., δ = 0
and the quadrupole moment is quantized.

We employ two Thouless pumping processes, one we
call isotropic Thouless process and the other we call
anisotropic Thouless process, where we relate three dif-
ferent quantities; a) the complex phase factor of 〈Û2〉
evaluated under full periodic boundary condition, b) the
nested Wilson quadrupole moment12 Qωxy = 2pωxp

ω
y ob-

tained from the nested Wilson loop, and c) the corner
charge qc localized at one corner under full open bound-
ary condition. We note that the previous study12 found
numerically that b) and c) are not equivalent in the ab-
sence of the quantizing symmetries.

For the isotropic Thouless pumping case, we change
the parameters in Eq. (21) according to





γx = γy = 1− 0.6 sin(θ)

λx = λy = 1 + 0.6 sin(θ)

δ = 0.6 cos(θ)

, (27)

and for the anisotropic Thouless pumping process, we
change the parameters according to




γx = 1− 0.6 sin(θ), γy = 1− 0.5 sin(θ)

λx = 1 + 0.6 sin(θ), λy = 1 + 0.5 sin(θ)

δ = 0.6 cos(θ)

, (28)

where θ ∈ [0, 2π] is the pumping parameter. In FIG. 7,
we have plotted the three fundamentally different physi-
cal quantities for (a) isotropic and (b) anisotropic Thou-
less pumping processes. From the plots, we see almost
no discernible difference between the complex phase fac-
tor of 〈Û2〉 and the corner charge qc, indicating that
the many-body order parameter faithfully represents the
physical quadrupole moment during two Thouless pro-
cesses. Since the edge localized polarizations pedgex and
pedgey are equal to corner charge qc during the Thouless

processes (data not shown), we see that Û2 does pre-
cisely measure the physical quadrupole moment. We also
note that the Wilson loop quadrupole moment Qωxy dif-
fers from the two in general and agrees with the two only
at quantized values.
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2. Topological Quadrupole Insulator with π/2-flux per
Plaquette

In this section, we present an example where the bulk
quadrupole moment is not the only source for the corner
charge, hence providing a nontrivial test of whether our
many-body order parameter using Û2 reproduce the ex-
act numerical value of the bulk (physical) quadrupole mo-
ment when the quantizing symmetries are lost.29 Let us
begin with a topological quadrupole insulator with π/2-
flux on every plaquette, which is described in FIG. 8 (a).

Because of the mirror symmetries (or Ĉ4 symmetry in the
isotropic case), when the inter-site hoping strengths are
larger than intra-site hopping strengths, the half-filled
ground state is in topological quadrupole insulator phase
where both the nested Wilson loop quadrupole moment
and the expectation value of many-body order parame-
ter Û2 give quadrupole moment 0.5. We now introduce

onsite potential terms δ
∑

r

(
c†r,1cr,1 + c†r,2cr,2− c†r,3cr,3−

c†r,4cr,4
)

which explicitly breaks mirror symmetries (and

Ĉ4 symmetry) but preserving Ĉ2 symmetry.
Finally, we consider the following Thouless pumping

process:




γx = γy = 1− 0.6 sin(θ)

λx = λy = 1 + 0.6 sin(θ)

δ = 0.6 cos(θ)

, (29)

where θ ∈ [0, 2π) is the pumping parameter. In FIG. 8
(b), we show how (i) the many-body order parameter in

terms of Û2 under periodic boundary condition, (ii) the

many-body order parameter in terms of Û2 under open
boundary condition, (iii) physical quadrupole moment
Qph
xy by assuming the bulk boundary correspondences

Eq (26), i.e., pedgex +pedgey −qc, and (iv) the corner charge
qc change during the Thouless pumping process. Note
that in this model (iii), the non zero physical quadrupole
moment, is not the only source for (iv), the corner charge.

Apparent from the plot, the many-body order param-
eter using Û2 with respect to the periodic boundary con-
dition does exactly reproduce the precise numerical value
of the physical quadrupole moment during the Thou-
less pumping process. Furthermore, the many-body or-
der parameter with respect to the open boundary con-
dition seems to reproduce the corner charge exactly. To
see whether the many-body order parameter using Û2

with respect to the open boundary condition indeed re-
produce the corner charge, in FIG. 8 (c) we computed
the system size dependence at θ = π/4 in Eq. (29) at
which the difference between the corner charge and the
bulk quadrupole moment becomes large. As we can see
from the plot, the many-body order parameter using
Û2 with respect to the open boundary condition indeed
approaches to the corner charge in the thermodynamic
limit. We plan to discuss how 〈Û2〉 with respect to the
states under open boundary condition measures the cor-
ner charge using the effective field theory in the future

work.30

VI. CONCLUSIONS

We have proposed many-body order parameters which
measure quantized bulk multipoles in crystalline many-
body quantum states. We provided numerical illustra-
tion of our order parameters by presenting explicit com-
putations in toy models and confirmed that if the multi-
pole moment can be defined via the nested Wilson loop,
they can measure the bulk multipole moments even when
there does not exist symmetries quantizing the bulk mul-
tipole moments. Using analytical arguments, we also
have demonstrated that they capture the corner charges
originating from the bulk multipole moments. Based on
the reasonings of the effective field theories, we have pro-
vided an extension of our formulas, which work even for
the case of open boundary condition.

Now let us discuss a few non-trivial tests of our for-
mula. First, we confirmed that our many-body order
parameter can diagnose the non-trivial topology of a
bosonic higher-order topological insulator with corner
spin at an exactly soluble point,31,32 which is explained
in Appendix B. Second, we also have applied our or-
der parameter Eq. (2) to the “edge-localized polarization
model”12 which supports quantized corner charges qc =
±1/2 yet having vanishing quadrupole moment (with
suitable perturbations). In this case as well, our order
parameter correctly captures the vanishing quadrupole
moment despite of the nonzero corner charges coming
from edge-alone polarizations. We would also like to
mention the application of our formula to the amor-
phous systems33 and sonic crystals:34 in both cases the
many-body order parameter Eq. (2) can diagnose the
quadrupole moments correctly and reproduce the phase
diagrams.

Next we comment on the applicability of our formula
Eq. (2) for the cases without a gap in the Wilson loop
spectrum, e.g., some C4-symmetric models in Ref. 20 and
models in Ref. 35. Because the Wannier band is gapless
in these cases, quadrupole moment cannot be defined
within the nested Wilson loop scheme. Given that we
have constructed the many-body order parameters for
the multipoles originating from the nested Wilson loop
topology, we expect that 〈Û2〉 neither detect the higher-
order topology of these models nor give any sensible val-
ues. Indeed, we find that our formula Eq. (2) does not
show stable values against the continuous change in pa-
rameters for these cases as demonstrated in Appndix E.
This is in fact consistent with the observation made in
Ref. 35, where some anomalous behavior of 〈Û2〉 on the
C4-symmetric models was discussed. We would like to
mention that the coordinate dependence of our many-
body order parameter, which is extensively discussed in
Appendix D 2 b, is again consistent with the observation
made in Ref. 35 regarding the “choice of coordinate” in
Û2.
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System size dependence at  θ = π /4

FIG. 8. (a) Tight binding model of topological quadrupole insulator with π/2-flux per unit cell. The tight binding hopping
parameters are shown in the figure with arrows which specify the direction of the hopping. (b) Comparison between several

different physical quantities, the many-body order parameter Qxy using 〈Û2〉 with respect to periodic and open boundary
condition, the physical quadrupole moment via the bulk-boundary correspondence Eq. (26) pedge

x +pedge
y −qc, and corner charge

qc during the Thouless pumping Eq. (29). We see a remarkable agreement between the many-body order parameter Qxy using

Û2 under periodic boundary condition and the physical quadrupole moment. The many-body order parameter Qxy using Û2

under open boundary condition agrees with the corner charge qc up to finite size error. (c) The system size dependence of the

many-body order parameter Qxy using Û2 under open boundary condition at θ = π/4 in Eq. (29) and the convergence to the
corner charge in the thermodynamic limit.

When the symmetries quantizing the multipole mo-
ment are lost, the bulk multipole moment can take ar-
bitrary value and so does the corner charge. However,
If we assume the strongest form of the bulk-boundary
correspondence,11,12,27,28 for bulk quadrupole moment
Qph
xy = pedgex + pedgey − qc (mod 1) should hold, where

pedgex and pedgey are the edge localized polarization along
x- and y-directions and qc is the corner charge. We ex-
pect similar relations to hold for octupole and higher
multipole moments. This form of bulk-boundary cor-
respondence is especially insensitive to dressing polariza-
tion chains along open boundaries. We tested whether
our many-body order parameter does satisfy the bulk-
boundary correspondence in the absence of quantizing
symmetries. While the nested Wilson quadrupole mo-
ment Qωxy fails to capture the precise numeric value of

the physical quadrupole moment Qph
xy, our many-body

order parameter Qxy in Eq. (2) under periodic boundary
condition agrees with Qph

xy during the Thouless processes.

(Note again that Qωxy agrees with Qph
xy when the quantiz-

ing symmetries present and this is consistent with the
references11,12 that the nested Wilson quadrupole mo-
ment serves as the topological band index of quantized
quadrupole moment.) Therefore, we confirm that Qxy
under periodic boundary condition does reproduce the
physical quadrupole moment. Interestingly, Qxy under
open boundary condition reproduces the corner charge,
where the latter is originated from not only the physi-
cal quadrupole moment but also edge localized polariza-
tions.30

In conclusion, we find that, when applied to the mod-
els with the Wilson loop gap and thus with the well-
defined quadrupole moments, our many-body order pa-

rameters can measure the bulk multipole moments faith-
fully when quantizing symmetries are present or lost as
extensively tested in various models.12,33,34,36 To “prove”
our proposal for the multipoles, there are several impor-
tant questions to be addressed in the future. First, the
detailed understanding of our many-body order parame-
ters for the models without the Wannier gap is desirable.
Second, the precise relation of our order parameter with
nested Wilson loop indices will deepen our understand-
ings of electric multipoles. Lastly, our order parameters,
when compared with Resta’s original proposal,5 lack the
periodicity in coordinates. We plan to discuss its impli-
cation in the future work.
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Appendix A: Details on Symmetry Properties of Û2

In this section, we present the details of the symme-
try actions on the many-body order operator Û2 Eq. (2).

This highlights under what conditions Û2 is well-defined
and yields a quantized value when evaluated with respect
to a many-body state. In the following, we discuss the
action of the crystalline Ĉ4 symmetry on the many-body
order parameter and the large translation symmetry.

1. Large Translation Symmetry

Here we provide the details of the large coordinate
translation operation x→ x+Lx (with Lx being the sys-
tem size along x-direction) on the many-body quadrupo-
lar order parameter Eq. (2). As noted in the main text,
we find

x→ x+ Lx : Û2 → Û2Û1;y (A1)

where Û1;y is the many-body measure for the polarization
along y direction. Now the key step that we used in the
main text was

〈Û2〉 = 〈Û2〉〈Û1;y〉+O
( ε0
Egap

)
,

= 〈Û2〉〈Û1;y〉+O
( ξ
a0

)
, (A2)

where ε0 and a0 are the unit energy and unit length scale
which make the expressions dimensionless. From the first
line to the second line, we used the fact that 1

Egap
∝ ξ

with ξ being the correlation length. When the correla-
tion length becomes an atomic scale ξ → 0+ (ultra-short
correlated), i.e., the ideal atomic insulator limit, we see

that 〈Û2〉 = 〈Û2〉〈Û1;y〉 which enforces 〈Û1;y〉 = 1.
The above equations can be derived from the following

observation:

Û1;y|GS〉 = 〈Û1;y〉|GS〉+O
( ε0
Egap

)
, (A3)

which is a slight rewriting of Eq. (37) in Ref. [22]. The

same results hold for Û1;x.

2. Ĉ4 Symmetry and Mirror Symmetries

With the discussion above, we now discuss the action of
Ĉ4 on Û2 for the domainM = (0, Lx]×(0, Ly]. Obviously

the system respects the Ĉ4 symmetry only when Lx =
Ly = L. Furthermore, the domain M = (0, L]× (0, L] is

transformed intoM′ = [−L, 0)× (0, L] under Ĉ4. Hence,
we find that

Ĉ4 : Û2 → Û∗2 Û1;x. (A4)

Since, in the ideal limit ξ → 0+, 〈Û∗2 Û1;x〉 = 〈Û∗2 〉〈Û1;x〉 =

〈Û∗2 〉 (with vanishing polarization) and thus 〈Û2〉 = 〈Û∗2 〉,
this enforces Qxy = −Qxy which is consistent with the
previous work.11 In fact, even for the mirror symmetries
M̂x × M̂y discussed in the main text, extra factors of

Û1;µ=x,y’s do show up, because of the transformations on
the domain M, which is to be included. Nevertheless,
the conclusion made in the main text remains the same,
i.e., Ĉ4 or mirrors flip the sign of Qxy, which can be
explicitly seen in our many-body order parameters in an
appropriate limit.

Appendix B: Exactly-Solvable Bosonic Higher-Order
Topological Insulator

Here we prove that our many-body order parame-
ter can diagnose the bosonic higher-order topological
insulator31 at the exactly-solvable points, i.e., where the
correlation length is the size of the unit cell. The model
that we study here has four spin- 12 ’s per unit cell and it
consists of the two-spin interactions respecting SU(2).

H = J
∑

P

∑

〈i,j〉∈P
Ŝi · Ŝj + λ

∑

R

∑

〈i,j〉∈R
Ŝi · Ŝj (B1)

Here J parametrizes the strength of the spin- 12 ’s if the
two spins i, j belong to the intersite plaquette and λ
parametrizes the strength of the spin-12 ’s if the two spins
i, j belong to the intrasite plaquette. Obviously Sz is
conserved and hence we have U(1) symmetry.

If λ = 0 or J = 0, the model is exactly solvable and
the ground state can be explicitly written out.31 At these
limits, the ground state is the simple product of the wave-
functions per each four spin- 12 ’s connected by either by
J or λ:

|P 〉 =
1

2
√

2

[
| ↑↑↓↓〉+ | ↓↑↑↓〉+ | ↑↓↓↑〉

]

− 1

2

[
| ↑↓↑↓〉+ | ↓↑↓↑〉

]
. (B2)

The many-body order parameter can be constructed as
following:

Û2 = exp
[ 2πi

LxLy

∑

r

xy(Ŝzr − S̄)
]
, (B3)

where S̄ = 2 is introduced. This S̄ is the average back-
ground spin density, which we subtract out. Using the
exact ground states, we obtain that the topological state
has (−1) = 〈Û2〉 (for J 6= 0 and λ = 0) and (+1) = 〈Û2〉
(for J = 0 and λ 6= 0).

Appendix C: Details on Tight-Binding Models

In this section, we summarize the physical properties
and the symmetries of the tight-binding models for the
topological insulator appearing in the main text.
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1. Su-Schrieffer-Hegger chain

A minimal model for one-dimensional crystalline
topological insulator is the Su-Schrieffer-Hegger (SSH)
chain26 which is a tight-binding model having alternat-
ing “weak” and “strong” hopping terms:

HSSH =
∑

r

[(
γc†r,1cr,2 + λc†r,2cr+1,1 + h.c.

)

+ δ
(
c†r,1cr,1 − c†r,2cr,2

)]
, (C1)

where c†r,α=1,2 is the electron creation operator at site
r orbital α, γ and λ are inter- and intra-site hopping
strengths, and δ is the onsite potential strength. Under
the periodic boundary condition, it is convenient to work
with the Bloch basis:

c†k,α =
1√
L

L∑

r=1

e−ikrc†r,α, (C2)

where k = 2πn
L for some n ∈ Z, α = 1, 2 is the orbital

index, and L is the system size. ck,α can be defined anal-
ogously. The block Hamiltonian in terms of the Bloch
state is given by

hSSH(k) =

(
δ γ + λeik

γ + λe−ik −δ

)
. (C3)

2. Topological Quadrupole insulator

A minimal model for topological quadrupole insula-
tor,12 is given by

H =
∑

r

[
γx
(
c†r,1cr,3 + c†r,2cr,4 + h.c.

)

+ γy
(
c†r,1cr,4 − c†r,2cr,3 + h.c.

)

+ λx
(
c†r,1cr+x̂,3 + c†r,4cr+x̂,2 + h.c.

)

+ λy
(
c†r,1cr+ŷ,4 − c†r,3cr+ŷ,2 + h.c.

)

+ δ
(
c†r,1cr,1 + c†r,2cr,2 − c†r,3cr,3 − c†r,4cr,4

)]
,

(C4)

where c†r,α and cr,α are the fermion creation and anni-
hilation operator at site r = (x, y) and α = 1, 2, 3, 4 is
the orbital index. If we impose the periodic boundary
condition along x- and y-direction then it is convenient
to work with the Bloch (momentum) basis

c†k,α =
1√
LxLy

Lx∑

x=1

Ly∑

y=1

e−ik·rc†r,α,

where k = (kx, ky) = (2πnx
Lx

,
2πny
Ly

) for some nx, ny ∈ Z is

the Bloch momentum, α = 1, 2, 3, 4 is the orbital index,
and Lx and Ly is the system size along x- and y-direction.

ck,α is defined analogously. Using the Bloch basis, the
Hamiltonian Eq. (C4) takes the block diagonal form

h(k) =
(
γx + λx cos(kx)

)
Γ4 + λx sin(kx)Γ3

+
(
γy + λy cos(ky)

)
Γ2 + λy sin(ky)Γ1 + δΓ0,

(C5)

where Γ0 = τ3 ⊗ τ0, Γi = −τ2 ⊗ τi for i = 1, 2, 3, Γ4 =
τ1 ⊗ τ0, where τ0 is the 2 × 2 identity matrix and τi is
the ith Pauli matrix. When δ = 0, the physical energy
band spectrum is gapless only when |γx/λx| = 1 and
|γy/λy| = 1 while the Wannier gap closes when |γx/λx| =
1 or |γy/λy| = 1. The ground state at half-filling becomes
a topological quadrupole insulator when δ = 0, |γx/λx| <
1, and |γy/λy| < 1.

a. Symmetries of the tight-binding model

When δ = 0 in Eq. (C4), there exists various symme-
tries which quantize the quadrupole moment qxy = 0, 1/2
mod 1. In the following, we summarize the symmetries
of Eq. (C4) in the case of δ = 0.

b. Mirror symmetries

With respect to the Bloch basis, x- and y-mirror sym-
metry can be written as

M̂x = iτ1 ⊗ τ3 and M̂y = iτ1 ⊗ τ1, (C6)

and the block Hamiltonian Eq. (C5) transforms as

M̂xh(kx, ky)M̂−1x = h(−kx, ky) and

M̂yh(kx, ky)M̂−1y = h(kx,−ky). (C7)

Because of the π flux threaded in each plaquette, two
mirror symmetries do not commute but anticommute:
{M̂x, M̂y} = 0.

c. Ĉ4 symmetry

When λx = λy and γx = γy in addition to δ = 0, there

exists Ĉ4 symmetry which also quantizes qxy. With re-

spect to the Bloch basis, the Ĉ4 symmetry can be repre-
sented as

r̂4 =

(
0 τ0
−iτ2 0

)
(C8)

and also

r̂4h(kx, ky)r̂−14 = h(ky,−kx) (C9)

holds.
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d. Ĉ2 symmetry

Even when δ 6= 0, there exists Ĉ2 symmetry which
quantizes the polarization in x- and y-direction. So when
|δ| is small compared to other parameters in Eq. (C5),
both x and y polarization are 0 hence the quadrupole
moment qxy is well-defined although it is no-longer quan-

tized. With respect to the Bloch basis, the Ĉ2 operator
can be represented as

r̂2 = −iτ0 ⊗ τ2, (C10)

and also

r̂2h(k)r̂−12 = h(−k) (C11)

holds.

e. Symmetry breaking perturbations

Here, we present how onsite symmetry breaking per-
turbations affect the bulk quadrupole moment defined as
a complex phase of 〈Û2〉 when perturbing away from a
topological quadrupole insulator point. In adding per-
turbations, we still want to keep Ĉ2 symmetry as this
would enforce the quantization of polarization in x- and
y-direction, i.e., total polarization remains zero when the
perturbation is small.

Starting from the Ĉ2 operator Eq. (C10), one can clas-
sify 4 × 4 matrices that commute with r̂2. The general
form of such matrix can be expressed as

Hpert =

(
arτ0 + crτ2 ecτ0 + fcτ2
e∗cτ0 + f∗c τ2 brτ0 + drτ2

)
, (C12)

where ar, br, cr, dr are real parameters, ec and fc are com-
plex parameters, and asterisk denotes the complex conju-
gation. One can immediately see that δ term in Eq. (C5)
is reproduced when ar = −br = δ and set all the other
coefficients to zero in Eq. (C12). Let us also note that
when (ar = br = 0, cr = −dr, ec = −ifc ∈ R), Eq. (C12)
preserves two mirror symmetries and when (ar = br = 0,

cr = dr, ec = −ifc ∈ R), Eq. (C12) preserves Ĉ4 symme-
try.

One can check numerically that when the perturbation
Eq. (C12) is onsite, only nonzero ar and br do change
the quadrupole moment whereas other terms does not.
When ar and br are nonzero, we can always add an iden-
tity matrix with some coefficient so that the perturbation
reduces to the δ term in Eq. (C5). Hence Eq. (C5) is quite
generic.

Appendix D: Miscellaneous Observations on
Many-Body Order Parameters

Here we present several miscellaneous observations on
many-body order parameters. This includes the scaling
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FIG. 9. Scaling of many-body order parameters |〈Ûn=1,2〉|
versus the linear system size L in the case of (a) SSH chain
Eq. (C3) with (γ, λ, δ) = (1.0, 2.0, 0.1) and (b) topologi-
cal quadrupole insulator Eq. (C5) with (γx, γy, λx, λy, δ) =

(1.0, 1.0, 2.0, 2.0, 0.1). (a) The modulus of 〈Û1〉 converges to
1 as L → ∞, as expected in the case of a gapped insulator.
(b) The modulus of 〈Û2〉 decays exponentially in L even in
the case of a gapped insulator.

behavior of |〈Ûa〉| and the dependence on the coordinate
re-parametrizations. To be concrete, we concentrate on
the polarization Û1 and quadrupolar moment Û2.

1. Scaling of |〈Ûa〉|

a. Scaling of |〈Û1〉|

Here we summarize the known scaling forms of the
modulus of the expectation value of Û1, which is intro-
duced by Resta [5]. For an one-dimensional system with
system size L, the Resta’s operator is given by

Û1 = exp

(
2πi

L

L∑

x=1

xn̂x

)
, (D1)

where n̂x =
∑
α c
†
x,αcx,α is the occupation number oper-

ator at site x with α being the orbital index and we label
the position at site x to x = 1, 2, · · · , L. Eq. (D1) is well-
defined in the sense that upon re-labeling a position x by
x + L, Û1 remains invariant. Moreover, in the case of a
band insulator, the expectation value of Û1 is related to
the Zak phase by (up to an additional minus sign which
we address in detail below)

1

2π
Im
(

log〈Û1〉
)

=

∫

BZ

dk tr
(
Ak
)

+O
(
1/L

)
mod 1,

(D2)
where the expectation value in the LHS is with respect
to the many-body ground state, the integral in the RHS
is the Zak phase4 with BZ denotes the one dimensional
Brillouin Zone, Ak is the Berry connection, and O(1/L)
term vanishes as the system size L → ∞. This provides
a proof that the phase of the expectation value of Û1

detects the polarization, as the polarization is equal to
the Zak phase in a proper unit.

Although the complex phase of 〈Û1〉 gives the electric
polarization, its modulus also captures invaluable infor-
mation, e.g., the localization length of the ground state.6
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In FIG. 9, we provide the scaling of (a) |〈Û1〉| for the
SSH chain Eq. (C3) with (γ, λ, δ) = (1.0, 2.0, 0.1) versus
the linear system size L. In this case, the bulk gap is
finite. As expected, when the linear system size L→∞,
|〈Û1〉| → 1 in the case of the SSH chain. In general, when
the bulk gap is nonzero, the modulus of the expectation
value |〈U1〉| converges to a positive number as L → ∞.
On the other hand, at critical point |〈U1〉| vanishes as
L → ∞ and it is conjectured to obey the following scal-
ing relation:37

|〈Û1〉| ∼
1

Lβ
, (D3)

where β > 0 is the exponent characterizing the decay in
the thermodynamic limit.

b. Scaling of |〈Û2〉|

Here we perform the scaling study of |〈Û2〉| with re-

spect to the length and the Wannier gap. Recall that Û2

is

Û2 = exp

(
2πi

LxLy

Lx∑

x=1

Ly∑

y=1

xyn̂(x,y)

)
, (D4)

where n̂(x,y) is the occupation number operator at site
(x, y) and we label the x- (y-)position of site (x, y) as
x = 1, 2, · · · , Lx (y = 1, 2, · · · , Ly).

First of all, at least within the finite-size calculation
up to L ∼ 20 and within the toy model, we found that,
unlike |〈Û1〉|, |〈Û2〉| seems to exhibit the exponential de-
cay in L = Lx = Ly as shown in FIG. 9 (b), even for the
insulating ground state (here the Wannier bands are also
gapped).

|〈Û2〉| ∼ e−αL, (D5)

where α > 0 is an exponent characterizing the exponen-
tial decay. However, to conclude that this scaling behavior
is generic for any insulator, we need more detailed and
thorough calculations on various models. Keeping this in
mind, at this moment we would like to modestly men-
tion that the scaling behaviors of the modulus of 〈Û2〉 is

quite different from those of Û1. Despite of exponentially
vanishing modulus for the models that we consider, the
complex phases of the expectation value can be reliably
measured for the typical system sizes that we worked on,
e.g., L ∼ 10 − 20. We also have checked that the Dirac
semimetal state, which has a zero energy gap, also shows
an exponential decay (with different exponent) in system
size L.

Second, we perform the comparative studies of the
modulus with the Wannier gap. For this we use the model
of the topological quadrupole insulator Eq. (C5) with
δ = 0. Here the topological-to-trivial quadrupole insula-
tor transition is associated with the Wannier gap closing
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|hÛ2i|

⇤
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

�
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

�Wannier
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

log
⇥
|hÛ2i|
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FIG. 10. Comparison between the Wannier gap and the mod-
ulus of |〈Û2〉| for topological quadrupole insulator Eq. (C4).
In (a) and (b) we fix (γx, γy, λy, λx, λy) = (0.75, 1.0, 1.0, 1.0)
and tune δ ∈ [−0.2, 0.2]. When δ = 0 (a) the Wannier gap

closes and (b) |〈Û2〉| is the smallest. In (c) and (d) we fix
(γx, λx, λy, δ) = (0.75, 1.0, 1.0, 0.0) and tune γy ∈ [0.75, 1.25].
(c) The Wannier gap associated with the Wannier band νx(ky)

closes at γy = 1.0 and (d) |〈Û2〉| is the smallest around
γy = 1.0. In all cases, the Wannier gap is well-defined in

the thermodynamic limit while |〈Û2〉| vanishes in the thermo-
dynamic limit.

transition while the bulk gap may not close at the transi-
tion point.12 To see how 〈Û2〉 detects such quantum phase

transition, we compute |〈Û2〉| across the phase transi-

tion. Due to the quantization by symmetries, 〈Û2〉 is a
real number and changes its sign across the phase tran-
sition. So precisely at the transition point, 〈Û2〉 vanishes
up to the correction from finite-size effect. In FIG. 10, we
present two scenarios of Wannier-gap closing transition,
one by tuning δ and the other by tuning λy. In FIG. 10
(a) and (b), we fix (γx, γy, λx, λy) = (0.75, 1.0, 1.0, 1.0)
and tune δ ∈ [−0.2, 0.2]. When δ = 0, Wannier gap

closes and |〈Û2〉| becomes the smallest. In FIG. 10 (c)
and (d), we fix (γx, λx, λy, δ) = (0.75, 1.0, 1.0, 0.0) and
tune γy ∈ [0.75, 1.25]. When γy < 1, the half-filled
ground state is the topological quadrupole insulator and
when γy > 1, the half-filled ground state is trivial. In
FIG. 10 (c), we compute the Wannier gap associated with
the Wannier bands νx(ky). We see that the minimum of

|〈Û2〉| occurs around the phase transition point γy = 1.0.

2. Generalized Many-Body Operators

a. Many-Body Opertors acting on Subsystem

In the main text, we generalize our many-body oper-
ators Eq. (19) and Eq. (20) which act only on the sub-
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FIG. 11. Many-body order parameter based on V̂2(l) ap-
plied to Eq. (C4) for various l’s with (γx, λx = λy, δ) =
(0.5, 1.0, 0.0) while changing γy, which is the same as the cut
used in FIG. 4 (c). The curve is identical for l = 19, 15, and
11, showing that even when l is an order of L/2, the many-

body order parameter based on V̂2(l) correctly reproduce the
phase diagram along the cut.

system, based on the reasoning from the effective field
theory. Here, we examine the validity of such operators
by focusing on quadrupole case with quantizing symme-
tries remains intact. Specifically, in FIG. 11, we test
whether the operator V̂2(l) Eq. (20) can reproduce the
phase diagram presented in FIG. 4 (a). As can be seen
in the figure, up to l being an order of the half of the

full system size, the many-body order parameter based
on V̂2(l) correctly reproduce the phase diagram. Further-
more, even when l = 5, which is an order of 1/4 of the full
system size, the many-body operator fails only near the
phase transition (Wannier gap closing point, which is at
γy = 1.0), and works perfectly well in the other regimes.

b. Dependence on Coordinate Parameterization

As outlined in the main text, our many-body operators
as well as the original Resta’s operator can be general-
ized by acting only on subsystem and/or change in the
boundary conditions. In this subsection, we would like
to discuss the dependence on the coordinate parametriza-
tion on the many-body operators. To be precise, let us
consider the following many-body operator which fully
takes into account both the partial action and the coor-
dinate parametrization issue.

V̂1(l, d) =

{
exp

[
2πi
l

∑
x(x− d)(n̂x − n)

]
for x ∈ [1, l]

1 otherwise,

(D6)

where we consider a finite system with size L, l > 0 is
an integer smaller than or equal to L, atomic sites are
labeled by x ∈ {1, 2, · · · , L}, and n is the average filling
per site. Similarly for quadrupole moment,

V̂2(l, d) =

{
exp

[
2πi
l2

∑
r=(x,y)(x− d)(y − d)(n̂r − n)

]
for r ∈ [1, l]× [1, l]

1 otherwise
, (D7)

where the whole system size is given by (L,L), l > 0
is an integer less than or equal to L, sites are labeled
by x, y ∈ {1, 2, · · · , L}, and n denotes the average fill-
ing per site. Here, we present the isotropic case, but
anisotropic as well as generalization to higher-order mo-
ments is immediate. Note that these are almost the same
as the formula Eq. (19) and Eq. (20) in the main text,
but with an extra phase factors ∝ exp(2πin̄), which is
the contribution from background positive charges. Here
d parametrizes the dependence on the “origin” of the co-
ordinate systems.

Now we present numerical evaluation of V̂1(l, d)

Eq. (D6) and V̂2(l, d) Eq. (D7) in the case of SSH chain
Eq. (C3) and topological quadrupole insulator Eq. (C5).
Here, l denotes the linear system size within which the
operator Vn(l, d) acts nontrivially and d tunes the choice
of the origin of our system. In FIG. 12, we present the
results for δ = 0 and δ = 0.1, where the former has the
quantization symmetries and the latter does not. We
set (γ, λ) = (1.0, 2.0) for FIG. 12 (a) and (c), and set

(γx, γy, λx, λy) = (1.0, 1.0, 2.0, 2.0) for FIG. 12 (b) and
(d). Hence for FIG. 12 (a) (FIG. 12 (b)), the ground state
has topologically nontrivial polarization (quadrupole mo-
ment).

As expected, when l = L, 〈V̂1(l = L, d)〉, which is the
original Resta’s operator, is independent of d due to the
charge conservation in the ground state. However, this
is no longer true for 〈V̂1(l < L, d)〉 and 〈V̂2(l, d)〉 for all l,
which is summarized in FIG. 12 (a) and (b). As a result,

for some choices of l and d, the complex phase of 〈V̂n(l, d)〉
fails in capturing the ground state topological multipole
moments. When δ = 0.1, quantization of 〈V̂n(l, d)〉 no
longer exists and its complex phase can take arbitrary
value, which can be seen in FIG. 12 (c) and (d).

This behavior can be easily explained by considering
the ultra-short correlated states. For the illustrational
purpose, we take the topological and trivial ground states
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of the polarization chain.

|GStriv〉 =
∏

n∈Z
|n〉, |GStop〉 =

∏

n∈Z
|n+

1

2
〉. (D8)

For these ground states, we see that
〈GStriv|V̂1(l, l2 )|GStriv〉 = 〈GStop|V̂1(l, l2 )|GStop〉 = 1,
signaling that the two states cannot be distinguished
if d = l

2 . Similar discussion can be made for the
quadrupolar insulators, too, and this explains the lumps
appearing in the numerical data Fig. 12.

One may worry about “this coordinate choice depen-
dence on the value of 〈Û2〉”35 since the original Resta’s
formula does not have such behaviors. Though such in-
variance is certainly desirable, we would like to remark
that, in principle, the independence of the coordinate
choice is not a requirement for the order parameters
of the multipoles. For instance, as far as the coordi-
nate system is chosen as we prescribed, i.e., (x, y) ∈
(0, Lx]× (0, Ly], our formula works for several non-trivial
cases as described in our main text and for e.g., amor-
phous systems33 and sonic systems.34 In practice, any co-
ordinate choice except a few very particular coordinate
choice (as discussed in this supplemental section) works
equally well as the choice (x, y) ∈ (0, Lx]×(0, Ly] we used
in the main text.

Appendix E: Application of Many-Body Order
Parameter Û2 on Generic C4-Symmetric Insulators

Recently, a new class of insulators in two dimen-
sions, called Cn-symmetric insulators, are introduced20

in which a fractional charges can be localized in a corner
when the system is subject to full open boundary condi-
tion, similar to quadrupole insulators. Cn-symmetric in-
sulators can be understood in terms of ”filling anomaly”
which counts the number of excessive or deficit of elec-
trons between electrons at constant filling and electrons
satisfying the charge neutrality.20 As a result of a nonzero
filling anomaly, fractional charges are localized in all cor-
ners in a Cn respecting manner only when the bulk po-
larization becomes zero. To better understand our many-
body operator Û2 and its relation to nested Wilson loop,
let us focus on C4-symmetric cases with zero polariza-

tions in Ref. 20. We consider two models – 1) h
(4)
1b +h

(4)
2c ,

a model with average filling 3/8 and corner charge 1/4,

and 2) h
(4)
2b , a model with 1/2 filling and corner charge

1/2, – where we use the notation introduced in Ref. 20.
For these states, because they do not posses the gap in
the Wannier bands and so do not have the quadrupole or-
der (the nested Wilson loop indices require non-vanishing
Wannier gaps), we expect the many-body order param-

eter, i.e., the phase value Qxy of Û2, to exhibit unstable
continuum values instead of quantized values matching
the corner charge. We explicitly confirm these from the
calculations below.

1. h
(4)
1b + h

(4)
2c model

h
(4)
1b is a four-band model which has ”corner charge” e/4 at 1/4 filling. h

(4)
2c is also a four-band model which has 0

”corer charge” at 1/2 filling. Since both h
(4)
1b and h

(4)
2c have polarization P = ( e2 ,

e
2 ), we stack them together so that

the net polarization becomes 0.20 Following Ref. 20, we turn on onsite hopping terms between orbitals of h
(4)
1b and

h
(4)
2c . The Bloch Hamiltonian is given by,

h
(4)
1/4(k) =

(
h
(4)
1b (k) γc
γ†c h

(4)
2c (k),

)
(E1)

where

h
(4)
1b (k) =




0 t+ eikx 0 t+ eiky

t+ e−ikx 0 t+ eiky 0
0 t+ e−iky 0 t+ e−ikx

t+ e−iky 0 t+ eikx 0


 , (E2)

h
(4)
2c (k) =




0 0 t+ 1.5eikx 0
0 0 0 t+ 1.5eiky

t+ 1.5e−ikx 0 0 0
0 t+ 1.5e−iky 0 0


 , (E3)
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FIG. 12. The complex phase of 〈V̂1(l, d)〉 and 〈V̂2(l, d)〉 for various l’s as a function of d. (a) and (c) correspond to the SSH chain
Eq. (C3) where we set (γ, λ) = (1.0, 2.0) and (c) δ = 0 and (d) δ = 0.1. (b) and (d) correspond to the topological quadrupole
insulator Eq. (C5) where we set (γx, γy, λx, λy) = (1.0, 1.0, 2.0, 2.0) and (c) δ = 0 and (d) δ = 0.1. While the ground state of

(a) and (b) are topologically nontrivial, for some l and d, the complex phase of 〈V̂n(l, d)〉 becomes trivial. In (c) and (d), as a
function of d, we see “lumps”.

and

γc =



t t 0 0
0 t t 0
0 0 t t
t 0 0 t


 . (E4)

Under the full open boundary condition, Eq. (E1) at 3/8 filling have quantized corner charge 3|e|/4 localized at
each corner.20 While the corner charge remains quantized and localized when tuning the hopping parameter t from 0
to 0.25, the expectation value of Û2 is not, as shown in FIG. 13 (a) where strong even-odd effect is also shown. The
Wannier band is shown in FIG. 13 (b), where two degenerate and one non-degenerate flat bands are shown. This
indicates that Eq. (E1) at 3/8 filling does not have a stable quadrupole moment in the bulk, which is well reflected in

our many-body operator Û2. Note also that the Wannier gap closes, so that the nested Wilson loop indices are not
well defined,12 which is consistent with the unstable behavior of Û2 with respect to the ground state of Eq. (E1) at
3/8 filling.

2. h
(4)
2b model

h
(4)
2b is a four-band model which has corner charge e/2 and vanishing polarization P = 0 at 1/2 filling. The Bloch

Hamiltonian is given by

h
(4)
1/2(k) ≡ h(4)2b (k) =




δ t ei(kx+ky) t
t −δ t ei(ky−kx)

e−i(kx+ky) t δ t
t ei(kx−ky) t −δ


 , (E5)

where t is the intra-site hopping parameter and δ is the strength of an onsite C4-symmetry breaking term. When
0 < t < 1 and δ = 0, the ground state at half-filling is a C4-symmetric insulator having zero polarization as well as
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doubly degenerate

FIG. 13. (a) 1
2π

Im log〈Û2〉 as a function of hopping parameter t in Eq. (E1) with system sizes L = 16 and L = 17. For L = 16,
we take into account additional (−1) factor coming from background charge distribution. Note that both L = 16 and L = 17
show dependency in t while the fractional corner charge is independent of t ∈ [0, 0.25], hence indicating an unstable nature of

C4-insulator with respect to Û2. (b) The Wannier band νx(ky) of the ground state of Eq. (E1) at 3/8 filling. We have one
doubly degenerate and one non-degenerate flat bands so that in total zero net polarization.
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FIG. 14. (a) 1
2π

Im log〈Û2〉 as a function of onsite C4-breaking parameter δ in Eq. (E5) with t = 0.3. Because of finite δ,
corner charge changes smoothly from a quantized value 0.5. Note that there is a mismatch between the corner charge and
1

2π
Im log〈Û2〉, showing an unstable nature of C4-symmetric insulator with respect to Û2. (b) The Wannier band νx(ky) of the

ground state of Eq. (E5) with t = 0.3 and δ = 0.3 and at 1/2 filling. The Wannier band becomes gapless at ky = 0, π.

1/2 corner charge localized at each corner. Moreover, 1
2π Im log〈Û2〉 equals 0.5 (0) when L is odd (even), as in the case

of topological quadrupole insulators. However, upon introducing symmetry breaking term, i.e., δ 6= 0, there exists
a mismatch between 1

2π Im log〈Û2〉 and the corner charge as shown in FIG. 14 (a). The Wannier band is shown in
FIG. 14 (b), where we see that the Wannier band is gapless at ky = 0 and π. Since the Wannier bands are gapless

the nested Wilson loop indices are not well defined,12 This fact is consistent with the unstable behavior of Û2 with
respect to the ground state of Eq. (E5) at 1/2 filling.
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