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Pd-intercalated ErTe3 is studied as a model system to explore the effect of increasing disorder on
a incommensurate two component charge-density-wave (CDW). The ordering vectors of the CDW
components lie along the two in-plane principal axes of the nearly tetragonal crystal structure. Using
scanning tunneling microscopy (STM), we show that introducing Pd-intercalants (i.e. disorder) in-
duces CDW dislocations, which appear associated with each CDW component separately. Increasing
Pd concentration has a stronger effect on the secondary CDW order, manifested in higher density of
dislocations, and thus increases the anisotropy (nematic character) of the CDW. Suggestive evidence
of Bragg glass phases at weak disorder is also discussed.

INTRODUCTION

Charge ordered states are a key feature of strongly cor-
related materials [1–3]. For example, the cuprate high
temperature superconductors exhibit various signatures
of charge-ordering and fluctuating order, raising the ques-
tion of their impact on the occurrence and nature of su-
perconductivity. While notionally “charge order” refers
to states that spontaneously break the spatial symmetries
of the host crystal, the presence of unavoidable disorder
complicates the situation. On theoretical grounds[4] it is
expected that even weak quenched disorder disrupts long-
range incommensurate charge density wave (CDW) order
at long distances, which implies an intrinsic difficulty in
inferring from observations what the exact form of the
symmetry breaking would be in the “ideal,” zero disorder
limit[5, 6]. This, and the fact that the magnitude of the
resulting ion displacements are relatively small, delayed
the identification of such order in the cuprates with tra-
ditional methods, such as X-ray scattering, even though
evidence of local order was deduced earlier from Scanning
Tunneling Microscopy (STM) and Spectroscopy (STS)
studies [7, 8].

More generally, because charge order is so sensitive to
quenched randomness, it is extremely important to com-
plement spatially averaged information obtained from
transport or diffraction measurements, with information
from local probes. Thus, to shed light on this issue, we
turn here to a model system which mimics certain aspects
of the main features of the charge ordering phenomena
of the cuprates, but for which a fairly solid understand-
ing of the theory of the pure system exists (see [9] and
supplementary Information of [10]), and disorder can be
introduced in a controlled fashion and its effects studied
using both global (scattering and transport) and local
(STM) probes.

It was recently suggested that Pd-intercalated RTe3 (R
= rare earth element; Er in this paper) is a suitable model

system [11–13]. This family of quasi-2D metals exhibit
unidirectional and bidirectional incommensurate charge
density wave states [14–17]. As indicated in Fig. 1, the
pristine (un-intercalated) compound undergoes two suc-
cessive CDW phase transitions, with critical tempera-
tures TCDW1 = 270 K, and TCDW2 = 165 K respectively
[17]. TCDW1 marks the onset of the “primary” CDW
order with ordering vector qCDW1, and TCDW2 is the
second, orthogonal CDW component with qCDW2. Thus,
despite the nearly tetragonal symmetry of the crystal, the
phase at TCDW1 > T > TCDW2 has unidirectional CDW
order, while the low temperature phase is bidirectional,
but with generally inequivalent strengths. Straquadine
et al. demonstrated via resistivity measurements that
signatures of the two phase transitions are then smeared
and suppressed by Pd intercalation, consistent with a sce-
nario in which the dominant effect arises from disorder
induced by the intercalant atoms [13].

In this paper we present a low-temperature STM
study of the effects of disorder on the two orthogonal
components of the incommensurate CDW order in Pd-
intercalated ErTe3. This allows us to obtain clear insight
into the nature of the interplay between the two compo-
nents of the order, the relation between the fundamental
density wave order and composite orientational (“vesti-
gial nematic” [9]) order, and the (sometimes non-local)
role of topological defects (dislocations) in all these phe-
nomena. Our principal results are: i) Both CDWs re-
solved by STM are consistent with bulk measurements
[13, 18], including the fact that the wavelengths in the
two directions are slightly but significantly different from
each other. ii) Both CDW components coexist through-
out the sample, even in the presence of disorder, consis-
tent with the intrinsically bidirectional character of the
low temperature CDW order. However, the CDW associ-
ated with the higher Tc is dominant. iii) Introducing Pd-
intercalants induces both phase disorder and dislocations
(initially dislocation pairs), which appear associated with
each component separately. This has a stronger disrup-
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tive effect on the secondary CDW, which has a greater
number of dislocations than the primary component. iv)
None-the-less, vestiges of the two distinct CDW phases
persist all the way to 5% Pd-intercalation, far beyond
where signatures of the smeared phase transitions are
observed in bulk probes. v) In the presence of disorder,
nematic order[9, 10] is still preserved over length scales
at least as long as the STM field of view. We propose a
phase diagram with two Bragg glass [19–24] phases and
speculate where our samples fall on this diagram.

FIG. 1. Phase diagram taken from [13]. Colored points at
x = 0 mark the phase transitions of the pristine sample. Grey
points at finite x mark the crossover temperatures identified
as features in the electrical resistivity. Vertical arrows mark
the three Pd concentrations discussed in this manuscript. In-
set: Calculated Fermi surface of the parent compound ErTe3
(from [15]) with q1 and q2 as nesting vectors.

RTe3 is formed in the orthorhombic space group Cmcm
[25], and contains double layers of nominally square Te
planes separated by RTe block layers. Orthorhombicity
is derived from a glide plane stacking of these tetrag-
onal layers which determine the electronic properties of
this system at high temperatures. A unidirectional CDW
was first detected in this system by transmission electron
microscopy (TEM) [14]. Angle resolved photoemission
spectroscopy (ARPES) showed that large portions of the
Fermi surface (FS) nested by qCDW1 are indeed gapped
[26]. STM and STS studies established the incommensu-
rate nature of the CDW in TbTe3, while also revealing an
additional CDW ordering perpendicular to the principal
one [16], but weaker in amplitude. Subsequent ARPES
studies on ErTe3 established that two incommensurate
CDW gaps are created in two step transitions by perpen-
dicular FS nesting vectors [18]. Despite the near-nesting
conditions that result in gapping of a substantial portion
of the Fermi surface in the CDW state, several factors
indicate that strong coupling effects unrelated to Fermi
surface nesting play a role [27]. Evidence for this perspec-
tive lies in the large values of 2∆CDW /kBTCDW (∼ 15
and ∼ 7 for the first and second CDW respectively) [28],

though several other factors can also yield such an ef-
fect. More convincingly, high-energy-resolution inelastic
x-ray scattering on TbTe3 revealed strong phonon soft-
ening and increased phonon linewidths over a large part
in reciprocal space adjacent to the CDW ordering vec-
tor, thus showing momentum-dependent electron-phonon
coupling [29].

EXPERIMENT

PdxErTe3 with 0 ≤ x ≤ 0.055 were grown using a
Te self-flux for pure RTe3 compounds [15], with the
addition of small amounts of Pd to the melt. A detailed
description of sample preparation, characterization and
the effect of Pd intercalation on the bulk properties
are given in [13]. Three levels of intercalation were
studied: 0.3%, 2% and 5% (marked in Fig. 1). STM was
performed with a hybrid UNISOKU-USM1300 system
constructed with a home-made ultra high vacuum
sample preparation and manipulation system. The
samples were cleaved at room temperature at pressures
of low 10−10 torr and immediately transferred to the low
temperature STM. Topography was performed at ≈ 1.7
K, with typical tunneling parameters of Vbias=50-100
mV and I=100-300 pA.

RESULTS AND DISCUSSION

The phase diagram in Fig. 1 shows that the secondary
CDW state is more sensitive to disorder. Its “transition
temperature” is suppressed quickly as x increases, and
extrapolates to zero around x = 1%. Thus, samples with
low levels of intercalants should be an excellent starting
point to observe the effect of weak disorder on both tran-
sitions.

Fig. 2a shows topography of a x = 0.3% sample. The
features visible are an atomic corrugation, CDW corru-
gations, as well as small lumps on the surface, often with
a skewed “×” pattern around them. The lumps, which
generally increase in number with the intercalation den-
sity, are only a fraction of an angstrom high, and thus
must arise from sub-surface intercalants rather than sur-
face Pd atoms. Single-crystal x-ray diffraction on the
same crystals confirmed the increase in the b-axis lattice
constant consistent with Pd atoms intercalating between
the van der Waals bonded Te bilayer [13]. DFT calcula-
tions also show this to be the most favorable location for
intercalation [11]. No surface Pd atoms were observed for
low intercalations, presumably due to the high volatility
of the Pd atoms upon cleaving at room temperature.

Much of the analysis of the CDW and effects of dis-
order, are done via the Fourier transform (FFT) of the
topographic data, as in Fig. 2b. The two CDWs gener-
ate a series of very sharp peaks in a line from the ori-
gin to both reciprocal lattice points corresponding to the
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FIG. 2. a) Topography (cropped) of 0.3% Pd-intercalation
sample. (Full size 100 nm image available in Appendix) b)
FFT of (a) with reciprocal lattice points from the Te plane
labeled and white lines indicating the line cut directions. c)
The respective line cuts. Here the stronger CDW peaks (red)
are along c∗. d) Topography (cropped) of 2% sample. e) FFT
of (d) and f) the respective line cuts.

RTe block layer. (See Fig. 2c,f) As in previous STM
and X-ray studies of the parent compound [15, 16, 30],
there are four characteristic CDW points due to mix-
ing with the lattice. For the primary (dominant) CDW,
these are: qCDW1 = 0.70c∗, c∗ − qCDW1 = 0.30c∗,
2c∗ − 2qCDW1 = 0.60c∗ and 2qCDW1 − c∗ = 0.40c∗. (In
this material, the primary and secondary CDW lie along
the c- and a- axis respectively, and the ∗ indicates the
reciprocal lattice vector.) The perpendicular line cut has
a slightly different set of peaks with qCDW2 = 0.68a∗,
a∗−qCDW2 = 0.32a∗, etc. (The uncertainty is ≈ 0.005c∗,
or one FFT pixel, in our 100 nm scans.) Based on wave-
length, we identify the former with the primary, or higher
Tc, CDW[17, 18, 31]. The latter is the secondary CDW,
with a transition at lower temperatures, and is the one
that shows a weaker signal in diffraction measurements
and disappears first with rising intercalation level [13]. In
our STM data, depending on many factors such as tun-
neling parameters, tip condition, and scan location, the
relative amplitudes of the four peaks within one line scan
can vary. However, it is generally true that the CDW1
signal is always stronger everywhere in the 0.3% sam-
ple, thus giving the visual impression of a unidirectional
CDW. We also note the presence of strong satellite peaks
at qTe±qCDW . The CDW exists in the Te plane, and its
signal is strongly modulated by this lattice (qTe). Similar

strong satellites were also seen in STM data of pristine
TbTe3 [16].

Next we show a higher level (2%) of intercalation in
Fig. 2d-f, where the secondary CDW is expected (from
resistivity data) to be absent. Similar to the 0.3%, we
note the lack of surface Pd atoms. There also exists the
same sub-angstrom lumps, the “×” pattern, and their
greater abundance in accordance with the higher interca-
lation level. However, both CDWs are still present, with
the second CDW having a lower amplitude. This was
also seen in the low temperature X-ray data of [13] For
either intercalation level, both CDWs are omnipresent,
ruling out the possibility of alternating domains of a uni-
directional CDW.

Unlike the parent compound, the presence of inter-
calants creates additional features in the topography and
FFT due to quasiparticle scattering interference (QPI).
In real space, this manifests itself as streaks that em-
anate from some of the lumps in a skewed “×” pattern.
In Fourier space, scattering along un-gapped portions of
the Fermi surface, which generally run ≈ 45 degrees to
the CDW vectors (Fig. 1 inset) manifests as a compressed
“×” at the origin as well as other streaks. This “×” is bi-
ased in the c* direction in the 2% sample, and may reflect
the broken 4-fold symmetry via two different CDW gaps
[18]. In the 0.3% sample there are two of these features,
perpendicularly overlapped.

b) 2% secondary

-

0

ph
as

e

100 Å

a) 0.3% secondary

c)

d)

e)

0 100 200 300 400 500 600

Angstroms

0

0.2

0.4

0.6

0.8

1

A
ut

oc
or

re
la

tio
n

0.3% primary
0.3% secondary
2% primary
2% secondary

FIG. 3. CDW defect analysis of 0.3% and 2% Pd-intercalation
samples. a) 1000 Å phase plot for the 0.3% secondary CDW
showing dislocations. b) 2% sample c,d) Zoom in of the high-
lighted areas showing real-space filtered topography. e) Au-
tocorrelation plots for the CDW signals.

To focus on the distinct CDW components, we decom-
pose the topographic maps in Figs. 2a and d as ρ(r) =
ρ1(r) + ρ2(r) + . . . where the primary component, ρ1(r),
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is obtained by applying a flat-topped Gaussian filter that
keeps only Fourier components in a neighborhood of ra-
dius ∆q around qCDW1 = 0.70c∗, ρ2(r) is obtained from
the same filtering near qCDW2 = 0.68a∗, and . . . is every-
thing else. (All data shown are for ∆q ≈ 0.05c∗ to avoid
capturing portions of the nearby CDW point. Further
details regarding the filter width and subsequent data
analysis is provided in the Appendix.) Each component,
in turn, can be expressed in terms of an amplitude and
phase, ρj(r) = Aj(r) cos[qCDWj · r + φj(r)], where the
phase measures the lateral displacements in the CDW
structure, and dislocations are visualized where the phase
winds by 2π around a point. The majority of disloca-
tions are paired with a nearby anti-dislocation so that
the phase winding cancels out. The phase (φ2) of the
secondary CDW (the one more strongly affected by dis-
order) in the 0.3% and 2% samples is shown in Figs. 3a
and b, respectively. Fig. 3c and d show ρ2(r) in the small
areas identified by the squares in Figs. 3a and b, which
contain, respectively, a dislocation pair and an isolated
dislocation. The primary CDW in the 0.3% sample has
minimal phase variations and no dislocations, meaning
that the intercalants have a minimal effect on this CDW.
(See Fig. A2) In the 2% sample, the primary CDW has
some closely separated dislocation pairs, but no isolated
dislocations were observed.

To obtain a more quantitative measure of the range of
the CDW correlations we compute the autocorrelation of
the filtered CDW

Gj(r) ≡ Re

[
gj

∫
d2r′Aj(r)Aj(r + r′)eiφj(r)−iφj(r+r′)

]
(1)

with normalization (gj) chosen such that Gj(0) = 1.
This quantity is shown in Fig. 3e for both the primary
(solid lines) and secondary (dashed lines) components of
the CDW and for both the 2% (blue) and 0.3% (red)
samples. Manifestly, out to the longest distances accessi-
ble to us, it is clear that the disorder has a substantially
stronger effect on the secondary CDW, but that – with
the possible exception of the secondary CDW in the 2%
sample, long range correlations persist even in the pres-
ence of disorder. The character of the short distance drop
in Gj , unsurprisingly, depends on the choice of ∆q, and
is due to non-CDW features or noise which create short-
range correlations. (Oscillations in the curves are due to
analyzing individual datasets and thus lacks (disorder)
configuration averaging.) However, the qualitative dop-
ing dependence of the long-distance (greater than 100
Å) correlation is relatively insensitive to these factors, as
shown in Fig. A3 in the Appendix.)

Finally, we discuss the 5% Pd-intercalation sample,
where Fig. 1 would suggest that remnants of both CDWs
are completely suppressed. The topography in Fig. 4a is
qualitatively different than the lower intercalation sam-
ples, lacking the skewed “×” pattern, but still having
sub-Å height modulations with small length-scale corru-
gations. We typically observe an adatom on the surface
approximately once every 30 nm, of height a few Å, which

occasionally moves or causes a tip reconstruction. This
limits our scan size and therefore FFT resolution.
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FIG. 4. a) 300Å Topography of 5% Pd-intercalation sample.
b) FFT of (a) and c) the respective line cuts.

The FFT (Fig. 4b) reveals that the CDW peaks are
now significantly broadened, with a vague grouping near
the primary CDW point, and an even more nebulous
region for the secondary. However, broad peaks at
the CDW ordering vector still appear in the line cuts
of Fig. 4c. At higher temperatures (95 K), no sharp
k-space points were seen in X-ray and electron diffraction
measurements[13]. Instead, broad and diffuse streaks
spanning between the original CDW points were seen,
indicating 2 dimensional short range correlations that
are consistent with the q-dependent susceptibility. What
could be these same streaks appear in our data as well.
In fact, the visible corrugations seen in the topography
are due to these streaks plus the broad CDW peaks,
and not the atomic lattice, although the lattice points
are well-defined in the FFT. This short range CDW
order likely originates from CDW fluctuations pinned
by the disorder as the sample is cooled to measurement
temperature [3]. A similar observation was reported for
the CDW system NbSe2 [32].
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Putting all these results together, we propose a phase
diagram for a two-component CDW system in the pres-
ence of disorder (derivation and further explanation in
the Appendix) as Fig. 5. Viewing this in terms of STM
data, in the less disordered samples, the decay of the
CDW correlations at long distances (up to r ∼ 1000Å) is
sufficiently slow that it could be consistent with persis-
tent long-range order, but we rule this interpretation out
on theoretical grounds. In contrast, in 3D, a Bragg glass
phase is thought [22] to be possible, in which the auto-
correlation function falls as a power-law, ∼ 1/rx with
x ≈ 1, and in which no isolated (unpaired) dislocations
would occur at long distances. We thus identify as Bragg
glass order cases in which no isolated dislocations are
seen in the field of view, and in which the autocorrela-
tion function at long distances is approximately constant
or at most very slowly decreasing. In both the 0.3% and
the 2% samples, but not in the 5% sample, the primary
(dominant) CDW component exhibits Bragg glass corre-
lations by this criterion. The secondary (subdominant)
CDW also is Bragg-glass-like in the 0.3% sample, mean-
ing the ground-state is a bidirectional Bragg glass. By
contrast, in the 2% sample, we see fairly well-isolated
dislocations in the secondary CDW and the correlations
fall considerably with distance, meaning that either the
CDW is short-range correlated and thus the ground-state
is a unidirectional “stripe-glass,” or that the sample is at
least close to the phase boundary. In the 5% sample, all
the CDW correlations are short-ranged, but there still is
a notable difference between the strength and range of
the two components, so (to the extent that the effect of
the weak orthorhombicity can be treated as a perturba-
tion) this sample exhibits vestigial nematic order.
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APPENDIX I: ADDITIONAL DATA AND
ANALYSIS OF DISLOCATIONS

Fig. A1 shows the full-range topographic data for the
0.3% and 2% samples. We start by employing a variant
of the Fujita-Lawler analysis of a localized Fourier trans-
form in order to get local displacements of the atomic
lattice which are related to scanning artifacts such as
creep and hysteresis [33, 34]. The distortion is removed
before further analysis.
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FIG. A1. 1000Å topographic images for a) 0.3% Pd-
intercalation sample and b) 2%.

Next we Fourier transform the topographic data and
filter around the qCDW = 0.70c∗ (or 0.68a∗) point. To
obtain a real-space representation of the CDW, we re-
verse transform to obtain ρ(r). To obtain the phase plots,
we additionally multiply by e−iqCDW·r and take the angle
of this complex quantity. Two phase plots (for the pri-
mary CDW component) not shown in the main body of

the paper are provided in Fig. A2. Note that these have
less dislocations than their respective secondary compo-
nents. In particular, the 0.3% primary CDW has a rela-
tively uniform phase and no dislocations at all.

100 Å

a) 0.3% primary

-

0

ph
as

e

b) 2% primary

FIG. A2. 1000 Å phase plots for a) 0.3% Pd-intercalation
sample and b) 2%.

To compute autocorrelation, we use the Fourier-filtered
CDW signal ρ(r). This results in a 2D image, peaked at
the center, with modulations at the CDW period. In or-
der to remove the oscillations and obtain the amplitude,
we multiply by e−i(qCDW·r+δ) and filter away the second
harmonic. The resultant image has both real and imagi-
nary components, and via careful choice of qCDW and δ,
the real part can be maximized with minimal imaginary
contributions. That this is possible is a testament to the
single-frequency (i.e. long correlation length) nature of
the CDW. Using the real image, we take a line cut from
the origin out in the direction of the CDW with a small
angular average (±7◦) for smoothing.

In Fig. A3 we show the effects of the Fourier filter width
(∆q) around the CDW point on the calculation of auto-
correlation. The green “medium” curve corresponds to
the filter width used in the main body of the paper and
all the analyses. In this plot, the autocorrelation curves
have been normalized at long length scales. A wider fil-
ter lets in more high frequency noise and other spurious
signals which leads to more short-length correlations (the
initial peak in the red curve) as well as un-physical oscil-
lations.

APPENDIX II: THEORETICAL BACKGROUND

In this section we provide a summary of the theoreti-
cal background behind our analyses of the experimental
data. It sketches an effective field theory of two compo-
nent CDW order in the presence of quenched random-
ness. In reality, the crystals involved are slightly or-
thorhombic, but this seems to be a very small effect so
we will consider an idealization in which the crystal is
taken to be tetragonal and the orthorhombicity – when
included at all – will be represented as an infinitesimal
external symmetry breaking field.
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A. Reviewing the phase diagram in the clean limit

In the absence of disorder (or the best achievable ap-
proximation to this limit) the phase diagram in the T and
chemical pressure P shows three distinct phases: a uni-
form (no CDW) phase for T > TCDW1(P ), a phase with
“bidirectional” CDW order, but with distinctly different
strengths and slightly different ordering vectors for the
two CDW components at T < TCDW2(P ) < TCDW1(P ),
and a “unidirectional” CDW for intermediate tempera-
tures TCDW1(P ) > T > TCDW2(P ). Both CDW phases
break the tetragonal point-group symmetry, and in this
sense have a nematic component.

Since the two transitions are separated from each
other, it is reasonable to treat them separately. However,
since the various ordering tendencies get both truncated
and scrambled when disorder is introduced, we would like
to treat them from the perspective of a single, unified ef-
fective field theory. Moreover, it is observed that as a
function of increasing P , the two lines tend to approach
one another, so that for the case of ErTe3 studied here
(which has the largest effective P - i.e. the smallest lat-
tice constant of any of the stoichiometric tri-tellurides
studied to date) (TCDW1 − TCDW2)/TCDW1 ≈ 0.4. We
would thus like to think that this allows us to organiz-
ing our thinking about a putative multicritical point at
T = T ∗ > 0 and P = P ∗ at which these two lines would
meet at slightly higher pressure, i.e. TCDW1(P ∗) =
TCDW2(P ∗) = T ∗.

The nature of such a multicritical point in a tetragonal
system is already somewhat unusual. To see this, con-
sider the lowest order effective (Landau) potential as a
function of the two components of the CDW order rep-
resented by two complex scalar fields, φ1 and φ2. To the
extent that the crystal can be treated as approximately

tetragonal, the effective Hamiltonian density, H[φ1, φ2],
is symmetric under discrete rotations (and other point
group interactions) that exchange φ1 and φ2. (The weak
effect of the subtle orthorhombicity of the actual crystal
structure can be modeled as a small symmetry breaking
term of the form Vorth ≡ −b[|φ1|2 − |φ2|2].)

B. φ4 theory of stripe and nematic phases

To fourth order in the fields, the effective potential is

V(φ1, φ2) =
α

2

[
|φ1|2 + |φ2|2

]
(2)

+
1

4

[
|φ1|2 + |φ2|2

]2
+
γ

2
|φ1|2|φ2|2 + . . .

where we have assumed that the quartic term is positive
and have normalized the fields such that its strength is
unity.

The phase diagram in the α−γ plane that results from
minimizing this effective potential (i.e. Landau theory)
is shown in Fig. A4a. For γ > 0, there is a second-
order transition to a stripe ordered CDW phase as α
changes from positive to negative values, while for γ < 0
the transition is to a checkerboard state. In the stripe
phase, either the thermal average of φ1 is non-zero and
φ2 = 0 or the converse; in addition to breaking trans-
lational symmetry in one direction, this phase strongly
breaks the C4 rotational symmetry that interchanges the
two components of the order parameter. In the check-
board phase, the thermal averages of φ1 and φ2 are not
only non-zero, but of equal magnitude; this state breaks
translation symmetry in both directions but leaves an
unbroken C4 rotational symmetry. The point α = γ = 0
is a bicritical point, below which, as a function of γ, there
is a first order boundary between the stripe and checker-
board phases. Fluctuation effects for an effective Landau-
Ginzburg-Wilson model with this form of the effective
potential have been considered elsewhere - see especially
in [9]. In addition to their effects on critical exponents,
these can lead to additional subtleties in the nature of
the phase diagram and even to additional phases mak-
ing their appearances; for instance, in a quasi-2D system,
there can be a narrow strip between the stripe ordered
phase and the fully symmetric phase in which CDW order
is melted but in which vestigial C4 symmetry breaking
persists, giving rise to a vestigial nematic phase.

More interesting is what happens to this phase diagram
in the presence of weak but non-negligible disorder. Here
(in d ≤ 4) no incommensurate CDW long-range order is
possible, which likely implies that the CDW transitions
are all replaced by crossover lines separating regions with
little in the way of CDW correlations from regions with
substantial intermediate range CDW order. (An inter-
esting possibility, which we will ignore for now but to
which we will return below, is that for weak enough dis-
order there could exist a Bragg glass phase with power-
law CDW order and no unbound dislocations [22, 23].)
However, as shown in Ref. [9](and as would anyway be
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FIG. A4. Steps in constructing the phase diagram which is
the result of the minimization of the different parts of the
effective potential - see text.

expected on general grounds) the nematic component of
the stripe order persists up to a non-vanishing critical dis-
order strength. The shape of the phase boundary follows
from continuity - in the limit that the disorder strength
tends to zero, this boundary must coincide with the phase
boundary of whatever CDW phase has a nematic compo-
nent. Thus, the phase diagram in the presence of weak
disorder becomes that in Fig. A4b, where the dashed
lines indicate crossovers and the solid black line bounds
the nematic phase.

C. φ8 theory and the nematic bidirectional CDW
phase

Manifestly, the φ4 theory is inadequate, in that it
is missing one phase that is observed in experiments
(the nematic bidirectional CDW), and yet has one im-
plied phase (the checkerboard CDW) not seen in exper-
iments. While we can always imagine that the checker-
board CDW is lurking, as yet undiscovered, in the large
P reaches of the phase diagram, the missing bidirectional
phase is something that needs to be addressed.

Even in the case of pure ErTe3, TCDW2 is smaller than
TCDW1 by a substantial factor, so at temperatures in
the neighborhood of TCDW2 there is no justification for
assuming that |φj | is small; there is thus no reason to
keep only low order terms in powers of the field in the
effective field theory. Indeed, away from the putative
multicritical point, it is legitimate to treat the two clean-
limit transitions in terms of two distinct effective field
theories. Let us consider the case where we are well
below TCDW1, where the value of either |φ1| or |φ2| is
not small, but above TCDW2, and even slightly below
it, the subdominant component is a legitimate expan-
sion parameter. It is convenient to carry out the ex-

pansion of the effective potential in a way that is still
manifestly C4 invariant. We thus define new quantities
as follows: φ1 ≡ |φ| cos(θ)eiδ1 and φ2 ≡ |φ| sin(θ)eiδ2 .
Translational symmetry implies that the free energy must
be independent of δ1 and δ2, and the tetragonal sym-
metry implies that the free energy must be invariant
under θ → −θ and θ → θ + π/2. We can therefore
in complete generality express the effective potential in
terms of the two quantities |φ|2 ≡ |φ1|2 + |φ2|2 and
∆4 ≡ |φ1|2|φ2|2 = |φ|4[1 − cos(4θ)]/8, such that near
TCDW2, ∆ is small. We thus expand V in powers of ∆
giving

V = V0(|φ|2) +
V1(|φ|2)

2
∆4 +

V2(|φ|2)

4
∆8 + . . . (3)

where (noting explicitly for future use all terms of order
up to order |φ|8 and using the same conventions for the
low order terms as above)

V0(φ2) =
α

2
φ2 +

1

4
φ4 +

u6
6
φ6 +

u8
8
φ8 + . . . (4)

V1(φ2) = γ +
γ2
2
φ2 +

γ4
4
φ4 . . . (5)

V2(φ2) = λ+ . . . (6)

In the neighborhood of TCDW2, |φ| is already large
and does not change much in magnitude, so we can focus
exclusively on θ. For V1 > |V2||φ|4/4, V is minimal for
θ = 0 i.e. we are in the stripe phase, while for V1 <
−|V2||φ|4/4 the minimum is at θ = π/4 i.e. we are in
the checkerboard phase. (Here [θ] means the value of θ
mod π/2 chosen to lie in the interval 0 ≤ [θ] < π/2.) The
shape of this intermediate regime depends on the sign of
V2. For V2 < 0 (the case illustrated in Fig. A4c), in the
interval 0 < V1 < |V2||φ|4,

θ =
1

4
cos−1

[
|V2||φ|4 − 8V1
|V2||φ|4

]
. (7)

Thus, the boundary between the stripe phase and the
nematic bidirectional CDW phase (i.e. the line that im-
plicitly defines TCDW2) occurs where V1 = 4|V2|φ4, while
the boundary between the nematic bidirectional CDW
phase and the checkerboard phase occurs where V1 = 0.
On the other hand, for V2 > 0, the stripe phase persists
as long as V1 > 0. Thus, TCDW2 is defined by the con-
dition V1 = 0, while the transition to the checkerboard
phase occurs where V1 = −V2|φ|4/4. In both cases, all
transitions are continuous.

For simplicity, this discussion was carried through in
the case in which TCDW2 is well separated from TCDW1.
However, clearly the same considerations apply even
as they approach each other at the multicritical point,
α = γ = 0. All that is different here is that the size
of the intermediate nematic bidirectional CDW phase,
which is bounded by |δV1| < |V2|φ4/4, and thus gets to
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be parametrically small, as shown in Fig. A4c. Here,
approximating these terms by their leading order expres-
sions in powers of |φ|2, we infer that the intermediate
phase occurs for a range of γ such that |γ| . |λ||α|2.

It is interesting to note that the instability of the bicrit-
ical point seen in the φ4 treatment and its substitution by
this peculiar tetracritical point appears to be inevitable
- at least at the level of mean-field theory. We have not
explicitly carried out the analogous treatment of fluctua-
tion effects and the effects of disorder in the resulting φ8

theory as was carried out for the φ4 theory. Away from
the multicritical point, however, more or less the same
considerations apply, leading to the (conjectural) phase
diagram shown in Fig. A4d in the presence of weak dis-
order.

Indeed, at the conjectural level, it is reasonable to pro-
pose that as a function of T and disorder strength σ, one
would expect a phase diagram with the general topol-
ogy shown in Fig. A5. Here, the inset shows a portion of
the clean limit phase diagram (plotted in the α−γ plane,
where α should be considered a proxy for T ) and the dot-
ted red line shows a trajectory through this diagram at
fixed γ such that there are the two requisite transitions at
TCDW1 and TCDW2. The main figure assumes the same
fixed γ but shows a putative phase diagram in the α− σ
plane. Phases with CDW long-range order are confined
to the σ = 0 axis. However, in just the same way as
previously discussed, [9] the disorder leaves us with a ne-
matic transition, represented by the solid black line in the
figure, that survives up to a critical value of σ, defined as
the point at which the nematic critical temperature goes
to 0. Strong local CDW correlations persist to finite dis-
order, vanishing with increasing α or σ via a crossover
that can be roughly identified with the nematic transi-
tion line although surely some local correlations survive
arbitrarily far beyond this. No other symmetries are bro-
ken upon decreasing α, so what was TCDW2 at σ = 0 be-
comes a crossover line, (which is only sharply defined for
arbitrarily weak disorder) below which a second compo-
nent of the local CDW correlations should be apparent.
(This is indicated by the dashed blue line in the figure.)

Finally, we have indicated two possible Bragg-glass
transitions in the figure as solid red lines. A Bragg glass is
characterized by quasi-long-range (power law) order and
an absence of any free dislocations.[22, 23] It is thermo-
dynamically distinct from a CDW phase (which has long-
range-order) and from a fully disordered phase (which has
exponentially falling CDW correlations). The existence
or not of such a phase is not inevitable, as it depends on
an appropriate hierarchy of energies (e.g. a large core en-
ergy for the dislocation) but it is thought to be possible
in 3-dimensions. In the present case there could be two
such phases - one a “stripe-glass phase” (discussed previ-
ously in Ref. [35]) in which there is unidirectional CDW
quasi-long-range order, and a “bidirectional glass phase”

which has two orthogonal, non-equivalent CDW corre-
lations, both with quasi-long-range order. In principle,
such quasi-long-range order could be inferred from X-ray
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FIG. A5. A conjectured phase diagram as a function of tem-
perature T and disorder strength σ. Here, the inset shows a
portion of the clean limit phase diagram (plotted in the α−γ
plane, where α should be considered a proxy for T ) - see text

diffraction as it leads to a charge-order peak which has
a power-law singularity, which is distinct from the delta-
function that rises from long-range-order or the Loren-
zian (or squared Lorenzian) that characterizes the disor-
dered phase. While this distinction is likely difficult to
establish in practice, a more promising way to establish
such a phase is from STM studies in which disolocations
can be directly visualized.

In terms of other (non-STM) measurement techniques,
the red lines mark thermodynamic phase transitions,
so non-analytic behavior of any measurable properties
should appear as one crosses them. What those singular-
ities are is not simple to predict unambiguously. More-
over, because these are glassy states, the issue of dy-
namics is always present to complicate any discussion -
these systems are prone to fall out of equilibrium due
to all sorts of domain pinning phenomena - which would
also round any thermodynamic signatures. The phase
boundaries (solid lines) in the figure should show up as
sharp features in measurable quantities, under conditions
in which the system remains in equilibrium. The nematic
transition, however, should be rounded by the small de-
gree of orthorhombicity in the crystals - it should thus
show best as a relatively sharp onset of various measures
of macroscopic anisotropy, such as anisotropy in the re-
sistivity tensor. The red lines are intrinsically glassy, and
so may be associated with the onset of slow glassy dy-
namics and a failure of the system to achieve equilibrium
on laboratory time-scales.
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