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Unlike the linear anomalous Nernst effect, the non-linear anomalous Nernst effect (NLANE) can survive in
an inversion symmetry broken system even in the presence of time-reversal symmetry. Using semiclassical
Boltzmann transport theory, we study the non-linear anomalous Nernst effect that arises as the second-order
response function to the applied temperature gradient. We find that the non-linear Nernst current, which flows
perpendicular to the temperature gradient even in the absence of a magnetic field, arises due to the Berry cur-
vature of the states near the Fermi surface, and thus is associated with purely a Fermi surface contribution. We
apply these results to bilayer WTe2, which is an inversion broken but time reversal symmetric type-II Weyl
semimetal supporting chiral Weyl fermions. By tuning the spin-orbit coupling, we show that the sign of the
NLANE can change in this system. Together with the angular dependence, we calculate the temperature and
chemical potential dependencies of NLANE in bilayer WTe2, and predict specific experimental signatures that
can be checked in experiments.

I. INTRODUCTION

The Berry phase effects in anomalous transport phe-
nomena driven by the gradient of temperature or chemi-
cal potential is now well-developed theoretically and have
been seen in experiments1–7. A nonzero Berry curvature
along with the nonuniform statistical distribution of carri-
ers resulting from the external fields have been used to ex-
plain the transport anomalies like the anomalous Hall effect
(AHE)4–13 and anomalous Nernst effect (ANE)14–25. These
Berry curvature-related topological transport anomalies are
linear responses, which require the breaking of time rever-
sal (TR) symmetry by a complex order parameter or internal
magnetization6,7,9,12,26–28. With the increasing interest in non-
linear properties of topological materials29–36, the second-
order non-linear Hall effect was proposed as a new type of
Hall effect that could survive even in the TR invariant systems
with broken inversion symmetry36,37. Rather than being in-
duced by the Berry curvature itself, the non-linear response
depends on the Berry curvature dipole (BCD), a moment of
the Berry curvature over the occupied states37–39.

Monolayer transition metal dichalcogenides (TMDCs) have
been proposed as the platforms supporting the non-linear
Hall effect due to their large spin-orbit coupling and non-
centrosymmetric band structure40–42. Recently, it has been re-
ported that the non-linear Hall currents can occur as a second-
order response to the applied external electric field in TR in-
variant but inversion symmetry breaking materials, especially
the TMDCs and Weyl semimetals (WSMs)43–46. The underly-
ing physics associated with the non-linear anomalous Hall ef-
fect (NLAHE) has been shown to be related to the band struc-
ture properties. Several candidate materials with low crys-
talline symmetries have been proposed to exhibit a finite or
enhanced BCD47–51.

WTe2 as a type-II WSM exhibiting chiral Weyl Fermions
that break Lorentz invariance52,53, has attracted tremendous
attention in the studies of transport anomalies54–58. The
topological properties of WTe2 are caused by its Berry
curvature concentrated around the Weyl points with lin-

ear band-crossing, acting like monopoles of Berry curvature
whose value for the valence band and conduction band are
opposite59. The nontrivial phenomena in TR invariant sys-
tems such as WTe2 requires an asymmetric distribution of the
Fermi occupations at k and −k. Interestingly, a few-layered
WTe2 system, e.g. a bilayer WTe2, intrinsically breaks the
inversion symmetry and leaves a nonzero Berry curvature dis-
tribution on the Fermi surface. It is the rearrangement of the
positive and negative Berry curvature in different momentum
that leads to the so-called BCD. Specifically, due to the big
net BCD on a given Fermi plane, the bilayer WTe2 system
shows a strong non-linear Hall response when a small spin-
orbit torque is induced46–48. The strong tunability of bilayer
WTe2 by electric gating and/or strain makes the discovery
of non-linear phenomena in inversion-symmetry-breaking 2D
materials particularly promising.

In the linear regime, the ANE originating from the Berry
curvature describes the generation of a charge current in the
presence of a transverse temperature gradient and a broken
TR symmetry, and vanishes when the TR symmetry is pre-
served. However, as a counterpart of the NLAHE revealed by
charge current, the non-linear anomalous Nernst effect could
possibly be non-zero even in the presence of TR symmetry
and measured through the heat transport. Recently the in-
trinsic non-linear anomalous thermoelectric effects have been
proposed for the loop-current model of the cuprate supercon-
ductors where the combined TR symmetry and inversion sym-
metry is retained60. However, in this model, the TR symme-
try is still broken individually due to the orbital toroidal mo-
ment. Very recently, a Hamiltonian of TMDCs under uniaxial
strian has been used to demonstrate the NLANE within the
two-dimensional TR invariant system with broken inversion
symmetry61. Here the non-linear anomalous Nernst current
is found to have a different temperature dependence in the
high and low temperature regimes. In another recent work
on non-centro-symmetric crystals62, the non-linear thermo-
electric conductivity has been derived up to the second or-
der to the applied thermal gradient by considering a thermally
induced nonlinear perturbation to the Fermi distribution func-
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tion. In contrast to these works, in this paper we focus on
bilayer WTe2, because this system has recently been success-
fully used to experimentally demonstrate the NLAHE in a TR
invariant system44,45. Because of the existence of nonzero
NLAHE, we also expect a nonzero NLANE in this system
from Onsager reciprocity. Our calculations and results in this
paper will thus be of immediate experimental relevance for
the demonstration of NLANE in a system that has already
been shown to support NLAHE. In the recent experiments of
the NLAHE in bilayer WTe244,45, a transverse voltage drop
at the second-harmonic frequencies is found quadratically de-
pendent to the longitudinal driving current. In analogy with
the NLAHE, a second-harmonic type response is also possi-
ble in principle for the NLANE provided the thermal gradient
is time dependent. In what follows, we perform a systematic
derivation of the NLANE in a TR invariant but inversion sym-
metry broken system based on the Boltzmann semiclassical
approach. We then provide the general angular dependence
of the NLANE response relevant for the Nernst experimental
setup (Fig. (1)). We apply these results to the case of bilayer
WTe2 and make several experimental predictions, including
the dependence of the NLANE conductivity on various exper-
imental parameters such as temperature (T ), chemical poten-
tial (µ = EF ), inter-layer coupling (γ), tilting of the Dirac
cones (tx), and spin orbit coupling (η).

This paper is organized as follows: In Sec. II we discuss the
Boltzmann semiclassical approach to systematically calculate
the NLANE response. We derive the general expressions for
the NLANE in the presence of a temperature gradient in an
appropriate Nernst setup. In Sec. III, we develop the general
angular dependence of the NLANE response, where the angle
refers to that between the principal axes and applied temper-
ature gradiant (Fig. 1(a)). In Sec. V, we apply these general
semiclassical results to the specific case of bilayer WTe2 de-
scribed in Sec. IV and make several experimental predictions.
We end with a conclusion in Sec. VI.

II. SEMICLASSICAL BOLTZMANN FORMALISM OF
NON-LINEAR NERNST RESPONSE

In addition to the band energy, the Berry curvature of the
Bloch bands is required for a complete description of the elec-
tron dynamics in topological systems. Therefore, the transport
properties get substantially modified due to the presence of
non-trivial Berry curvature of the Bloch bands1,2. The Berry
curvature of the ith band for a Bloch Hamiltonian is defined
as

Ωa
′

ik = −2εa′b′c′
∑
j 6=i

Im
(
〈i| ∂kb′H |j〉 〈j| ∂kc′H |i〉

)(
εik − ε

j
k

)2 (1)

where |i〉 is the eigenvector for the ith band with eigenenergy
εik and εa′b′c′ is the Levi-Civita symbol. The general form
of the Berry curvature can be obtained using symmetry anal-
ysis. From the Eq. (1), it is clear that the Berry curvature
follows Ω−k = −Ωk under TR symmetry. On the other hand
if the system has spatial inversion symmetry, then it follows

Ω−k = Ωk. Therefore, for a system with both TR and spatial
inversion symmetry the Berry curvature vanishes identically
throughout the Brillouin zone2. However, in the presence of
broken inversion and/or TR symmetry, the Berry curvature of
the Bloch bands can be non-trivial.

In the presence of non-zero Berry curvature, the conven-
tional semiclassical equation of motion for an electron be-
comes modified by adding a transverse anomalous term to the
velocity, given by1,2,63,

ṙ =
1

~
∂εk
∂k

+
ṗ

~
×Ωk

ṗ = eE + eṙ×B,
(2)

where εk is the energy dispersion for given momentum k, and
E,B are the external electric and magnetic fields respectively.
The above coupled equations for ṙ and ṗ could be solved to-
gether to get36,64,65,

ṙ = D (B,Ωk)
[
vk +

e

~
(vk ·Ωk)B +

e

~
(E ×Ωk)

]
ṗ = D (B,Ωk)

[
e

~
vk ×B + eE +

e2

~
(E ·B) Ωk

] (3)

where vk = ~−1∂εk/∂k is the group velocity, and
D (B,Ωk) = (1 + e (B ·Ωk) /~)

−1 is the phase space mod-
ification factor. Under the relaxation time approximation, the
steady state Boltzmann equation is given by(

ṙ · ∇r + k̇ · ∇k

)
fk = −fk − f0

τ
, (4)

where τ is the average scattering time between two successive
collisions, f0 = (eβ(εk−µ) + 1)−1 is the equilibrium Fermi-
Dirac distribution function, and fk is the distribution function
in the presence of perturbative fields. For simplicity, in what
follows we ignore the momentum and band dependence of τ
and treat it to be a constant with τ(k) = τ .

In this paper we are interested in the NLANE of a TR in-
variant system where we measure a transverse electric current
in response to the second-order of an applied temperature gra-
dient∇T in the absence of magnetic field. Substituting ṙ and
k̇ with E = 0, B = 0 into Eq. (4), the Boltzmann equation
takes the form

vk ·
∂fk
∂r

=
f0 − fk

τ
. (5)

Now from the above equation, we can write fk as

fk = f0 − τva′
∂fk
∂ra′

, (6)

where a′ = x, y, z. For consistency of notation, all the com-
ponent subscripts in this section indicate the principal axes
coordinates. For a system with non-zero Berry curvatures, the
complete description of the transport charge current is given
by1,

j =− e
∫ [

dk
]
ṙfk

−∇× e

~

∫ [
dk
]
β−1Ωk log

(
1 + e−β(εk−µ)

) (7)
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where the first term is the usual charge current proportional
to the carrier’s group velocity and the second term is the in-
trinsic charge current supporting the transport anomaly. From
Eq. (7), the thermally induced charge current in the presence
of a temperature gradient∇T can be written as1,

j =− e
∫

[dk] fkvk −
∇T
T
× e

~

∫
[dk] Ωk[

(εk − µ) f0 + β−1 log
(

1 + e−β(εk−µ)
) ]
.

(8)

It has been discussed in Ref. [61] that a generalization of the
above equation to the nonlinear regime could be obtained by
replacing the equilibrium distribution function f0 by a non-
equilibrium distribution function fk. Because of the spatial
variation of the temperature, the extra terms contained in fk
will be proportional to the thermal gradient and therefore con-
tribute as the NLANE response. To calculate the general ex-
pression for the NLANE coefficient, we assume the distribu-
tion function as fk = f0 + f1 + f2, where the term fn is
understood to vanish as (∇T )

n (for simplicity, (∇T )
n is de-

noted as∇nT in the following). Now the Eq. (6) becomes

f1 + f2 = −τva′
∂

∂ra′
(f0 + f1 + f2) ,

f1 = −τva′
∂

∂ra′
f0,

f2 = −τva′
∂

∂ra′
f1,

(9)

where f0 is cancelled. After some straightforward algebra, we
can obtain f1 (∇T ), and f2

(
∇2T

)
as

f1 =
τ

~

(
εk − µ
T

)
∇a′T

∂

∂ka′
f0,

f2 =− τ2va′vb′
(
εk − µ
T

)
∂f0
∂εk
∇2
a′b′T

+
τ2

~2

(
εk − µ
T

)2

∇b′T∇a′T
∂2f0

∂ka′∂kb′

− τ2va′vb′
(
εk − µ
T

)
∇b′T∇a′T

(
− 2

T

∂f0
∂εk

)
(10)

where ∇a′T = ∂T/∂ra′ , is the temperature gradient along
ra′ . Substituting the distribution function fk = f0 + f1 + f2
into Eq. (8), the transport charge current in response to the
first-order in∇T can be written as

j0 = −∇a
′T

T

eτ

~

∫
[dk]vk (εk − µ)

∂f0
∂ka′

− ∇T
T

e

~
×
∫

[dk] Ωk

[
(εk − µ) f0 + β−1

∑
n

fn0
n

]
(11)

where the first term of the current (j0) varies linearly with
the scattering time τ and is along the longitudinal direction
of applied∇T . On the other hand, the second term gives the
anomalous Nernst-like current along the transverse direction
of∇T and is independent of τ .

Similarly, we can go further and calculate the non-linear
Nernst-like current by extracting the terms depending on
second-order in ∇T after substituting fk into Eq. (8). The
non-linear response of the charge current (second-order in
temperature gradient) can be written as

j =eτ2
∫
vk [dk]

[
va′vb′

(
εk − µ
T

)(
∂f0
∂εk

)
∇2
a′b′T

+ 2va′vb′

(
εk − µ
T 2

)(
−∂f0
∂εk

)
∇a′T∇b′T

− 1

~2

(
εk − µ
T

)2
∂2f0

∂ka′∂kb′
∇b′T∇a′T

]
− eτ

~2
∇T ×

∫
[dk] Ωk

∂f0
∂ka′

(
εk − µ
T

)2

∇a′T

(12)

where the first three terms of the above equation are purely
semiclassical and Berry phase independent. In Eq. (12), the
contributions of the first three terms to the transport current
can be distinguished from the last term based on their different
orders of τ dependence, where τ is approximately picosec-
onds in experiments. Moreover, under the approximation of
constant relaxation time, the first three terms will vanish in a
TR invariant system because the integrand is odd under TR
symmetry. Therefore, only the last term contributes to the
non-linear Nernst-like current, which can be written as61

j = −eτ
~2
∇T ×

∫
[dk]∇a′T

∂f0
∂ka′

Ωk
(εk − µ)

2

T 2
. (13)

From the above equation, the expression of non-linear Nernst
current flowing in the a direction can be written in a compact
form as

ja′ = εa′b′c′
eτ

~2
(∇b′T∇d′T ) ΛT

d′c′ , (14)

where ΛT
d′c′ , the non-linear anomalous Nernst coefficient, is

defined as

ΛT
d′c′ = −

∫
[dk]

(εk − µ)
2

T 2

∂f0
∂kd′

Ωc
′

k . (15)

Clearly, the NLANE coefficient is a pseudotensorial quan-
tity and has a different form compared to the Berry curvature
dipole which produces the NLAHE. The non-linear anoma-
lous Nernst conductivity, which is proportional ΛT

d′c′ , is ob-
tained as eτ~2 ΛT

d′c′ . Therefore, unlike the linear case, this quan-
tity is found to be a Fermi surface quantity indicating the fact
that the main contribution to it comes from the states near the
Fermi surface. Moreover, the NLANE coefficient is also lin-
early proportional to the scattering time whereas the linear
anomalous Nernst coefficient is independent of τ . Interest-
ingly, the NLANE can be finite for a TR invariant system
which can be easily checked by looking at Eq. (15). In the
presence of TR symmetry, Ωk = −Ω−k, εk = ε−k and
∂f0/∂kd′ = −∂f0/∂ (−kd′). Therefore, the integrand of
Eq. (15) is an even function with respect to kd′ which makes
the integral finite and results in a non-zero NLANE.
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In three-dimension (3D), the Berry curvature Ωk is a pseu-
dovector and therefore, the NLANE coefficient (ΛT

d′c′ ) be-
comes a pseudotensor. On the other hand, in the case of a
two-dimensional (2D) system, the only nonzero component of
the Berry curvature Ωk is Ωzk (c′ = z) which is perpendicular
to the x− y plane indicating the fact that the Berry curvature
behaves as a pseudoscalar. Therefore, in 2D the pseudotenso-
rial quantity ΛT

d′c′ is reduced to a pseudovector quantity (ΛT
d′)

confined in the 2D plane with only two independent compo-
nents (x and y components). Following the above discussion,
Eq. (13) can be written as

j =
eτ

~2
(
∇T ·ΛT

)
∇T × ẑ. (16)

It can be shown that the largest symmetry required for a 2D
system to get the non-vanishing non-linear anomalous Nernst
conductivity (or ΛT ) is a single mirror line (i.e. a mirror
plane that is perpendicular to the 2D system). In a TR in-
variant 2D system, the presence of single mirror symmetry
forces the ΛT to be orthogonal to the mirror plane. Moreover,
according to Eq. (16), when the applied temperature gradient
is aligned with the direction of ΛT , we find that the current
which flows in the transverse direction of it explicitly origi-
nate from ΛT

d′
37,61.

(a) (b)

FIG. 1. (Color online) (a) Schematic experimental setup for measur-
ing the non-linear anomalous Nernst effect in a time-reversal sym-
metric but inversion symmetry broken system. Vx is measured as the
non-linear anomalous Nernst voltage when a temperature gradient
(−∇T , represented by the red arrow) is applied along y−direction
forming an angle θ with the principal axis a (black dashed line). (b)
Ma is the mirror line which takes ka to −ka. Due to the mirror sym-
metry and time reversal symmetry, only the a−component (black
arrow) of the non-linear anomalous Nernst coefficient (Λ), which is
perpendicular to the mirror line Ma, is non-zero.

III. ANGULAR DEPENDENCE OF NON-LINEAR
ANOMALOUS NERNST RESPONSE

In this section we will study the angular dependence of the
NLANE for a Nernst experimental setup which is schemat-
ically shown in Fig. 1. Angle θ is due to the misalignment
between the temperature gradient −∇T (red arrow) and the

a-axis of the crystal (black dashed line). In Fig. 1(b), Ma

is the mirror symmetry line (black long dashed line) along
b−axis45,47,48. Based on the analysis in Sec. II, Λa is the only
non-zero component of the NLANE coefficient that is perpen-
dicular to the mirror line Ma as shown in Fig. 1(b).

From Eq. (11) we could define the thermo-electric conduc-
tivity tensor α0 with components as

α0
aa = −eτ

∫
[dk] v2a

(
εk − µ
T

)(
−∂f0
∂εk

)
,

α0
ab =

e

~

∫
[dk] Ωck

[(
εk − µ
T

)
f0 + kB

∑
n

fn0
n

] (17)

which represent the longitudinal and transverse compo-
nents of the thermo-electric conductivity respectively21,25,66.
The linear anomalous Nernst conductivity (α0

ab) can also
be written in terms of entropy density (sk) as α0

ab =
ekB
~
∫

[dk] Ωksk, where the entropy density is given by sk =
−f0 log (f0) − (1 − f0) log (1− f0). Now from the linear
response theory, we can write(

j0a
j0b

)
=

(
α0
aa α0

ab

−α0
ab α0

bb

)(
−∇aT
−∇bT

)
. (18)

It is shown in Fig. (1) that we are dealing with two sets of
coordinates ((x, y) and (a, b)) related by angle θ. For this
reason, we introduce the transformation matrix G(θ) which
transforms the principal axes (a, b) coordinates to the (x, y)
coordinates in experiment47. In the linear regime, both the
charge current and thermal gradient could be transformed by
G(θ), like(

j0a
j0b

)
= G(θ)

(
j0x
j0y

)
,G(θ) =

(
cos θ sin θ
− sin θ cos θ

)
(19)

Now under the transformation G(θ), we have the thermo-
electric conductivity tensor α̃0 = G†α0G given by

α̃0 =

(
α0
bb + δα0 cos2 θ δα0 sin θ cos θ + α0

ab

δα0 sin θ cos θ − α0
ab α0

bb + δα0 sin2 θ

)
(20)

where δα0 = α0
aa − α0

bb is the anisotropy of the thermo-
electric conductivity along the principal axes. Now, by def-
inition the corresponding resistivity tensor ν can be obtained
as (

−∇xT
−∇yT

)
=

1

α̃0

(
j0x
j0y

)
= ν

(
j0x
j0y

)
, (21)

with

ν =

(
ν0bb + δν0 sin2 θ −ν0ab − δν0 sin θ cos θ

−ν0ab + δν0 sin θ cos θ ν0bb + δν0 cos 2θ

)
(22)

where

ν0
ii′

=
α0
ii′

|α̃0|
, δν0 =

δα0

|α̃0|
, |α̃0| = α0

aaα
0
bb + (α0

ab)
2. (23)
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From the Eq. (22), the angular dependence of the thermo-
electric resistivity in linear regime can be written as

νxx = ν0bb + δν0 sin2 θ,

νxy = −ν0ab − δν0 sin θ cos θ.
(24)

Following Eq. (16), the non-linear response to the second-
order of∇T along the principal axes can be written as,

(
ja
jb

)
=

(
0 αaab 0 αabb

αbaa 0 αbba 0

) ∇
2
aaT
∇2
abT
∇2
baT
∇2
bbT

 (25)

where we have a similar analogy as the non-linear Hall
conductivity47. Here ∇2

ii′T = ∇iT∇i′T for i, i′ = a, b. Now
after the transformation by G(θ), the non-linear response ten-
sor in the experimental coordinates can be written as

(
jx
jy

)
= α̃


∇2
xxT
∇2
xyT
∇2
yxT
∇2
yyT

 ,with α̃ = G†(θ)αG(θ)⊗ G(θ)

(26)

Therefore, the non-linear Nernst conductivity tensor α̃ ex-
pressed in the experimental coordinates (x, y) takes the form

α̃ =

(
0 αxxy 0 αxyy

αyxx 0 αyyx 0

)
(27)

where all the non-zero terms have an angular dependence
given as

αxxy = αaab cos θ − αabb sin θ,

αxyy = αaab sin θ + αabb cos θ,

αyxx = −αxxy, αyyx = −αxyy
(28)

Similar to the NLAHE experiment, the measurable quantity in
NLANE coefficient experiment is non-linear Nernst voltage.
Therefore, we will now derive the angular dependence of the
non-linear Nernst voltage which can be directly checked in
experiments.

Based on Eq. (21) and Eq. (12), the non-linear Nernst volt-
age can be defined as

Vx =νxxjx + νxyjy

=νxx
(
αxxy∇2

xyT + αxyy∇2
yyT

)
+ νxy

(
αyxx∇2

xxT + αyyx∇2
yxT

)
.

(29)

Assuming the temperature gradiant along the y direction and
measuring the non-linear Nernst voltage along the x direction
(shown as the schematic setup in Fig. (1)), the above equation
can be written with the help of Eq. (21) as

Vx =νxx
(
αxxyνxyνyy + αxyyν

2
yy

) (
j0y
)2

+ νxy
(
αyxxν

2
xy + αyyxνyyνxy

) (
j0y
)2
,

=
(
νxxνyy − ν2xy

)
(αxxyνxy + αxyyνyy)

(
j0y
)2
.

(30)

Compare to the case of NLAHE47, the term
(
νxxνyy − ν2xy

)
,

which we denote as ν′, is not the same as the determinant
|ν| = |α̃0|−1. Substituting all the components in the Eq. (30),
the non-linear Nernst voltage takes the form

Vx = ν′ (−αaab cos θ + αabb sin θ) ν0ab
(
j0y
)2

+ν′
(
αaab sin θν0bb + αabb cos θν0aa

) (
j0y
)2 (31)

Now the linear longitudinal voltage in response to the applied
temperature gradiant along the y direction is given by

V 0
y = ν0yyj

0
y =

(
ν0aa sin2 θ + ν0bb cos2 θ

)
j0y (32)

To get rid of the current dependence (j0y ) from the above ex-
pression, we take the ratio between the non-linear Nernst volt-
age (Eq. (31)) and linear longitudinal voltage (Eq. (32)) which
takes the form

Vx(
V 0
y

)2 =
ν′ (−αaab cos θ + αabb sin θ) ν0ab(

ν0aa sin2 θ + ν0bb cos2 θ
)2

+
ν′
(
αaab sin θν0bb + αabb cos θν0aa

)(
ν0aa sin2 θ + ν0bb cos2 θ

)2 .

(33)

Replacing the resistivity by the conductivity, the above
equation can be rewritten as

Vx(
V 0
y

)2 =
ν′′ (−αaab cos θ + αabb sin θ)α0

ab(
α0
aa sin2 θ + α0

bb cos2 θ
)2

+
ν′′
(
αaab sin θα0

bb + αabb cos θα0
aa

)(
α0
aa sin2 θ + α0

bb cos2 θ
)2 (34)

where ν′′ = α0
aaα

0
bb −

(
α0
ab

)2 − α0
abδα

0 sin 2θ. To simplify
the above equation we now define n0 = α0

bb/α
0
aa and n1 =

α0
ab/α

0
aa where n0 represents the conductivity anisotropy ra-

tio along the principal axes. Therefore, the Eq. (34) takes the
form

Vx(
V 0
y

)2 =f1α
0
aaαaab + f2α

0
aaαabb (35)

where the angular dependence factors f1, and f2 can be writ-
ten in terms of n0, n1 and θ as

f1 =
n0(1 + n1 sin 2θ) + n1(n1 + sin 2θ)(

sin2 θ + n0 cos2 θ
)2 (n0 sin θ − n1 cos θ)

f2 =
n0(1 + n1 sin 2θ) + n1(n1 + sin 2θ)(

sin2 θ + n0 cos2 θ
)2 (n1 sin θ + cos θ)

(36)

Eq. (35) and (36) give the general expressions of angular de-
pendence of the NLANE. Moreover, for the TR invariant sys-
tem the linear Nernst conductivity vanishes i.e., n1 = 0, then
we have

f1 =
n20 sin θ(

sin2 θ + n0 cos2 θ
)2 ,

f2 =
n0 cos θ(

sin2 θ + n0 cos2 θ
)2 (37)
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IV. MODEL HAMILTONIAN OF TWO-DIMENSIONAL
BILAYER WTe2

In this paper, we take the model Hamiltonian of bilayer
WTe2 to study the NLANE in this system. The bilayer WTe2,
which is created by the stacking of two monolayers45, pre-
serves the TR symmetry and contains a pair of coupled tilted
Dirac nodes. Unlike the monolayer, the inversion symme-
try is naturally broken in bilayer case and a tunable spin or-
bit coupling is allowed via electric gating47,52,53,59. The only
crystalline symmetry that exists for bilayer WTe2 is the mir-
ror plane symmetry44. Therefore, following our analysis in
Sec.II, the non-linear Nernst conductivity is expected to ap-
pear perpendicular to this mirror plane in response to an exter-
nal temperature gradiant. The model Hamiltonian of bilayer
WTe2 can be written as

HC =

(
HK1

+ P ⊗ sx γI0 ⊗ sx
γI0 ⊗ sx HK2

+ P ⊗ sx

)
(38)

where P = ηkxτz . Here, η is the spin-orbit coupling strength,
and γ is the hybridization strength between the two Dirac
cones, whose Hamiltonian is given by,

HKi
= txk̃

i
x + v0

(
kyσx − ζik̃ixσy

)
+mσz + Ei (39)

where k̃ix = (kx −Ki) with Ki are the wave vector com-
ponents of the Dirac point. Here, tx represents the tilt pa-
rameter which tilts the Dirac node along kx direction, v0 is
the velocity, m and Ei are the size of the gap and energy of
the Dirac point respectively. The σi, si(i = 1, 2, 3) are the
Pauli matrices, and I0 is a 2 × 2 unit matrix. ζi = ±1 is the
chirality of the Dirac fermions. HKi with i = 1, 2 describe
the individual spinless Dirac fermion from each layer. The
time reversal partner of Eq. (39) is defined by HTR

Ki
(k) =

T †HKi(−k)T (T = K is the TR symmetry operator for
spinless fermion, whereK is the anti-Hermitian complex con-
jugation operator)67,68, which could be written as,

HTR
Ki

= −txk̃i′x − v0
(
kyσx + ζik̃

i′
xσy

)
+mσz + Ei (40)

where k̃i′x = (kx +Ki), indicating the time reversal Dirac
points of the Hamiltonian in Eq. (39) located at kx = −Ki.
Therefore, the model Hamiltonian of bilayer WTe2 given in
Eq. (38) describes only half of the Brillouin zone44,47. How-
ever, studying the Hamiltonian in Eq. (38) only is sufficient to
show the NLANE for bilayer WTe2, since the TR partner of
Eq. (38) contributes the same to NLANE.

The energy dispersion of bilayer WTe2 in the absence as
well as in the presence of spin-orbit coupling (SOC) are shown
in Fig. (2). The colors associated with each point of the bands
represent the weight of the local Berry curvature. In the ab-
sence of spin-orbit coupling, the bilayer WTe2, which is a
semimetal with a small gap opened by the interlayer coupling,
contains four tilted Dirac nodes. In Fig. 2(a) we can identify
two tilted Dirac cones which carry the opposite Berry curva-
ture because the two layers of the system are related through
a mirror reflection. After turned on, the non-zero coupling

(a)

(b)

FIG. 2. (Color online) Energy dispersions of bilayer WTe2 (a) with-
out spin-orbit coupling (η = 0) and (b) with spin-orbit coupling
(η = 0.15 eV Å). The colors represent the local Berry curvature
distribution corresponding to each k point of the bands. A finite
SOC explicitly lifts the spin degeneracy of the bands. (b) shows
an anti-crossing at the band touching point with SOC of strength
η = 0.15 eV Å indicating by the sign-change (change of the color)
of their Berry curvatures. The other parameters of the Hamiltonian
are v0 = 2 eV Å, t = 1.5 eV Å, m = 0.1 eV , ζ1 = 1, ζ2 = −1,
E1 = 0.02 eV , K1 = −0.1π, K2 = −0.15π, E2 = −0.08 eV ,
and γ = 0.05 eV .

η lifts the spin degeneracy of the bands and splitted the four
bands (Fig. 2(a)) into eight bands (Fig. 2(b)). With increasing
the strength of the spin-orbit coupling, the band gap succes-
sively shrinks to zero and the system undergoes band inversion
and then the band gap reopens again around the Dirac nodes
as shown in Fig. 2(b). The Berry curvatures of the conduction
and valence bands switch their sign due to the band inversion.
However, with further tuning SOC, the system could become
insulating55.

It is clearly seen from the Fig. 2(a) that the Berry curvature
shows finite value only nearby the band edges in the absence
of SOC, which is now asymmetrically distributed at k and
−k at the Fermi surface (see insets of Fig. (3)). The sign
of the Berry curvature is opposite at any k point for the up-



7

(a)

(b)

FIG. 3. (Color online) The non-linear anomalous Nernst coefficient
Λx as a function of chemical potential EF for different strengths of
SOC (a) η = 0 and (b) η = 0.15 eV Å respectively. Insets in (a)
and (b) show different Fermi surfaces where the Fermi energies are
indicated by magenta dashed line. The color of the insets displays
the distribution of Berry curvature weight on the Fermi surface. The
color scale is the same as that in Fig. (2). Here T = 50 K and the
other parameters used are the same as in Fig. (2).

per and lower bands. When we turn on the SOC, the bands
split and anti-cross with their neighbors due to the hybridiza-
tion factor γ. The Berry curvature of the conduction band
exchanges sign with the valence band at the band inversion
and band anti-crossing. In the presence of spin-orbit cou-
pling, the Berry curvature are intensively concentrated around
the Dirac point where the band anti-crossing occurs as shown
in Fig. 2(b). It has been shown that around the points where
the band gaps are almost vanishing, an extremely large Berry
curvature originates within a small gap region i.e., a large
gradiant of the Berry curvature occurs which allows a strong
NLAHE in the bilayer WTe2. Therefore, it is expected to get
a strong NLANE response in bilayer WTe2 based on Eq. (15).
We would like to point out that we can get a non-uniform dis-
tribution of the Berry curvature at a given Fermi level even
without tilting in bilayer WTe2 because the Dirac cones in
this system are coupled due to the hybridization factor (γ)

and also situated at different energies, i.e., E1 = 0.02eV, and
E2 = −0.08eV.

V. RESULTS AND DISCUSSIONS

Recently, non-linear anomalous Hall effect has been ob-
served experimentally in bilayer WTe2 system due to the
nonuniform distribution of the Berry curvature at Fermi sur-
face. It has been shown that the tilted band anti-crossings
and band inversions lead to a large Berry curvature dipole
which produces the strong non-linear Hall effect in this sys-
tem. Therefore, it is expected to get a finite non-linear anoma-
lous Nernst signal based on the Eq. (15) for the same system.
Since the Dirac nodes are tilted along the kx direction by tx
in this system, the Berry curvature has an asymmetric distri-
bution along kx direction while symmetric distribution along
ky direction as clearly seen from the figure. Therefore, comb-
ing the mirror symmetry and the TR symmetry for the bilayer
WTe2 system, only the ΛTx is nonzero while ΛTy = 0. Note,
the component indexes mentioned for Λ is within the princi-
pal axes coordinates.

The non-linear anomalous Nernst coefficient Λx (a = x) at
different Fermi energies in the presence as well as absence of
spin-orbit coupling are depicted in Fig. (3). It is clear from
the figure that in the absence of SOC, the magnitude of ΛTx
increases and reaches to a maximum value when the chem-
ical potential approaches towards the band edge. We would
like to point out that despite of being the largest Berry curva-
ture at the band edge, the ΛTx will be zero because the group
velocity vanishes at the band edge in the presence of a gap.
Now, when we turned on the SOC, band inversions and band
anti-crossings occur due to the hybridization factor. There-
fore, sharp peaks (divergence like behavior) of the ΛTx appear
at the band inversions which is clearly seen from the Fig. 3(b).
In particular, with tuning the spin-orbit coupling, the magni-
tude of the ΛTx enhances with the shrinking gaps and the diver-
gences appear at the band inversions. A similar dependence
of Berry curvature dipole on chemical potential has been ob-
tained recently47,48. The insets in Fig. (3) show the Berry cur-
vature distribution at the given Fermi surfaces (indicated by
magenta dashed lines). We would like to mention that due
to the spin-orbit coupling and hybridizations, the Berry curva-
ture could be significantly large on the Fermi surface in bilayer
system compared to the single layer WTe2 system47.

Now we study the temperature dependence of NLANE us-
ing the Eq .(15) where the temperature dependence will come
from (−∂fk/∂εk) besides the 1/T 2 factor. Since the Fermi-
Dirac distribution function becomes broader for higher tem-
perature, the integrand in Eq. (15) collects more contributions
and leads to different NLANE coefficients.

The non-linear anomalous Nernst coefficient ΛTx for dif-
ferent temperatures and chemical potentials is shown in
Fig. (4a). The white arrow and the black arrow indicate the
shift of the local maximum and local minimum value of ΛTx in
(EF , T ) parameter space. The shift of the chemical potential
for these extreme points are plotted in Fig. (4b). When we
increase the temperature from 20K to 500K, there is a linear
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(a)

(b)

FIG. 4. (Color online) (a) Non-linear Nernst coefficient Λx as a func-
tion of chemical potential (EF ) at different temperatures (T) for spin-
orbit coupling η = 0.3eV Å. The position of the local extreme points
of Λx shifts with increasing temperature. (b) The locus of the local
minimum points (indicated by the black dashed line in panel (a)) and
the locus the local maximum points (indicated by the white line in
panel (a)) are shown for different spin-orbit (η). In all cases, with
increasing temperature, the chemical potential at the local minimum
point shows a sudden drop while the chemical potential at the local
maximum point decreases almost linearly.

increasing of the magnitude of the chemical potential of the
extreme points far away from the band edge (EF ≈ 0). On
the other hand, for the extreme points nearby the band edge,
there is an obvious drop in chemical potential with increasing
the temperature.

This temperature-dependent phenomena could be well ex-
plained by the tilted band structure in Fig. (2). For the lo-
cal maximum peak of the NLANE coefficient (bottom in
Fig. 4 (b)), its Fermi energy lies away from the band edge. The
broadened Fermi distribution function f(Ek, EF , β) moves
with the Fermi energy EF . When the temperature increases,
the chemical potential of these extreme points moves away
from the band edge resulting in the linear increasing in nega-
tive direction of the chemical potential. On the other hand,
for the local extreme points nearby the band edge (top in

Fig. 4 (b)), with an increasing temperature the chemical po-
tential of these extreme points do not need to move to reach
a minimum or maximum due to the significantly large Berry
curvature around the band edge. However, the integrand for
the NLANE coefficient will drop suddenly around T = 250
K because the width of (−∂fk/∂εk) contains both the posi-
tive and negative Berry curvature monopoles. This explains
why the chemical potential for the extreme points in Fig. 4(b)
drops around T = 250 K.

Next we study the dependence of NLANE on the spin-orbit
coupling because the SOC can affect the band structure as well
as the Berry curvature distribution for the bilayer WTe2 sys-
tem as already discussed in the previous section. The NLANE
coefficient as a function of spin-orbit coupling strength η and
chemical potential EF is depicted in Fig. (5). The colors
indicate the magnitude of non-linear Nernst coefficient and
the green dashed line is the zero energy level as shown in
Fig. 5 (a). From the figure we find that there are two nodes
circled by the black dashed line in the (EF , η) parameter
space around which we can choose a local co-ordinate sys-
tem. Clearly, these two nodes behave opposite to each other.
In the local coordinate system, the node above EF = 0 car-
ries positive conductivity (bright yellow color) in one direc-
tion whereas the other node below EF = 0 carries nega-
tive conductivity (dark red color) in the same direction and
vice-verse in the perpendicular direction. This behavior of the
NLANE coefficient is related to the band anti-crossing and
band inversion near the Dirac nodes situated atEF = 0.02eV ,
and EF = −0.08eV respectively in the system. Clearly,
with increasing the SOC strength the non-linear Nernst coef-
ficient for a fixed chemical potential EF = 0 goes from pos-
itive value to negative value showing an obvious sign change
around η = 0.15 eV Å. The NLANE coefficient atEF = 0 for
different temperatures from T = 20 K to T = 120 K is shown
in Fig. 5 (b). It is clear from the figure that all the curves in-
tersect around

(
η = 0.15eV Å

)
and the strength of SOC cor-

responding to the intersection point remains unaltered with
changing temperature whereas enhances with increasing the
chemical potential (η = 0.12 eV Å and η = 0.16eV Å for
EF = −0.08 eV and EF = 0.02 eV respectively). The mag-
nitude of the NLANE coefficient decreases with increasing the
temperature. We find that the strength of spin-orbit coupling
at which the NLANE coefficient changes sign shifts towards
lower value with increasing temperature. For large value of
SOC, the system becomes insulating and EF = 0 lies in the
gap. Therefore, the NLANE coefficient at EF = 0 vanishes
due to vanishing Fermi surface at large SOC.

For different values of the tilt parameter, the Fermi surface
gets reshaped and we have different Berry curvature distri-
butions at the Fermi surface which result in different Nernst
conductivities based on the Eq. (15). This fact convinces us
to study the dependence of the non-linear Nernst conductiv-
ity on the tilt parameter which could be varied by tuning the
intrasublattice hoppings69. The x component of NLANE co-
efficient as a function of the tile parameter (tx) for different
EF values is plotted in Fig. 6(a). For bilayer WTe2 system
with spin-orbit coupling η = 0.2 eV Å, the negative non-
linear Nernst conductivity arises (shown by the dark red col-
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(a)

(b)

FIG. 5. (Color online) (a) Non-linear Nernst coefficient (ΛT
x ) at

T = 50 K with different values of the chemical potential (EF ) and
SOC strengths (η). There are two nodes of NLANE coefficient cir-
cled by the black dashed line. Clearly, these two nodes behave op-
posite to each other where this behavior of the NLANE coefficient
is related to the band anti-crossing and band inversion near the Dirac
nodes situated atEF = 0.02 eV , and EF = −0.08 eV respectively.
With increasing the SOC strength the Nernst coefficient at EF = 0
(indicated by the dashed line) goes from positive value (white yel-
low) to negative value (dark orange) showing an obvious sign change
around η = 0.15 eV Å. (b) NLANE coefficient at the zero Fermi
energy for different temperatures are shown. The magnitude of the
Nernst coefficient decreases with increasing the temperature. The
strength of spin-orbit coupling, at which all the NLANE coefficient
curves intersect, remains unaltered with changing temperature. The
other parameters used here are the same as in Fig. (3).

ors) around EF = 0. The dependence of NLANE coefficient
on the tilt parameter for different temperatures at zero chem-
ical potential is shown in Fig. 6(b). In the absence of tilt,
the Berry curvatures distribute symmetrically near the band
edge and therefore, the NLANE coefficient vanishes. Now
in the presence of tilt tx, the band extrema are shifted from
the original K(−K) point to opposite directions in kx axis
and makes the Berry curvature distribution asymmetric at the
Fermi surface along kx. Therefore, as the Dirac nodes are
getting tilted more and more with increasing tx, the magni-
tude of NLANE coefficient increases and reaches a maximum

(a)

(b)

FIG. 6. (Color online) (a) Non-linear Nernst coefficient (ΛT
x ) at

T = 50 K as a function of chemical potential (EF ) and tilt param-
eter (tx) in the presence of SOC η = 0.2eV Å. Interestingly, in the
absence of tilt, ΛT

x at the non-zero chemical potential becomes finite
whereas it vanishes when EF is at zero energy. (b) ΛT

x at EF = 0
(indicated by the green dashed line in (a)) as a function of tilt parame-
ter for different temperatures. At tx = 1.25v0, the non-linear Nernst
conductivity vanishes in bilayer WTe2 at all temperatures. The other
parameters used here are the same as that in Fig. (3).

around tx = 0.8v0 (near the critical point tx/v0 = 1 be-
yond which the Dirac cone becomes overtilted). After that it
decreases with further increasing tx as shown in Fig. 6(b). In-
terestingly, all the curves for different temperatures intersect
around tx = 1.25v0, where the NLANE coefficient also van-
ishes. Moreover, in the overtilted region, we have a change in
sign of the Nernst conductivity from negative to positive for
high temperatures as clearly seen from the figure. We con-
sider both the momentum shift (Ki) and the energy shift (Ei)
for the tilted Dirac fermions hybridized via a inter-layer cou-
pling in our model (Eq. (38)). Without the inter-layer coupling
(γ = 0), the two uncoupled Dirac fermions contribute inde-
pendently, not showing any anti-crossings. A small inter-layer
coupling between the two monolayers of bilayer WTe2 explic-
itly breaks the inversion symmetry and opens a tiny gap at the
band crossings of the uncoupled systems44,47. The effect of the
inter-layer coupling γ on the NLANE ΛTx for different SOC is
shown in Fig. (7). For both (a) and (b) ΛTx decreases to zero
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(a)

(b)

FIG. 7. (Color online) Non-linear Nernst coefficient (ΛT
x ) at T = 50

K as a function of chemical potential (EF ) and inter-layer coupling
(γ) in the presence of SOC η = 0.15eV Å (a) and η = 0.20eV Å (b).
The magnitude of ΛT

x decreases to zero (and stays at zero) when the
inter-layer coupling goes over γ = 0.15eV , in spite of the different
spin-orbit coupling in (a) and (b). The insets correspondingly show
the values of ΛT

x versus γ at EF = 0 (green dashed line in main
figure), where the short black lines indicate the point (γ ≈ 0.15eV )
above which ΛT

x = 0. All the other parameters used here are the
same as in Fig. (2).

at all Fermi levels when γ goes over 0.15eV , as shown in the
figure. A cross-section of the maps at EF = 0 (green dashed
line) is shown in the inset in panel (a) and (b), where the blue
line is the value for ΛTx for varied γ and the short black line
indicates ΛTx = 0 around γ = 0.15eV . This could be un-
derstood from the band structure based on the Hamiltonian
model (Eq. (38)) for bilayer WTe2. When the coupling be-
tween the Dirac cones for bilayer WTe2 increases, their Dirac
points would approach each other and coalesce in momentum
space despite the momentum shift Ki and energy shift Ei.
Therefore, the total NLANE for the system is reduced, due to
the decrease of the unevenness of the berry curvature Ω(k)
and the Fermi distribution function f(k). Increasing γ further
would open a gap for the system, rendering the whole system
insulating and a zero NLANE.

(a)

(b)

FIG. 8. (Color online) The angular dependence factor f1 (n0, θ) as
a function of the angle θ between the temperature gradient and prin-
cipal axis for different values of n0.The plot in each panel (a) shows
the non-scaled curves, where we see the relative magnitude of the
f1 for different n0. While all the curves are scaled relatively to the
value at θ = 3π/2 in panel (b). For a time reversal symmetric system
where the linear Nernst response is zero (n1 = 0), a similar angular
dependence (given in Eq. (37)) of the NLANE is found as that of the
NLAHE in the recent work47.

For clarity, we point out that all the components mentioned
so far in this section are discussed in the principal axes co-
ordinates, i.e., tx, Λx are the a−component (with a = x is
the principal axes) of the tilting and the NLANE coefficient
respectively. However, the x−component should be distin-
guished from the a−component for the angular dependence
analysis based on the setup shown in Fig. (1).

In Sec. III, we have systematically derived the general ex-
pressions for the angular dependence of the non-linear Nernst
voltage (Eq. (35)) which is tightly connected to the experi-
ments. For a system with given parameters including η, tx, γ
and µ, the angular dependence of NLANE can be shown
by calculating the angular dependence factors f1 and f2. In
Eq. (36), the conductivity anisotropy ratios n0 and n1 can be
tuned via gate voltage in experiments. In this paper we study
the angular dependence of the non-linear Nernst voltage in bi-
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layer WTe2. Considering the presence of time-reversal sym-
metry and the mirror plane Ma of the bilayer WTe2, the only
non-zero component of the NLANE coefficient is ΛTa which
is perpendicular to the mirror plane (as shown in Fig. (1)).
Therefore, we have αabb = −αbba = 0 leading to the fact that
we only have to calculate f1 to get the full angular dependence
of non-linear Nernst voltage in this system. Note, for Hamil-
tonian HC given in Eq. (38), both the linear AHE response
(α0
ab) and the NLANE (αaab) are non-zero based on Eq. (11)

and Eq. (13) respectively. Including the contribution of the TR
partner of Eq. (38), the linear ANE vanishes (n1 = 0) while
the total NLANE doubles which is indicated by its coefficient
2ΛTa .

Now we consider that the temperature gradient is applied
along the y direction and the non-linear Nernst voltage is
measured along the x direction in bilayer WTe2 (shown in
Fig. (1)). For the TR invariant system, n1 = 0 i.e. no lin-
ear Nernst response is present, the angular dependence of f1
depends on the anisotropy ratio n0 could be described by
Eq. (37). The angular dependence factor f1 (n0, n1, θ) as a
function of the angle θ between the applied temperature gra-
dient and principal axes for different values of n0 with n1 = 0
is depicted in Fig. (8). Here, a non-scaled plot is given in (a)
where the relative magnitudes for different n0 value are shown
correspondingly while in (b) all the curves are scaled by the
value at θ = 3π/2. In the absence of anisotropy (n0 = 1), the
Eq. (37) dictates that the angular dependence will be a sin θ
dependence which is also clearly seen from the figure. When
the anisotropy ratio is large (n0 > 1), the angular dependence
is deviated from the sine dependence. On the other hand, in
the case of small anisotropy (n0 = 0.6), a double-peak line
shape appears where the maxima at θ = π/2, 3π/2 turn into
a minima. All these features of the angular dependence of
the non-linear Nernst voltage can be checked by tuning the
anisotropy ratio through gate voltage in experiments.

VI. CONCLUSION

In conclusion, we study the nonlinear anomalous Nernst
effect of time-reversal invariant but inversion symmetry bro-
ken systems, specifically, bilayer WTe2. We have systemat-
ically derived the nonlinear Nernst current as a second order

response to the temperature gradient through the Boltzmann
semiclassical approach. By a symmetry analysis, we show
that the transverse nonlinear Nernst response has an explicit
origin in a pseudotensorial quantity, ΛTa , which plays a role
similar to the Berry curvature dipole determining the nonlin-
ear anomalous Hall effect in the recent studies. We calculate
and make experimental predictions for the NLANE coefficient
for its dependence on temperature, spin-orbit coupling, tilting,
inter-layer coupling, and chemical potential for the bilayer
WTe2, in which signatures of NLAHE have been observed re-
cently. In addition to the Berry curvature dipole contribution,
disorder mediated effects such as non-linear side-jump and
skew scatterings from impurities that contribute to the non-
linear anomalous Hall effect48,49,51,70,71, may also contribute
to non-linear anomalous Nernst effect. These effects are be-
yond the scope of this paper and are left for future study.

Through the mapping of NLANE coefficient into the pa-
rameter space of chemical potential and spin-orbit coupling
(EF , η), we find there are two nodes that could be associated
with the Dirac points of the model. Between these two nodes
in the parameter space, there is a region where we find the
NLANE coefficient changes sign with tuning the spin-orbit
coupling. We also show a mapping of the NLANE coeffi-
cient into the (EF , tx) and (EF , γ) parameter space, where
the tilting (tx) and the inter-layer coupling (γ) effect on the
NLANE could be observed respectively. We also derive the
angular dependence of the NLANE in detail, where the angle
is between the applied temperature gradient and the principal
axes. Finally we wish to remark that the derivations in this
work can also be applied to other 2D and 3D systems in addi-
tion to WTe2. Since NLAHE has already been experimentally
observed in bilayer WTe2, we apply the general theoretical
framework for NLANE developed in this paper to this sys-
tem, and make several predictions which can be checked ex-
perimentally.
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