
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Enhancement of superconductivity by frustrating the
charge order

Zi-Xiang Li, Marvin L. Cohen, and Dung-Hai Lee
Phys. Rev. B 100, 245105 — Published  4 December 2019

DOI: 10.1103/PhysRevB.100.245105

http://dx.doi.org/10.1103/PhysRevB.100.245105


Enhancement of superconductivity by frustrating the charge order
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We study strong electron-phonon interacting systems where the geometry of the crystalline lattice
frustrates the formation of charge order. Our results show that under such condition high Tc
superconductivity can occur in a wide range of electron-phonon coupling strengths. This result
is obtained by studying the Holstein model on triangular lattice using sign-problem-free Quantum
Monte Carlo(QMC) method.

I. INTRODUCTION

Strong electron-phonon (e-ph) interaction is often
thought as good for high-temperature superconductiv-
ity (SC). However, there are numerous examples where
strong e-ph interaction triggers charge order (CO), which
in turn suppresses superconductivity. This problem has
been appreciated in the literature for a long time1–13.
Based on such realization attempts to estimate the upper
bound of Tc have been made. This issue has received re-
newed interest recently where sign-problem-free quantum
Monte Carlo (QMC) simulation was used to study the in-
terplay between CO and SC on unfrustrated lattice.14.

In this work we ask “what if the CO is geometrically
frustrated”, and under that condition “will high Tc super-
conductivity result from strong e-ph interaction.” Exam-
ples of materials showing geometrically frustrated CO15

include Fe3O4
16, molecular conductor θ-ET2X17, and tri-

angular lattice systems such as LuFe2O4
18, NaxCoO2

19,
AlV2O4

20 and LiV2O4
20 etc. Among them θ-ET2X22

and NaxCoO2
19 are superconductors.

Our results show that once the CO is frustrated,
Cooper pairing is left to benefit from the strong e-ph
interaction. Therefore when the bottleneck for the onset
of superconductivity is the Cooper pair formation, high
Tc will result from frustrating the CO. However Tc will
not increase with the e-ph interaction forever. Because
as the e-ph interaction gets too strong the Cooper pair
becomes so tightly bound that its hopping amplitude be-
comes suppressed. Under that condition the bottleneck
for the onset of superconductivity is the establishment of
phase coherence. When that happens Tc will eventually
decrease due to the poor Cooper pair mobility.

It is important to note, however, that our results apply
only to systems where Cooper pairing is mediated by
phonon. Hence unconventional superconductors such as
cuprates and iron-based superconductors are beyond the
scope of this paper.

The theoretical model we study is the Holstein model
on the triangular lattice (where geometric frustration
of CO exists). When the same model is studied on
the square lattice (where the CO is not frustrated),
Ref.14 shows that as the e-ph interaction gets strong, the
Q = (π, π) charge density wave (CDW) susceptibility
surpasses that of SC. Moreover, when this happens, the
Migdal-Eliashberg (ME) theory fails. Physically this is

due to the formation of bipolarons. The CO involves
bipolarons occupying one of the sublattices so that each
doubly occupied site is surrounded by the empty ones,
because in such an arrangement electrons on the doubly
occupied sites can virtually hop to the neighboring sites
to gain the kinetic energy. This is similar to the super
exchange mechanism of repulsive systems.

In order to determine the effect of frustration we com-
pare the results of Holstein’s model on both square and
triangular lattices. Following Ref.14 we quantify the
strength of the e-ph interaction by the dimensionless pa-
rameter λ = α2ρ(EF )/K, where ρ(EF ) is the density
of states at the Fermi energy and α is the e-ph interac-
tion parameter (see. Eq. (1)) and K is the local phonon
spring constant.The main results are summarized in the
following for the parameter range 0.2 ≤ λ ≤ 0.8 and
~ω/EF = 0.1 and 0.3 at different electron densities and

temperatures. Here ω =
√
K/M is the phonon frequency

(M is the mass of the local oscillator.)

(1) For the half-filled square lattice at T = 0 we find
Q = (π, π) CDW order for the entire range of λ we stud-
ied. (2) For a half-filled triangular lattice at T = 0, on
the other hand, we find SC order in the entire range of
λ. In contrast, the CDW order (with Q = (±4π/3, 0))
only exists for 0.4 . λ ≤ 0.8 when ~ω/EF = 0.1, and for
0.6 . λ ≤ 0.8 when ~ω/EF = 0.3. (3) For the half-filled
triangular lattice with λ = 0.4 (where SC is strongest) we
determine the Kosterlitz phase transition temperature to
be Tc ≈ t/10. (4) In the SC-CDW coexistence phase at,
e.g., ~ω/EF = 0.1, charge fluctuations are significantly
stronger on one sublattice of the tri-partite triangular
lattice (see discussion below). Moreover, the SC order
parameter is the strongest on this sublattice. Through
these sites SC can survive at strong e-ph coupling even
after the CDW order has set in. (5) At half filling a
single-particle gap exists in the non-SC phase for both
square and triangular lattices.

The results summarized above make the case that the
frustration of CDW allows SC to benefit from stronger
e-ph coupling without being preempted by the charge
order.

Before discussing the details we present a physical pic-
ture which enables one to understand the above results.
When λ becomes sufficiently strong bipolarons form. In
the charge ordered phase the bipolarons are localized.
For the square lattice, which is bipartite, the bipolarons
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FIG. 1. (a) A schematic figure of the
√

3×
√

3 CDW ordered
state in the strong e-ph coupling limit on triangular lattice.
The ordering wavevectors are (±4π/3, 0). The black circles
represent the sites with 〈ni〉 > 1 and the white circles repre-
sent sites with 〈ni〉 < 1. The gray circles stand for sites where
large charge fluctuations and 〈ni〉 ≈ 1. (b) The CDW suscep-
tibility at different momenta for the triangular lattice, where
~ω/EF is set to 0.3 and the temperature is set to kBT = t/16.
Here K = (4π/3, 0), and M = (0, 2π/

√
3) and K + δk is a

momentum closest to K on a lattice with linear dimension
L = 12.

localize on one of the sublattices so that virtual hop-
ping can lower the kinetic energy. For the triangular lat-
tice, however, such an arrangement is impossible. This
is the same as the frustration encountered in the anti-
ferromagnetic (AF) Ising model on a triangular lattice.
This obstruction toward charge order benefits SC. To un-
derstand the coexistence phase we note that the ground
state of the AF Ising model is macroscopically degner-
ate (exp(cN) ((c ∼ O(1))) spin patterns have the same
energy)23–25. Moreover, it has been shown that out of

these degenerate spin patterns, a class of
√

3 ×
√

3 spin
configurations (characterized by Q = (± 4π

3 , 0) wavevec-
tors) are selected at zero temperature due to an “order by
disorder” mechanism26,27. For spin 1/2 quantum model,
with nearest neighbor XY exchange, quantum fluctua-
tions stabilize

√
3×
√

3 spin long-range order.28–34 In the
present problem we expect the analogous CDW pattern,
with Sz = +1 → double occupancy and Sz = −1 →
unoccupancy (see Fig. 1(a)), to be stabilized by either
thermal or the quantum fluctuations (introduced by the
hopping of electrons). This expectation is supported by
the simulation result – the strongest CDW susceptibil-
ity is associated with wavevector (± 4π

3 , 0) as shown in
Fig. 1(b). The same order by disorder mechanism pre-
dicts charge fluctuation to be significantly stronger on
one of the three

√
3 ×
√

3 sublattices. Each site in this
sublattice is surrounded by a hexagon of sites where the
charge density alternates between 〈ni〉 > 1 and 〈ni〉 < 1.
These sites are analogous to the “flippable sites” in the
entropy-stabilized

√
3×
√

3 pattern of the AF Ising model
(spins on the flippable sites are surrounded by alternat-
ing spin ups and spin downs, hence they feel no internal
field). Through these large charge fluctuation sites, SC
can survive even after the CDW order has set in.

II. THE MODEL

In the following discussions we consider the Holstein
model defined on both square and triangular lattices H =
He +Hp +Hep where

He = −
∑
〈ij〉,σ

tij(ψ
†
i,σψj,σ + h.c)− µ

∑
i

n̂i,σ

Hp =
∑
i

(
P̂ 2
i

2M
+
K

2
X̂2
i ); Hep = α

∑
i

n̂iX̂i (1)

Here, ψi,σ annihilates an electron with spin polarization
σ on lattice site i, µ is the chemical potential, and n̂i is
the electron number operator associated with site i. For
the triangular lattice we set the hopping integrals tij to 1
between nearest neighbors. For the square lattice we set
the nearest-neightbor hopping integral to 1 and second
neighbor hopping integral to−0.2 to avoid a nested Fermi
surface at half-filling. In the rest of the paper we use t to
denote the nearest neighbor hopping matrix element for
both triangular and square lattices. Hp describes a dis-

persionless Einstein phonon with frequency ω =
√
K/M ,

where X̂i is the phonon displacement operator and P̂i is
its conjugate momentum. Hep describes the e-ph cou-
pling with α being the coupling constant. As mentioned
earlier, the e-ph coupling strength is characterized using
the dimensionless parameter λ = α2ρ(EF )/K.

Due to the presence of time reversal symmetry and
particle number conservation in the electronic part of
the action for arbitrary phonon configurations the par-
tition function of Eq. (1) is free of the fermion minus
sign problem where it is subjected to determinant QMC
simulation35–41. In the literature many QMC simula-
tions have been applied to the Holstein model on non-
frustrated lattices14,42–52. Here the introduction of lat-
tice frustration is a new aspect. We preform zero and
non-zero temperature QMC simulations by employing
both the single and global update schemes53. The details
of the QMC simulations can be found in the Appendix
A.

III. ZERO-TEMPERATURE AND
HALF-FILLING

A. phase diagram

We employ projector QMC35,54–56to study the ground
state of Eq. (1) for ~ω/EF = 0.1, 0.3 and 0.2 ≤ λ ≤ 0.8
at zero temperature. Through a finite-size scaling analy-
sis for systems with linear dimension L = 6, 9, 12, 15 (the
details can be found in the Appendix D) we obtain the
zero-temperature phase diagrams in the specified range
of λ as shown in Fig. 2(a) and (b). For the triangular
lattice (Fig. 2(a)) SC long-range order exists in the en-
tire range of λ we studied. Moreover, this is true for
both ~ω/EF = 0.1 and 0.3. However, for ~ω/EF = 0.1
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FIG. 2. (a) The zero-temperature phase diagram of the
Holstein model in the e-ph coupling range 0.2 ≤ λ ≤ 0.8 and
~ω/EF = 0.1, 0.3 for the triangular lattice. (b) The same plot
for the square lattice. (c) The RG invariant ratio, RSC(L),
for the SC order at ~ω/EF = 0.1 on half-filled triangular
lattice. The result indicates SC long-range order. (d) The RG
invariant ratio, RCDW (L), for the CDW order at ~ω/EF =
0.1 on half-filled triangular lattice. The result is indicative of
CDW disorder-order phase transition at λ ≈ 0.42.

CDW sets in to coexist with SC for 0.4 . λ ≤ 0.8.
For ~ω/EF = 0.3, CDW order is weakened and but it
still sets in to coexist with SC for 0.6 . λ ≤ 0.8. The
CDW ordering wavevectors are Q = (±4π/3, 0) and a
schematic figure of it is given in Fig. 1(a). In contrast,
for the square lattice there is no SC order (at least within
the lattice sizes we studied). Instead we find CDW order
in the entire λ range we studied (see Fig. 2(b)). The or-
dering wavevector is Q = (π, π). Note that our phase dia-
gram excludes λ < 0.2. This is because for small λ, weak
SC or CDW orders can be suppressed by the non-zero en-
ergy gap caused by the finite lattice size, and hence pre-
vent us from drawing conclusions in the thermodynamic
limit. However, we do expect the presence of SC order
in the thermodynamic limit due to the standard argu-
ment that SC is the generic instability for Fermi surface
possessing time reversal symmetry. Because the band-
structure does not possess Fermi surface nesting there is
no CDW instability. In Fig. 2(c) and (d) we present the
“RG-invariant ratio” R = S(Q)/S(Q + δq) as a func-
tion of system size L for the SC and CDW orders. Here
S(Q) is the Fourier transform of the SC/CDW correla-
tion functions, and Q = (0, 0) for SC, and Q = (π, π)
or (±3π/4, 0) for the CDW on the square and triangular
lattices. δq is a small wavevector introduced to enable a
comparison between the correlation function at the ex-
pected ordering wavevector and a wavevector nearby, ex-
plicitly δq = (0, 2πL ) on square lattice and δq = (0, 4π√

3L
)

on triangular lattice. Long-range order implies the di-
vergence of R as L→∞, while short range order means
R → 1. The results clearly support the phase diagram

FIG. 3. The local density (a) and its mean square fluctua-
tions (b) in the CDW-SC coexistent phase on the triangular
lattice at ~ω/EF = 0.1. The calculation is carried out at zero
temperature for L = 12 and λ = 0.5.

presented in Fig. 2(a). Compare the results for the square
and triangular lattice we conclude that frustration of the
charge order enables the SC to prevail for a much wider
range of strong e-ph interaction.

B. The coexistence phase

In order to gain more insight into the SC/CDW co-
existence phase, we turn on a tiny pinning potential
consistent with the periodicity of the CDW. We then
compute the expectation value of local electron density

ni =
〈
c†i ci

〉
and its mean square fluctuation ∆n2i =〈

n̂2i
〉
− 〈n̂i〉2. The result for the electron density dis-

tribution is shown in Fig. 3(a), which clearly reveals the√
3×
√

3 periodicity. The results for ∆n2 is presented in
Fig. 3(b). It shows a significantly stronger charge fluctu-
ation on the lattice sites with 〈ni〉 ≈ 1. In addition, we
have also computed the SC correlation function in the
coexistence phase. Remarkably, the correlation is signif-
icantly stronger among the sites with larger charge fluc-
tuation. These results suggest the SC coherence within
the CDW is enabled by the “flippable” sites, which in
turn is caused by the geometric frustration.

IV. HALF-FILLING AND NON-ZERO
TEMPERATURES

A. The SC and CDW susceptibilities

Next we fix the temperature and linear lattice size to
kBT = t/16 and L = 12, where kB is Boltzmann weight,
and compute the SC and CDW susceptibilities as a func-
tion of λ ∈ [0.0, 0.5]. For the triangular lattice, the
CDW susceptibility peaks at wavevector Q = (±4π/3, 0)
as shown in Fig. 1(b). Moreover as shown in Fig. 4(a)
the SC susceptibility is enhanced with increasing λ till
λ ≈ 0.4. For larger λ the CDW susceptibility rises which
suppresses the SC susceptibility. For comparison, we also
plot the CDW and SC susceptibility for the square lat-
tice in Fig. 4(b). Similar to the triangular lattice result,
when CDW ordering tendency gets stronger SC is sup-
pressed. Moreover, upon taking the absolute scale of the
susceptibility into account, it is seen that the CDW/SC
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FIG. 4. (a) The SC and CDW susceptibilities on the tri-
angular lattice for ~ω/EF = 0.3. The wavevectors of the SC
and CDW are (0, 0) and (4π/3, 0), respectively. (b) The SC
and CDW susceptibilities for ~ω/EF = 0.3 on a square lattice.
The wavevectors of the SC/CDW are (0, 0) and (π, π), respec-
tively. The results in (a) and (b) are obtained at T = t/16
and L = 12. (c) The scaled SC susceptibility, χSCL

−2−ηc

where ηc = 0.25, for the triangular lattice. The e-ph cou-
pling is set to λ = 0.4. Here β is inverse temperature in unit
of 1/t. The crossing point indicates the Kosterlitz-Thouless
transition temperature: Tc ≈ t/10. (d) The same plot for the
square lattice, here λ is set to 0.2. The absence of the cross-
ing implies that, if it exists, the SC transition temperature is
below the lowest temperature we calculated. The results in
(c) and (d) are obtained for L = 12 and ~ω/EF = 0.3. The
error bars are smaller than the data points in the figure.

susceptibility is strongly suppressed/enhanced on the tri-
angular lattice.

B. The Kosterlitz-Thouless transition

We estimate the SC Kosterlitz-Thouless (KT) transi-
tion temperature Tc through the well-known scaling be-
havior of the SC susceptibility (χSC) at the KT transi-
tion: χSC ∼ L2−η, where η = 0.25. Upon fixing λ = 0.4
for the triangular lattice and λ = 0.2 for the square lat-
tice (these are the λ values at which the SC susceptibil-
ity is the strongest at T = t/16) we plot L−2+ηχC as a
function of temperature in Fig. 4. The crossing of the
curves for different L marks the phase transition. The
result suggests that the transition temperature for trian-
gular lattice is Tc ≈ t/10 (Fig. 4(a)). In contrast, for
the square lattice no crossing is observed for T ≥ t/16
(Fig. 4(b)). When combined with the zero temperature
result this suggests the absence of SC. This comparison
again provides the evidence for frustration enhanced SC
on triangular lattice.

FIG. 5. (a) The evolution of single-particle gap, extracted
from the spectral function A(kF , ω), at the Fermi momentum
as a function of λ on a triangular lattice. (b) The same plot for
the square lattice. The results are obtained for ~ω/EF = 0.3,
L = 12 and T = t/8.

C. The pseudogap

Stimulated by the phenomenology of the cuprates,
single-particle gaps above the SC transition is of con-
siderable interests. In the Holstein model, we expect a
single-particle gap to accompany the bipolaron forma-
tion. Moreover, because the hopping of bipolarons is sup-
pressed at large e-ph coupling, which results in a small
SC phase stiffness, we expect a pseudogap can persist
above the SC transition temperature Tc.

We have computed the single-particle gap for both tri-
angular and square lattices at half-filling through analyt-
ical continuation57,58. As shown in Fig. 5(a) and Fig. 5
(b), the pseudogap at T = t/8 (which is above the highest
Tc for both systems) undergoes a sharp upturn around
the λ value where the CDW susceptibility rises (which
signifies the bipolaron formation). In Appendix F we
study the pseudogap onset temperature for the half-filled
triangular lattice. The result T ∗ ≈ 0.45t is considerably
above the Kosterlitz-Thouless transition temperature.

V. AWAY FROM HALF-FILLING, AND THE
EFFECT OF DECREASING ~ω/EF

Doping away from half filling further suppress the
CDW ordering. In the Appendix B we report the result
for 15% electron-doped triangular and square lattices.
Compared with the results at half-filling, SC/CDW are
obviously enhanced/suppressed.

Decreasing the phonon frequency makes the Holstein
oscillator more classical. Due to the diminished quantum
fluctuations, bipolarons are easier to form and localize.
As a result CDW correlation gets stronger and SC be-
comes weaker.

VI. CONCLUSION

We have studied the effects of frustrating charge order
on superconductivity using the Holstein model through
sign-problem-free QMC simulation. We conclude that
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frustrating the charge order is a powerful way to en-
hance superconductivity. In particular, it enables a novel
coexistence phase where superconducting coherence de-
velops in the charge ordered phase. When the electron-
phonon coupling is sufficiently strong, the real-space cop-
per pairing occurs, namely bipolarons form. On the un-
fratrated lattice, as suggested by previous works14,52, the
bipolarons form a CDW ordered state. In such state,
the bipolorons become localized, hence destroy supercon-
ducting coherence. Our work reveals that when CDW or-
der is frustrated by the lattice geometric frustration, the
bipolarons remain mobile due to the flappable sites. As
a result, superconducting coherence can be established,
hence allowing superconductivity to benefit from a larger
range of electron-phonon coupling strength. We believe
that our study will shed new light on the future search for
the high-temperature superconductivity in the materials
with strong electron-phonon coupling.
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FIG. 6. (a) The SC and CDW susceptibilities for a doped
(〈n〉 = 1.15) triangular lattice. (b) The SC and CDW sus-
ceptibilities for a doped (〈n〉 = 1.15) square lattice. The re-
sults are obtained under the parameter choice ~ω/EF = 0.3,
L = 12 and T = t/16. The error bars are smaller than the
data points.

Appendix A: Details of the Quantum Monte Carlo
simulation

We apply both the finite-temperature and projector
determinant QMC algorithm to study Eq. (1) in main
text. In the finite-temperature simulation, the grand
canonical ensemble averages of observables are evaluated

through:
〈
Ô
〉

= Tr[Ôe−βĤ ]/Tr[e−βĤ ]. Here β is the in-

verse temperature. The values studied in this paper are
4/t ≤ β ≤ 16/t, where t is electron’s nearest-neighor hop-
ping matrix element. The imaginary time is discretized
with the time step ∆τ = 0.1/t. We have checked that
the results do not change upon further decrease of ∆τ .

In the projector QMC, we evaluate the ground-state

expectation values of observables according to
〈
Ô
〉

=

〈ψ0|O |ψ0〉 /〈ψ0 | ψ0〉 = limθ→∞{〈ψT | e−θHOe−θH |
ψT 〉/〈ψT | e−2θH | ψT 〉, where |ψT 〉 is a trial state. In
our simulation, the trial state is chosen as the ground
state of the non-interacting Hamiltonian. In this work θ
is set to 30/t, and we have checked the convergence of
the results against further increase of θ. Like the finite-
temperature calculations we have checked that the imag-
inary time step ∆τ = 0.1/t is sufficient to guarantee the
convergence of the result.

Finally in both the zero and finite temperature calcula-
tions we carry out both single-site and block updates to
ensure the statistical independence in our Monte-Carlo
sampling53. Because the phonon field is strongly cor-
related in imaginary time direction, especially for small
∆τ , we implement block update to reduce the autocor-
relation time of the Monte Carlo sampling in our sim-
ulation. In the scheme of block update, we simultane-
ously update the phonon fields at a given site for all the
imaginary time. Unfortunately, the implement of block
update severely slows down the simulation in DQMC. In
our computation, we perform one to five block updates
between each space-time local update sweep, depend-
ing on the temperature in the simulation. At the zero-
temperature computation or finite-temperature compu-
tation for T ≤ t/12, we perform five block updates be-
tween each space-time local update sweep. In our simu-
lation, we run 240 independent Markov chains with 600-
5000 space-time sweeps, depending on the temperature
and system sizes, after the procedure of thermalization
for each data point. In some computations for low tem-
perature and zero temperature, we run 480 independent
Markov chains.

Appendix B: The non-zero temperature SC and
CDW susceptibilities for doped triangular and

square lattices

Intuitively, incommensurate filling factors resulting
from doping should suppress the CDW order and enhance
the SC pairing. To check this intuition we calculate the
SC and CDW susceptibilities for different values of λ at
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temperature T = t/16 for lattices with linear dimension
L = 12. The doping is chosen to be 15%, i.e., 〈n̂〉 = 1.15.
The results are shown in Fig. 6. Compared with half-
filling, the CDW susceptibility is suppressed by doping,
while the SC susceptibility is enhanced. Moreover by
comparing Fig. 6(a) and Fig. 6(b) we conclude that for
a doped system, lattice frustration remains very effective
in suppressing/enhancing CDW/SC orders.

Appendix C: The non-zero temperature SC and
CDW susceptibilities for a triangular lattice at

~ω/EF = 0.1.

Here the temperature is set to T = t/16 and linear
system size is L = 12. In Fig. 7 we show the SC and
CDW susceptibilities as a function of λ. Qualitatively
the behaviors of the SC and CDW susceptibilities are
similar to those for ~ω/EF = 0.3. However, it is notable
that lower ~ω/EF enhances the CDW while suppress the
SC ordering tendencies.

Appendix D: Finite-size scaling analysis of the zero
temperature SC and CDW orders for triangular and

square lattices

We perform projector QMC simulation to study the
ground-state properties of the Holstein model on the tri-
angular lattice. The Fourier transforms of the SC and
CDW correlation functions at momentum (0, 0) (SC) and
(4π/3, 0)(CDW) are shown in Fig. 8. When extrapolated
to L = ∞ the finite values of these quantities indicates
long-range order. In panels (a) to (d) the data are fit by
second-order polynomials in 1/L. At ~ω/EF = 0.1, the
SC order (panel(a)) is persistent in the entire range of

FIG. 7. The SC and CDW susceptibility on a triangular lat-
tice for ~ω/EF = 0.1. The temperature is T = t/16 and the
linear system size L = 12. The error bars are smaller than
the data points in the figure.

FIG. 8. (a) Finite size scaling analysis of the peak of the
Fourier-transformed SC correlation function on a triangular
lattice for L = 6, 9, 12, 15 and ~ω/EF = 0.1. (b) Finite size
scaling analysis for the peak of the CDW structure factors on
a triangular lattice for L = 6, 9, 12, 15 and ~ω/EF = 0.1. (c)
The same as (a) for ~ω/EF = 0.3. (d) The same as (b) for
~ω/EF = 0.3. (e) The RG invariant ratio RSC(L) on trian-
gular lattice for ~ω/EF = 0.3. (f) The RSC(L) on triangular
lattice for ~ω/EF = 0.3. In this figure, the temperature is
t/16 and linear system size L = 12.

λ (0.2 ≤ λ ≤ 0.8). However, the CDW structure factors
(panel(b)) are extrapolated to zero or negative within er-
ror bar when λ < 0.4, while extrapolated to finite values
when λ > 0.4. The result suggests that the ground state
is a coexistent phase of SC and

√
3 ×
√

3 CDW when
e-ph coupling is stronger than 0.4. For ~ω/EF = 0.3
the SC correlations (panel(c)) also extrapolate to a fi-
nite values in the entire range of λ we studied. The
CDW correlations (panel(d)), on the other hand, are ex-
trapolated to finite values only when λ > 0.6. To ver-
ify this result, we also calculated the RG-invariant ra-
tio R = S(Q)/S(Q + δq) as a function of lattice size,
where Q is peak momentum of Fourier transformed cor-
relation function, and δq is the minimum allowed mo-
mentum quantum on lattice. R(L) has smaller finite-size
scaling corrections than correlation functions, hence is a
powerful tool for investigating the thermal or quantum
phase and phase transition on finite lattices. In the long-
range ordered phase, R(L) should diverge for L → ∞,
while R(L) → 0 for L → ∞ in disordered phase. At the
critical point, R(L) collapses to a finite value for different
L due to scaling invariance . We present the results of
RG-invariant ratio for ~ω/EF = 0.1 in Fig. 2(c),(d) and
~ω/EF = 0.3 in Fig. 8. The results are qualitatively con-
sistent with the conclusion drawn from the extrapolation
of the correlation functions. For ~ω/EF = 0.1, we ob-
serve a quantum phase transition from the SC phase to
a SC and CDW coexistent phase around λ ≈ 0.42. For
~ω/EF = 0.3, the CDW order coexists with SC when
0.6 . λ ≤ 0.8.

For comparison, we have also studied the Holstein
model on square lattice. In this study we turn on a next
nearest neighbor hopping t2 = −0.2t1 to get rid of Fermi
surface nesting. We perform finite-size scaling analysis of
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FIG. 9. The RG invariant ratios RSC(L) and RCDW (L) for
the square lattice. (a) The RSC(L) at ~ω/EF = 0.1, and (b)
the RSC(L) at ~ω/EF = 0.3. (c) The RCDW (L) at ~ω/EF =
0.1, and (d) the RCDW (L) at ~ω/EF = 0.3.

the SC and CDW correlation functions for ~ω/EF = 0.1
and 0.3. For 0.2 ≤ λ ≤ 0.8. The results of RG in-
variant ratio, as plotted in Fig. 9, clearly show that the
ground state possesses CDW long-range order and no SC
order for both ~ω/EF = 0.1 and 0.3. This result, com-
bined with those for the triangular lattice, suggests that
CDW order is strongly suppressed by geometric frustra-
tion, which enables SC pairing to exist in a larger range
of e-ph coupling strength.

Appendix E: Local density and density fluctuation
distribution in SC and CDW coexistent phase

We compute the average of the charge density and
its mean square fluctuation in the SC and CDW coex-
istent phase. We employ projector QMC for λ = 0.5 and
~ω/EF = 0.1. A tiny modulated chemical potential con-
sistent with CDW periodicity is added to pin the CDW to
one of three degenerate CDW patterns. In particular, we
applied a modulated chemical potential with amplitude
δ = 0.02 and have checked that such pinning potential do
not affect the intrinsic values of the SC and CDW cor-
relation functions. The result of averaged charge density
is shown in Fig. 4(a), which clearly reveals the

√
3×
√

3
CDW pattern in Fig. 1(a). The charge density on the
three sublattices are (1 + a, 1, 1− a). More importantly,
as shown in Fig. 4(b), the charge fluctuations are sig-
nificantly stronger on the sublattice where the averaged
density is approximately unity. Since SC order requires
charge fluctuation, we expect that SC correlation to be
bigger on such sulattice. This is verified by our unbiased
QMC simulation.

FIG. 10. The electron spectral function A(kF , w) for λ = 0.4
on triangular lattice at various temperatures: (a) T= t/8; (b)
T=t/12; (c) T=t/16. The results clearly show that spectral
gap survives above the SC transition temperature t/10. (d)
The single-particle gap on triangular lattice for λ = 0.4 as a
function of temperature. The pseudogap onset temperature
is estimated to be T ∗ ≈ 0.45t.

Appendix F: Electron spectral function on
triangular and square lattice

In order to investigate the existence of pseudogap
in the Holstein model, we compute the electron spec-
tral function through analytical continuation of the
imaginary-time Green’s function. The approach of an-
alytical continuation that we use in our computation is
stochastic maximum entropy method57,58. We obtain
the electron spectral functions at different points on the
Fermi surface. Here we present the spectral function
A(kF , ω) at momentum point where the pseudogap is
the minimum. The results of A(kF , ω) for λ = 0.4 on
triangular at temperatures T = t/18, t/12, t/8 are shown
in Fig. 10 where t/8 is above the Tc for triangular lattice
(the square lattice does not show a SC transition). We
estimate the value of single-particle gap from the peaks
of spectral function A(kF , ω). In Fig. 5, we present the
values of spectral gap for several values of λ on triangular
and square lattices. The pseudogap above Tc undergos a
sharp upturn around λ value where CDW susceptibility
rises. We also present the single-particle gap as a function
of temperature for λ = 0.4 on triangular in Fig. 10(d).
From this result we estimate the onset temperature of
pseudogap T ∗ ≈ 0.45t.
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FIG. 11. (a) Data collapse analysis of the SC susceptibility
in the regime close to transition temperature Tc. By choosing
Tc = t/10 and A = 0.32, it is clearly shown that the SC
susceptibility for different T and L can be fitted by a single
scaling function consistent with KT transition. (b) The log-
log plot of the SC susceptibility as a function of linear system
size L below transition temperature Tc. The error bars are
smaller than the data points in the figure.

Appendix G: The scaling behaviour of the SC
susceptibility for T ' Tc and the finite size scaling

analysis for the SC susceptibility below Tc

In this section, we present the scaling behavior of the
SC susceptibility for T ' Tc. In addition we also present
the finite size scaling analysis of the SC susceptibility for
T < Tc. Both results are obtained on triangular lattice.

In a 2D superconductor, the quasi-long-range SC order
implies that the SC susceptibility should diverge with the
system size in a power law fashion below the Kosterlitz-
Thouless (KT) transition temperature Tc. In addition,
for T ' Tc the KT phase transition predicts the following
scaling behavior for the superconducting susceptibility:

χSC(L, T ) = L2−ηf(L/ξ) (G1)

where η = 1
4 and ξ is correlation length with the following

temperature dependence

ξ = exp
[
A/
√
T − Tc

]
. (G2)

Here f(L/ξ) is a scaling function whose numerical value
depends on the microscopic details. In Fig. 11(a) we col-
lapse the data for different temperatures and system sizes
according to Eq. (G1) and Eq. (G2). The temperature
range in this analysis is kBT ∈ [t/6, t/10] and the sys-
tem sizes are L = 6, 8, 10, 12. The best data collapse is
achieved by choosing A = 0.32 and kBTc = t/10. The
excellent quality of the data collapsing is a confirmation
that the SC transition is indeed in the KT universality
class.

In Fig. 11(b) we present the SC susceptibility below Tc
as a function of system size L. The result is consistent
with a power law divergence with the power decreases

as a function of increasing temperature. This is consis-
tent with the known behavior of the SC order parameter
correlation function below Tc.

FIG. 12. (a) The SC and CDW susceptibilities on the trian-
gular lattice for ~ω/EF = 0.3 and ∆ω = 0.2ω. The wavevec-
tors of the SC and CDW are (0, 0) and (4π/3, 0), respectively.
(b) The SC and CDW susceptibilities on the triangular lattice
for ~ω/EF = 0.3 and ∆ω = 0.2ω. The wavevectors of the SC
and CDW are (0, 0) and (π, π), respectively. The error bars
are smaller than the data points in the figure.

Appendix H: The effect of phonon band dispersion

In the Holstein model the phonon is dispersionless.
In this section, we investigate the effect of a non-zero
phonon dispersion on the SC and CDW susceptibilities.
We modify the phonon Hamiltonian by adding a nearest-
neighbor coupling term between the displacement field:

Hp =
∑
i

(
P̂ 2
i

2M
+
K

2
X̂2
i ) +

K2

2

∑
〈ij〉

(X̂i − X̂j)
2 (H1)

The resulting bare phonon dispersion is given by Ep(~k) =√
K
M + 2K2

M (2− cos(~a1 · ~k)− cos(~a2 · ~k)) on square lat-

tice, where ~a1 = (1, 0) and ~a2 = (0, 1) , and Ep(~k) =√
K
M + 2K2

M (3− cos(~a1 · ~k)− cos(~a2 · ~k)− cos(~a3 · ~k)) on

triangular lattice, where ~a1 = (1, 0),~a2 = ( 1
2 ,
√
3
2 ),~a3 =

(− 1
2 ,
√
3
2 ) . The associated bare phonon bandwidth

is given by ∆ω = Ep(~kmax) − Ep(~kmin), where

Ep(~kmax)/Ep(~kmin) is the energy at the band top and
bottom. In the following, we choose a ∆ω = 0.2ω, where
~ω = 0.3EF is the average phonon frequency. We set the
inverse temperature to β = 16/t and compute the SC and
CDW susceptibility as a function of λ for both the square
and triangular lattice. The results of which are shown in
Fig. 12. When comparing them to the corresponding
results in the dispersion-free limit, we see a qualitative
agreement. Specifically, for large λ the CDW susceptibil-
ity rises which tends to suppresses the SC susceptibility.
Moreover, looking at the absolute scale of susceptibil-
ity, we find that the CDW/SC susceptibility is strongly
suppressed/enhanced on the triangular lattice. Upon a
quantitative comparison we find the the CDW suscepti-
bility is slightly suppressed and the SC susceptibility is
slightly enhanced by the non-zero phonon dispersion.
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