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We study the interplay of competing interactions in spin-1/2 triangular Heisenberg model through tuning the
first- (J1), second- (J2), and third-neighbor (J3) couplings. Based on large-scale density matrix renormalization
group calculation, we identify a quantum phase diagram of the system and discover a new gapless chiral spin
liquid (CSL) phase in the intermediate J2 and J3 regime. This CSL state spontaneously breaks time-reversal
symmetry with finite scalar chiral order, and it has gapless excitations implied by a vanishing spin triplet gap
and a finite central charge on the cylinder. Moreover, the central charge grows rapidly with the cylinder circum-
ference, indicating emergent spinon Fermi surfaces. To understand the numerical results we propose a parton
mean-field spin liquid state, the U(1) staggered flux state, which breaks time-reversal symmetry with chiral
edge modes by adding a Chern insulator mass to Dirac spinons in the U(1) Dirac spin liquid. This state also
breaks lattice rotational symmetries and possesses two spinon Fermi surfaces driven by nonzero J2 and J3,
which naturally explains the numerical results. To our knowledge, this is the first example of a gapless CSL
state with coexisting spinon Fermi surfaces and chiral edge states, demonstrating the rich family of novel phases
emergent from competing interactions in triangular-lattice magnets.

PACS numbers: 73.43.Nq, 75.10.Jm, 75.10.Kt

Introduction. Quantum spin liquids (QSLs) are novel quan-
tum phases of matter, which do not exhibit any symmetry-
breaking orders even at zero temperature1–3 but feature long-
range entanglement and fractionalized excitations4–7. QSLs
have been studied extensively in the past few decades, due to
their important role in understanding strongly correlated ma-
terials and potential application in topological quantum com-
putation8–12. While gapped QSLs have been classified and
characterized systematically, there is much less understanding
on gapless QSLs and how they could be realized in materials.
Although a gapless QSL with Dirac cones of spinons has been
shown to exist in the exactly soluble Kitaev model12, so far
there is no definitive evidence that a Dirac spin liquid has been
realized in any magnetic materials2,13. A more exotic state is
the gapless QSL with spinon Fermi surfaces (SFSs)14–16. Such
a QSL has an extensive number of low-energy excitations, and
was shown to be stabilized by four-spin ring-exchange cou-
plings that can arise from strong charge fluctuations in weak
Mott insulators17–21.

Experimentally, many QSL candidate materials fall into the
family of layered spin-1/2 magnets on the triangular lattice,
such as the organic salts22–26 and the transition metal dichalco-
genides27–30. Specific heat and thermal transport measure-
ments point towards the presence of extensive mobile gapless
spin excitations, which appear to be consistent with a gapless
QSL with SFSs24,26,28. These materials are considered to be
weak Mott insulators with strong charge fluctuations, which
may induce such gapless QSL behaviors17–21. However, a di-
rect study on the triangular Hubbard model suggests a possible
gapped chiral spin liquid (CSL) phase in the intermediate U
region31. Therefore, a clear theoretical understanding on the
mechanism to realize gapless QSLs in these layered quasi-
two-dimensional magnets is still lacking.

Another route to QSL is through competing interactions be-
tween different neighboring sites, such as the kagome com-

pound kapellasite32 and J1-J2-J3 kagome model33,34. Re-
cently, competing interactions have also been found essen-
tial to understand possible QSLs in the triangular-lattice rare-
earth compounds35–39 and delafossite oxides40–43. Indeed, a
QSL phase has been found in the spin-1/2 J1-J2 triangular
Heisenberg model (THM) although its nature has not been
established44–51. Therefore, understanding how QSL phases
emerge from competing interactions is an important issue in
order to discover new QSL materials52–54.

In this Rapid communication, we systematically study the
spin-1/2 J1-J2-J3 THM using density-matrix renormaliza-
tion group (DMRG) method and the parton construction. The
model Hamiltonian is given as

H = J1
∑
〈i,j〉

Si ·Sj+J2
∑
〈〈i,j〉〉

Si ·Sj+J3
∑
〈〈〈i,j〉〉〉

Si ·Sj , (1)

where J1, J2, J3 are the first-, second-, and third NN interac-
tions as shown in the inset of Fig. 1(a). We choose J1 = 1.0
as the energy scale. In the coupling range 0 ≤ J2/J1 ≤
0.7, 0 ≤ J3/J1 ≤ 0.4, besides the previously found J1-J2
spin liquid and different magnetic orders, we identify a new
gapless CSL phase as shown in Fig. 1(a). This CSL state
spontaneously breaks time-reversal symmetry (TRS) with a
finite scalar chiral order. We also observe spin pumping upon
flux insertion, similar to the charge pumping in Laughlin-
type fractional quantum Hall states, indicative of a chiral edge
mode, which is further confirmed by the entanglement spec-
trum. Finite-size scaling of spin triplet gap on the square-like
clusters shows a vanished spin gap. The gapless nature is fur-
ther supported by the bipartite entanglement entropy, which
exhibits a logarithmic correction of the area law versus sub-
system length, leading to a finite central charge. The central
charge grows with the cylinder circumference consistent with
a QSL with emergent SFSs. We propose a staggered flux state
in the Abrikosov-fermion representation of spin-1/2 opera-
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FIG. 1. Quantum phase diagram of spin-1/2 J1-J2-J3 THM. The
inset shows the model on the YC geometry. We find a 1200 order, a
stripe order, a zigzag order, an incommensurate (IC) order, and a gap-
less chiral spin liquid (CSL) phase in the neighbor of the previously
found J1-J2 spin liquid (SL) phase. The colored dotted-lines are
schematic phase boundaries, and the black dotted-lines are the clas-
sical phase boundaries of the 1200, stripe, and zigzag orders. Static
spin structure factors of the gapless CSL (b), the zigzag state (c), and
the incommensurate state (d) on the YC8 cylinder.

tors, which explains the coexistence of chiral edge mode and
SFSs observed in this gapless CSL.

We study the system by using DMRG with SU(2) sym-
metry55,56. We use cylinder geometry with periodic boundary
conditions along circumference direction and open boundary
conditions along extended direction. The lattice vectors are
defined as a1 = (1, 0) and a2 = ( 1

2 ,
√
3
2 ). Two geome-

tries named YC and XC cylinders are studied, both having
extended direction along a1. For the YC and XC cylinders,
circumference direction is along a2 and perpendicular to a1,
respectively. The cylinders are denoted as YCLy − Lx and
XCLy −Lx with Ly and Lx being the numbers of sites along
circumference and extended directions. We study the systems
with Ly = 5−12 by keeping up to 8000 SU(2) states (equiv-
alent to about 24000 U(1) states) to obtain accurate results
with truncation error less than 10−5 in most calculations.

Quantum phase diagram. We demonstrate the quantum
phase diagram in Fig. 1(a). With growing J2 and J3, we
find different magnetically ordered phases and QSL phases.
In Fig. 1(a), the black dotted lines denote the classical phase
boundaries of the 1200, stripe, and zigzag orders. We also
find an incommensurate (IC) magnetic order in the neighbor
of the zigzag order, consistent with previous spin-wave cal-
culations52. The incommensurate order might be considered
as the zigzag order with an incommensurate modulation (see
Supplemental Material57). In the presence of quantum fluctu-
ations, we find a new gapless CSL phase near the triple point
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FIG. 2. Finite scalar chiral order of the CSL state at J2 = 0.3, J3 =
0.15. (a) and (b) are the scalar chiral order measured from the bound-
ary to the bulk on the YC and XC cylinders. The scalar chiral order
〈χ〉 = 〈S1 · (S2×S3)〉 is defined for the three spins Si (i = 1, 2, 3)
for each triangle, and d is the distance of the triangle from the edge.
The chiral orders of all the triangles have the same chiral direction.

of the classical orders, which sits at the neighbor of the J1-J2
SL. By computing spin and dimer correlation functions, we
find featureless spin and dimer structure factors that indicate
the absence of spin and dimer orders in the CSL state57. Next,
we further characterize the nature of this new CSL state.

Spontaneous time-reversal symmetry breaking. To detect
spontaneous TRS breaking, we use complex-valued wave-
function, which has been applied in DMRG to find chiral
ground states in different systems33,58. If TRS is sponta-
neously broken, the system is featured by finite scalar chiral
order 〈χ〉 = 〈S1 · (S2 × S3)〉, where Si (i = 1, 2, 3) label
the three spins on each triangle. On the YC cylinder with both
even and odd Ly , we find a nonzero chiral order in the bulk of
cylinder with a large circumference, as shown in Fig. 2(a) for
J2 = 0.3, J3 = 0.15. In these states, the chiral orders of all
the up- and down-triangles have the same sign, and the chiral
order grows more robust as the circumference increases. On
the XC cylinder shown in Fig. 2(b), the chiral order vanishes
in the bulk for small circumference but becomes stable on the
wide XC12 cylinder. Combining these results we conclude a
CSL state with spontaneous TRS breaking.

Spin triplet gap and entanglement characterization. We
calculate the spin triplet gap by obtaining the ground state (in
the S = 0 sector) on long cylinder and then sweeping the
S = 1 sector for the middle Nx columns59, which gives the
gap of the middle Nx × Ly system. We find that the gap ver-
sus 1/Nx shows length dependence57. To estimate the gap
in the 2D limit and avoid 1D physics, we extrapolate the gap
data of the square-like clusters as shown in Fig. 3(a). The gap
drops fast as a function of 1/Ly and smoothly scales to zero,
suggesting gapless spin-triplet excitations.

Furthermore, we study entanglement entropy versus sub-
system length lx by cutting the cylinder into two parts. Since
the real-valued wavefunction is a superposition of the two
chiral states with opposite chiralities, it has a higher entan-
glement entropy and is harder to converge to; thus we also
use complex-valued wavefunction to compute entanglement
entropy. As shown in Fig. 3(b) for J2 = 0.3, J3 = 0.15
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FIG. 3. (a) Size scaling of the spin triplet gap obtained on the square-
like clusters. (b) Entanglement entropy versus subsystem length lx
on the YC6 cylinders with different Lx. (c) Entanglement entropy
on the YC8-16 cylinder by keeping different SU(2) state numbers.
The dash lines denote the fitting of entropy following the formula
S(lx) = (c/6) ln[(Lx/π) sin(lxπ/Lx)] + g, giving central charge
c ' 1 for the YC6 cylinder and c ' 5 for the YC8-16 cylinder. (d)
Entanglement spectrum labeled by the quantum numbers total spin
Sz = 0 and relative momentum along the y direction ∆ky . λi is the
eigenvalue of reduced density matrix. The red circles denote the near
degenerate pattern {1, 1, 2, 3, 5} of the low-lying spectrum.

on the YC6 cylinder, the entropy shows a logarithmic cor-
rection of the area law and follows the behavior S(lx) =
(c/6) ln[(Lx/π) sin(lxπ/Lx)] + g60, where S(lx) is the bi-
partite entanglement entropy, c is the central charge, and g is
a non-universal constant. The YC6 cylinders with different
Lx give a consistent central charge c ' 1. For the YC8 cylin-
der, we choose Lx = 16 (the entropy for larger Lx is much
harder to converge and we show the results for Lx = 24 in
Supplemental Material57, which are consistent with the fitted
central charge c = 5). As shown in Fig. 3(c), the entropy con-
tinues to grow with kept state number and converges very well
by keeping 6000 SU(2) states, giving a large central charge
of c ' 5. The finite central charge supports the gapless na-
ture of the CSL state. Once a 2D quantum state is confined
to a 1D cylinder, the finite circumference quantizes the mo-
mentum around the cylinder. The central charge of the 1D
cylinder needs to sum over contributions from all quantized
momenta. Take the U(1) Dirac spin liquid for example, the
cylinder central charge c = 2 − 1 = 1 if the quantized mo-
menta for each spin species only cross one Dirac cone, where
the extra −1 accounts for the U(1) gauge field fluctuations
which gaps out the total spinon density fluctuation57,61. Sim-

ilarly c ≤ 3 if the quantized momenta cross two Dirac cones
(for each spin species), which is an upper bound for the cen-
tral charge on a cylinder of any Ly . The large central charge
we found from DMRG is therefore inconsistent with the U(1)
Dirac spin liquid on triangular lattice44,45,50, but provides a
strong evidence supporting emergent SFSs14,15,18,19. Now that
each pair of crossings (one right mover and one left mover)
between the quantized momenta and the SFSs contributes a
unit of central charge, the total central charge of SFSs gener-
ally grows with Ly , with an upper bound of c ≤ Nw−1 where
2Nw is the total number of crossings57.

For gapped CSL states, entanglement spectrum has a one-
to-one correspondence with physical edge spectrum62. Inter-
estingly, for this gapless CSL state entanglement spectrum
also shows a quasi-degenerate group of levels with the count-
ing {1, 1, 2, 3, 5, · · · } agreeing with chiral SU(2)1 conformal
field theory63, as shown in Fig. 3(d). This may be the first
example of such novel states for interacting system, which
demonstrates similar edge physics as the non-interacting p+ip
chiral superconductor with a gapless bulk spectrum64,65.

The staggered flux state. To understand the DMRG results,
we propose a staggered flux state, whose mean-field ansatz is
constructed in the Abrikosov-fermion representation of spin-
1/2 operators66

Si =
1

4
Tr
(
ψ†iψiσ

T
)
, ψi =

(
fi,↑ fi,↓
f†i,↓ −f

†
i,↑

)
(2)

The Heisenberg Hamiltonian H =
∑
〈ij〉 JijSi · Sj is decou-

pled into the mean-field form as

HMF =
1

8

∑
ij

JijTr
(
ψ†iuijψj + h.c.

)
+

1

8

∑
ij

JijTr
(
u†ijuij

)

with the mean-field amplitude uij = 〈ψiψ†j 〉 = u†ij . In the
U(1) QSL states all spinon pairing terms will vanish and thus

uij =

(
−χ̄ij 0

0 χij

)
, (3)

where χij =
∑
α〈f
†
i,αfj,α〉 = χ̄ji. Then the mean-field

ansatz can be simplified as

HMF =
J

4

∑
〈ij〉

∑
α

(
−χ̄ijf†i,αfj,α + h.c.

)
+
J

4

∑
〈ij〉

(
|χij |2

)
where the mean-field ground state is at half-filling due to the
single-occupancy constraint on the parton Hilbert space∑

α=↑,↓

f†iαfiα = 1, ∀ i. (4)

We consider a U(1) spin liquid known as the staggered flux
state67–69, where fermionic spinons transform under transla-
tions as follows

fr,α
T2−→ (−)r1f†r+a2,α, fr,α

T1−→ fr+a1,α. (5)
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FIG. 4. Mean-field ansatz of the staggered flux state with up to third
NN mean-field amplitudes. (a) Spinon dispersion. (b) Edge spectrum
on a cylinder geometry. (c) and (d) show how the 1d channels with
quantized momentum k2 = 2π

Ly
l2, l2 ∈ Z cross the spinon Fermi

surfaces (SFSs) on finite YC cylinders with Ly = 6, 8. The dotted
rectangle is the reduced Brillouin zone due to the doubling of unit
cell in the mean-field ansatz. Pink and blue circles denote hole- and
particle-like SFSs respectively.

Although the mean-field ansatz doubles the unit cell (along
a2 direction), the projected wavefunction preserves the lattice
translation symmetries by a1,2.

Since the spin model has couplings up to the 3rd NN sites,
we consider the symmetry-allowed mean-field ansatz with
hopping terms up to the 3rd NN, which are shown in Sup-
plemental Material57. The NN hopping ansatz reduces to the
π-flux U(1) QSL state50 in the case of φ1 = φ2 = π/2
(φ1, φ2 are the phases of the NN hoppings), with a pair of
Dirac spinons at half filling for each spin species. The 2nd
and 3rd NN hoppings can open up a direct gap at each Dirac
cone, leading to a Chern number C = ±1 of the lower spinon
band and the chiral edge states shown in Fig. 4(b). Mean-
while the 3rd NN hoppings can break the degeneracy of two
Dirac cones, giving rise to one particle-like SFS around one
Dirac point (blue in Figs. 4(c-d)) and a hole-like SFS around
the other Dirac point (pink in Figs. 4(c-d)). Due to single-
occupancy constraint Eq. (4), the particle-like SFS and hole-
like SFS are perfectly compensated at half filling. Choosing
mean-field parameters as χ = 1.0, φ1 = φ2 = π/2, λ =
1.0, ϕ1 = ϕ2 = ϕ3 = 0, ρ = 3.0, γ1 = γ2 = γ3 = π/257, the
mean-field dispersion and edge spectrum of fermionic spinons
are shown in Figs. 4(a-b).

For further comparison with DMRG, we follow the YC
cylinder geometry with quantized momentum k2 = 2πl2/Ly

along b2 direction. In Fig. 4(c) and (d) we depict how the 1D
channels with quantized momenta k2 = 2πl2/Ly intersect
with the two SFSs in the reduced Brillouin zone of the stag-
gered flux state. On the YC6 cylinder, as shown in Fig. 4(c),
there are Nw = 2×2 = 4 pairs of gapless 1D modes crossing
the SFSs (counting both spin species), constraining the cen-
tral charge to be c ≤ Nw − 1 = 3. On the YC8 cylinder, as
shown in Fig. 4(d), there are Nw = 2× 4 = 8 pairs of gapless
1D modes crossing the SFSs, restricting the central charge as
c ≤ Nw − 1 = 7. This is consistent with the observed c ≈ 1
on YC6-24 cylinder (Fig. 3(b)) and c ≈ 5 on YC8-16 cylin-
der (Fig. 3(c)). Note that the number Nw − 1 only bound the
actual central charge from above, since symmetric backscat-
terings between these gapless 1D channels can further reduce
the total central charge from Nw − 157.

Discussion. The spin structure factor of the gapless CSL
phase in Fig. 1(b) resembles that of the U(1) Dirac spin liq-
uid45. Specifically, it exhibits high intensities on the edge and
at the corner of the hexagonal Brillouin zone, which are asso-
ciated with fermion bilinears and monopoles respectively in
the U(1) Dirac spin liquid70,71. This suggests the proximity
of the gapless CSL to the U(1) Dirac state, which is indeed
the case for the proposed staggered flux state. We have also
studied the phase transition from the J1-J2 SL phase to the
gapless CSL phase. The ground-state energy versus couplings
is very smooth, suggesting a possible continuous phase tran-
sition57. Interestingly, in the J1-J2 SL entanglement entropy
also shows a logarithmic correction of the area law, which
leads to a finite central charge57. A new insight for its ground
state could be a gapless spin liquid with SFSs but preserving
TRS, which we leave for future work.

Summary. We have studied the spin-1/2 J1-J2-J3 THM
by extensive DMRG calculations. We identify a CSL state
spontaneously breaking TRS, featuring a chiral edge mode
and spin pumping upon flux insertion. The vanishing spin
triplet gap and finite central charge reveal the gapless nature
of this state. The central charge which grows with system cir-
cumference further indicates emergent SFSs. While the com-
peting J2, J3 couplings lead to a gapped CSL on kagome lat-
tice34,72, they induce a gapless CSL on triangular lattice. On
the mean-field level we propose a staggered flux state driven
by the J2, J3 couplings, which breaks TRS and forms SFS,
providing a theoretical understanding for such a novel gapless
phase. The discovery of this gapless CSL reveals the novel
possibility for the coexistence of chiral edge modes and SFSs
in a gapless QSL, emergent from competing interactions in a
frustrated two-dimensional magnet.

Note added. After completion of this work, we became
aware of a work by Shijie Hu et al.73, who studied the J1-
J2 spin liquid. Compared to their work, our work focuses on
the J1-J2-J3 model and found a staggered flux state driven by
further-neighbor interactions.
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