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I. INTRODUCTION 
Growing applications in metrology and quantum 

information science are driving renewed interest in the 
interplay between spin and mechanical degrees of freedom, 
using one or the other as an interface to mediate quantized 
excitations 1 , 2 . Ingenious paths to controllably couple and 
manipulate spin and physical motion are also being explored as 
test beds for generating macroscopic quantum superposition 
and studying the boundaries between the quantum and classical 
worlds. For example, recent proposals on wave matter 
interferometry suggest the use of color centers in diamond as a 
handle to create translation3 or rotation4,5 superposition states in 
~100 nm size particles. Conversion between spin and 
mechanical rotation also lies at the heart of the Einstein-de 
Haas and Barnett effects6,7, exploited for long as the preferred 
routes to determine the effective gyromagnetic ratio of charge 
carriers in ferromagnetic materials. Recent extensions have 
built on the higher sensitivity of torsional micro-cantilevers to 
investigate, for instance, engineered magnetic multi-layers8 , 
systems where the generation of a mechanical torque arises 
from domain wall displacements9. Other studies have examined 
torques generated by electron spin-flips in nanoscale systems10, 
and magnetization tunneling in a single-molecule magnet 
coupled to a carbon nanotube resonator11.  

On a complementary front, active feedback and cavity-
assisted schemes have been developed to gain control on the 
dynamics of optically trapped dielectric particles including 
both their center-of-mass motion and rotation12,13. Driving this 
effort is the race to attain high rotation speeds as a strategy to 
explore centrifugal forces and vacuum-friction effects14. Unlike 
translational degrees of freedom (evolving under harmonic 
oscillator forces and hence characterized by equidistant energy 
levels), rotational degrees of freedom have a non-linear energy 
spectrum and zero ground state energy, which can be exploited, 

e.g., to better study the superposition of rotational states in 
mesoscopic systems (the analog of persistent counter-
propagating currents in a superconducting circuit), or for 
practical applications such as gyroscopy15. 

Thus far, all routes to driving particle rotation — both 
proposed and demonstrated — rely on the rotator’s 
birefringence16, or on the transfer of angular momentum from 
the light beam, assumed either circularly polarized or endowed 
of orbital angular momentum 17 . Here, we theoretically 
investigate an alternative form of opto-mechanics arising from 
a pair of interacting paramagnetic centers subject to light-
induced spin pumping; an external magnetic field is adjusted so 
that the defects — assumed to have different spin numbers — 
can cross relax. For concreteness, we focus on the pair formed 
by a negatively-charged nitrogen-vacancy (NV) and a P1 center 
in diamond, though our ideas can be generalized to alternative 
pairs of defects, both in diamond and in other semiconductors 
such as SiC. We show that in the presence of continuous 
optical excitation, energy-conserving spin-flips between the 
NV and P1 lead to a net transfer of angular momentum from 
the spin pair to the lattice, both in the form of spin-polarized 
phonons and rigid rotation of the crystal as a whole, with the 
latter being dominant. We find that even in the absence of 
external friction the system gradually slows down to attain a 
pseudo-terminal velocity, which can be tuned by varying the 
applied magnetic field. With an eye on experiment, we discuss 
the more realistic case of particles hosting multiple 
paramagnetic defects, and show that rigid rotation can, in 
principle, generate entanglement between non-interacting pairs. 
This finding, however, should not be seen as a practical hurdle 
since the coupling rate — inversely proportional to the crystal 
moment of inertia — is exceedingly slow, meaning that the 
additive action of multiple defect pairs controlled via magnetic 
resonance techniques can serve as a handle to act on the 
particle rotational dynamics.  
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II. ROTATIONALLY INVARIANT HAMILTONIAN 
While the notion of spin-to-rotation conversion can, in 

principle, find various incarnations (see below), here we focus 
for concreteness on the spin pair formed by a P1 center (or 
neutral substitutional nitrogen impurity) and an NV center (in 
turn comprising a substitutional nitrogen adjacent to a 
vacancy). Figs. 1a and 1b respectively show a schematic and a 
simplified energy level diagram in the presence of an external 
magnetic field ܤ aligned with the symmetry axis of the NV. In 
its negatively charged state, the latter features a spin-1 ground 
state with a zero-field splitting of 2.87 GHz. Near 51 mT, the 
energy separation between the ݉S = 0  and ݉S = −1  ground 
state levels of the NV spin matches the Zeeman splitting 
between the ݉I = േ 1 2⁄  levels of the P1. Continuous optical 
illumination (e.g., at 532 nm) preferentially pumps the NV spin 
into the ݉S = 0 state, from where it subsequently transitions to 
the ݉S = −1  state through dipolar-field-mediated cross-
relaxation with the P1. In a typical type Ib diamond, the P1 
concentration is comparatively higher, meaning that the 
polarization gained by the P1 proximal to the source NV can 
easily spin-diffuse to other, farther-removed defects. The end 
result is a one-directional spin-pumping process, from the NV 
to the ensemble of P1 centers, with the P1 steady-state 
polarization emerging from the interplay between the P1 
concentration (defining the spin diffusion constant), and the 
defect’s spin-lattice relaxation time. This process has already 
been investigated using optically-detected magnetic resonance 
(ODMR) both in the lab- and rotating-frames18-21, and, more 
recently, has been exploited to induce high-levels of 13C spin 
polarization in diamond22,23.  

A closer inspection of the energy diagram in Fig. 1b 
indicates the above spin pumping process is deceivingly 
simple: While it is apparent that energy conservation can be 
ensured with the proper selection of the magnetic field, cross-
relaxation of the NV-P1 pair entails a simultaneous flip to spin 
states with lower quantum projection numbers, thus leading to 
a net reduction of the total spin angular momentum by 2԰. In 
other words, cross-polarization of the P1 spin requires the 
transfer of angular momentum to ‘lattice’ degrees of freedom, 
either through the generation of spin-polarized phonons24,25, or 

the rigid rotation of the crystal (Fig. 1c).  
To gain a more formal understanding, we first consider the 

case of a perfectly rigid solid (as we show later, a reasonable 
approximation for diamond). In this limit, the P1-NV virtual-
atom pair can be thought of as forming a rigid diatomic 
molecule, featuring the crystal’s moment of inertia ࣣ . 
Correspondingly, we write the system Hamiltonian as                 ܪ = ∆ܵ௭ଶ + ߱଴ܵ௭ + ߱଴ܫ௭ + ୢܪ + ௭ଶ2ࣣܮ   ,               ሺ1ሻ 

where ܁ ሺ۷ሻ is the NV (P1) vector spin operator, ∆ is the NV 
zero field splitting, ߱଴ ؠ ܤ|௘ߛ|  is the electron Zeeman 
frequency in the magnetic field ۰ (assumed along the z-axis 
and parallel to the NV), ߛ௘ denotes the electron gyromagnetic 
ratio, ۺ is the vector operator representing the crystal angular 
momentum, and we assume for simplicity the system can only 
rotate about the z-axis. In Eq. (1), ୢܪ  expresses the NV–P1 
dipolar interaction, here viewed as the coupling Hamiltonian ܪୱି୰ between the spin pair and the (rigid) crystal rotation. To 
expose interconversion between spin and crystal rotation, we 
write     ܪୱି୰ ൎ ୢܪ = ݀଴ሺܚሻߜ଴ + ݀ଵሺܚሻλାߜଵି                                                               +݀ଵכሺܚሻλିߜଵା + ݀ଶሺܚሻλାଶ ଶିߜ + ݀ଶכሺܚሻλଶି  ଶା,     ሺ2ሻߜ
where ߜ଴ = ܵ௭ܫ௭ − ଵସ ሺܵିܫା + ܵାିܫ ሻ ଵേߜ , = ܵ௭ܫേ + ܵേܫ௭ ଶേߜ , = ܵേܫേ are the two-spin operators in spherical tensor form. 
By the same token, we denote ݀଴ = ఈ௥య ሺ1 − 3 cosଶ ሻߠ , ݀ଵ =− ଷఈଶ௥య sin ߠ cos ߠ ݁௜ఝ , ݀ଶ = − ଷఈସ௥య sinଶ ߠ ݁ଶ௜ఝ  , and λേ = ݁േ௜థ . 
In the above expressions ܚ = NVܚ −  Pଵ is the inter-spin vectorܚ
with polar and azimuthal angles ߠ and ߶ + ߮, respectively; the 
latter is expressed as the sum of the angle ߶ formed by the 
crystal relative to the laboratory frame and the (fixed) crystal 
frame azimuthal coordinate ߮ . Finally, ߙ = ௘ଶߛ଴ߤ ⁄ߨ4 , where ߤ଴ denotes the vacuum permeability.  

Assuming for now the regime where the crystal’s 
rotational energy is smaller than the dipolar energy, we choose 
the external magnetic field so that ω଴ = Δ 2⁄ ,  the ‘energy 
matching’ condition required for NV–P1 cross-relaxation. 
Limiting our description to the spin subspace spanned by |݉S, ݉Iۧ = ሼ|0, + 1 2⁄ ۧ, |−1, − 1 2⁄ ۧሽ , only the last two 
‘double-flip’ terms in ܪௗ  are (nearly) energy conserving, 

 
Fig. 1: The interplay between optical spin pumping and the crystal’s mechanical degrees of freedom. (a) Schematics of a coupled NV-
P1 pair in a diamond crystal. The P1 center interacts with other P1s farther removed from the NV. (b) Energy level diagram of the NV and P1 
spins (top and bottom respectively. At ~51 mT the energies associated with each individual spin transition match, i.e., δܧS ൎ δܧI. (c) Starting 
with NV spin optical initialization, the NV-P1 pair undergoes a cycle of cross relaxation and generation of spin-polarized phonons and rigid 
lattice rotation. The cycle completes with P1 spin diffusion and spin-lattice relaxation accompanied by the emission of spin-polarized 
phonons. 
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meaning that all first three contributions can be effectively 
truncated. In this limit, we rewrite the Hamiltonian as                   ܪ = ݀ଶሺܚሻλାଶ ଶିߜ + ݀ଶכሺܚሻλଶି ଶାߜ + ௭ଶ2ࣣܮ  .              ሺ3ሻ 

Note that since ሾܮ௭, േሿߣ = േ԰ߣേ , the ߣേ operators can be 
thought of as ladder operators to ܮ௭ . Therefore, Eq. (3) 
explicitly shows how angular momentum is conserved, namely, 
a net spin angular momentum loss from a double quantum flip 
is accompanied by a corresponding crystal angular momentum 
gain (and vice versa). The above dynamics is in strong contrast 
with the spin-conserving zero-quantum ‘flip-flops’ usually 
governing spin diffusion processes through terms of the form ݀଴ܫേܵט in ܪௗ . The key difference stems from the asymmetry 
created by the crystal field, acting on the NV but not the P1, 
and hence rendering flip-flop contributions to the Hamiltonian 
non-secular.  

III. SPIN-CRYSTAL ANGULAR MOMENTUM INTER-
CONVERSION 

To intuitively grasp the system dynamics in the presence 
of optical excitation, it is instructive to first consider the 
simplified case where the crystal — here seen as a free rotor — 
initially occupies a state |݉Lۧ  of mechanical angular 
momentum ݉L԰, and a light pulse instantaneously projects the 
spin system into |0, + 1 2⁄ ۧ (we ignore for now the different 
initialization mechanisms in the NV and P1). Driven by the 
dipolar coupling, the NV–P1 pair evolves into |−1, − 1 2⁄ ۧ 

and, in so doing, changes the orbital part of the wavefunction 
into |݉L + 2ۧ . Reinitializing the spin system into |0, + 1 2⁄ ۧ 
repeats the process, but this time the rotor state evolves from |݉L + 2ۧ into |݉L + 4ۧ, corresponding to buildup of the crystal 
angular momentum and hence to macroscopic physical 
rotation.  

Under continuous optical excitation, this spin-induced 
rotational pumping can be best computed via the tight-binding 
representation of Fig. 2a where each linear chain corresponds 
to one of the two possible spin states and the site energies take 
values ܧ௠L = ݉Lଶ԰ଶ ሺ2ࣣሻ⁄ . In the regime where the rotational 
energy is negligible (i.e., ܧ௠L ا ԰ଶ|݀ଶ|, see below), the time 
evolution can be cast in terms of a series of inter-chain hops 
governed by unit time probabilities Γୢ = ԰|݀ଶ| ሺ2ߨሻ⁄  and Γ୭ , 
respectively representing the NV–P1 dipolar coupling and 
optical pumping rates. To realistically compute the system 
evolution, we must also take into account the rotor 
decoherence, which we model by imposing a dephasing rate ΓL 
on rotation states |݉Lۧ. Assuming a crystal with no net initial 
angular momentum (i.e.,  ܮۃ௭ۄሺݐ = 0ሻ = 0) at some non-zero 
initial temperature ୧ܶ (i.e., ܮۃ௭ଶۄሺݐ = 0ሻ ן ୧ܶ), Fig. 2b compares 
the probability density of rotational states before and after a 
time interval ݐ of continuous optical excitation. Consistent with 
a crystal momentum gain, the initial distribution (faint black 
trace) invariably evolves to yield a net ܮۃ௭ۄ — as reflected by 
the non-zero ݉ۃLۄ — with significant momentum buildup even 
when ΓL ൒ Γୢ .  

 
Fig. 2: Modeling spin-crystal momentum conversion. (a) ‘Tight-binding’ representation of the rotor pumping process: Upper and lower 
chains correspond to spin states |0, + 1 2⁄ ۧ and |−1, − 1 2⁄ ۧ, respectively, while chain sites indicate rotational states |݉Lۧ. Starting from a state |݉S, ݉I, ݉Lۧ, the system evolution is governed by the dipolar rate Γୢ , the optical pumping rate Γ୭, and the rotor decoherence rate ΓL. (b) 
Occupational probability of rotational states after evolution in the presence of continuous optical excitation for a fixed time interval ݐ = 500 
µs and various rotor depahsing rates ΓL ; the faint black trace indicates the population distribution assumed for ݐ = 0. The dynamics is 
evaluated using the Trotter-Suzuki method (see Methods); each curve shows the result after 50 averages. (c) Mean angular momentum ܮۃ௭ۄ as 
a function of the normalized evolution time Γୢ for some rotor decoherence rates ΓL ݐ ; the initial rotor state is that of (b). (d) Long-term 
evolution for the case ΓL = 0. At sufficiently large rotational energies, the spin-crystal momentum transfer is inefficient and the system evolves 
towards a pseudo-terminal angular speed, whose value can be adjusted by shifting the magnetic field (shaded region of the plot). In (b), (c) and 
(d) we use Γୢ = 0.5 MHz, Γ୭ = 1 MHz, and ԰ 2ࣣ⁄ = 10 Hz.  
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Fig. 2c shows the average angular momentum ܮۃ௭ۄ as a 
function of time — expressed in units of the spin–crystal 
momentum transfer time Γୢିଵ — for various rates of dissipation ΓL. In all cases, we observe a linear growth, indicative of a 
constant torque on the crystal with value approximately 
proportional to ሺΓୢଶ + ΓLଶሻିଵ ଶ⁄ . This process, however, cannot 
be sustained indefinitely (even if ΓL = 0) since, as ܮۃ௭ۄ grows, 
so does the crystal’s rotational energy (last term in Eq. (3)), 
whose increasingly larger energy steps δܧ௠L ؠ ௠Lାଶܧ ௠Lܧ− = 2ሺ݉L + 1ሻ ԰ଶ ࣣ⁄  become gradually comparable to the 
NV–P1 spin energy (i.e., ܧߜ௠L~2ߨ԰Γୢ ), thus slowing down 
the spin-crystal momentum conversion (Fig. 2d). Considering 
the extreme angular velocities demonstrated recently for 
optically driven nanoparticles12,13 ( ذ ߨ2 ൈ 1  GHz), this 
‘pseudo-terminal’ regime — first reached for angular 
frequencies of order ~Γୢ  — should be readily observable. 
Efficient rotational pumping, however, can be regained by 
changing the magnetic field so as to recover the ‘energy 
matching’ condition, i.e., Δ − 2ω଴ᇱ + ௠Lܧߜ = 0, where we use 
the prime to highlight the shift relative to the value ߱଴ = Δ 2⁄  
at early stages (shaded half of Fig. 2d).  

For future reference, it is possible to use Fermi’s ‘golden 
rule’ to analytically calculate the rate of interconversion 
between NV spin polarization and crystal rotation. In the limit 
where Γ୭ د Γୢ , we find26                 Γୱି୰ ൎ ୫୧୬ଷݎଶ5԰ଶߙߟଶߨ4 ୱୱሺΓୢߩ , ΓLሻ ൎ Γୢଶ൫Γୢଶ + ΓLଶ൯ଵ ଶ⁄ ,          ሺ4ሻ 
where ߩୱୱሺΓୢ , ΓLሻ  is a lineshape factor, and we assume a 
random distribution of NV–P1 pairs with number concentration ߟ and minimum separation ݎ୫୧୬ = 1 nm. 
  

IV. INTERACTION WITH SPIN-POLARIZED 
PHONONS 

An alternative channel of momentum conservation is via 
phonons, recently shown24,25 to carry an intrinsic “phonon-
spin” angular momentum ۺᇱ = ׬ ݀ଷݎԢࢂ Ԣሻܚሺܝ ߩ ൈ ሶܝ ሺܚԢሻ, where ܝሺܚԢሻ  denotes the local lattice displacement vector, ߩ  is the 
crystal density, and the integral extends over the crystal volume ܸ . To explicitly describe the spin-phonon interaction we 
express the displacement vector as ܝሺܚԢሻ = ඥ԰ ሺ2ܸߩሻ⁄ ∑ ௝,ܓ௝,ܓ܍ expሺ݅ܓ · ௝,ܓܽ Ԣሻܚ ඥ߱ܓ,௝⁄ + H. c , 
where H.c denotes Hermitian conjugate, the sum extends over 
all wave-vectors ܓ  and transverse polarization branches ݆ =1,2 ௝,ܓ܍ ,  denotes the phonon polarization vector, ߱ܓ,௝  is the 
phonon frequency, and we use the standard notation for the 
phonon creation and annihilation operators, respectively ܽܓ,௝† and ܽܓ,௝. Replacing in the expression for ۺԢ, one finds27,28                      ۺᇱ = ԰ ෍ ܓ݇ ቀܽܓା† ାܓܽ − †ିܓܽ ܓቁିܓܽ  ,                     ሺ5ሻ 

where ܽܓേ† ؠ ט ቀܽܓଵ† േ †ଶܓܽ݅ ቁ √2ൗ , and the positive (negative) 
signs indicate left (right) circular polarization. Eq. (5) expresses 
the lattice spin angular momentum as the difference between 
populations of phonons, each carrying a unit ԰  of angular 
momentum parallel or anti-parallel to the direction of 

propagation (i.e., positive or negative quantum of angular 
momentum, respectively).  

To include the effect of spin-polarized phonons into the 
model, we expand ୢܪ to first order in the lattice displacements 
via the correspondence ܚ ՜ ܚ + ܚ઼ , where ઼ܚ = NVሻܚሺܝ ୢܪ                                      Pଵሻ. After some algebra, we find26ܚሺܝ− ൎ ୱି୰ܪ +  ୱି୮ ,                                   ሺ6ሻܪ
where ܪୱି୰  is the spin-rotation interaction derived above for 
the rigid rotator model (Eq. (2)), and  ܪୱି୮ ൎ ෍ ܓ ݅ · ଴ߜ଴,ܓߨ൫ܾ଴ܚ + ܾଵܓߨ,ଵାߜଵି + ܾଵܓߨ,ଵିߜଵା൯ܓ .  ሺ7ሻ 

Above we use the notation  ܓߨ,଴ = ቂ ԰ଶఘ௏ఠౡቃ ൫ܽܓ,୸ − ୸ற,ܓܽ ൯ ଵേ,ܓߨ , = േ ቂ ԰ଶఘ௏ఠౡቃ ൫ܽܓ,േற + ൯ט,ܓܽ , ܾ଴ = − ଷఈଶ௥ర cos ߠ ሺ1 −5cos2ߠ, and ܾ1=−343ݎ16ߙcos4+ߠcos3ߠ. We also assume 
that ܚ is small compared to the relevant phonon wavelengths26, 
i.e., ܓ · ܚ ا 1. As in Eq. (3), the Hamiltonian of Eq. (7) makes 
rotational invariance explicit, this time through the 
interconversion of spin and phonon angular momentum. Unlike ܪୱି୰ , however, ܪୱି୮  connects states differing, at most, by a 
single quantum of angular momentum. Since individual spin 
flips take place at a rate Γୱି୮ሺଵሻ  not greater than the inverse of the 
spin-lattice relaxation time ଵܶሺNVሻ~ ଵܶሺPଵሻ  (induced via ܪୱି୮  or 
other spin-lattice relaxation processes 29 , typically ~1 ms at 
room temperature), we conclude Γୱି୮ሺଵሻ ا Γୱି୰.  

A possibility that must be considered separately, however, 
is one where double spin flips are allowed via second-order 
processes involving simultaneous absorption and emission of 
phonons. In this case, the combined spin-phonon system 
transitions from an initial state |݅ۧܓ = ห… ,ି,ܓ݊ ,ା,ܓ݊ … ,0, + 1 2⁄ ൿ  to a final state | ۧܓ݂ =ห… ି,ܓ݊ − 1, ା,ܓ݊ + 1, … , −1, − 1 2⁄ ൿ . Here, the net spin of 
phonons with wave vector ܓ  — represented through spin-
polarized phonon populations ݊ܓ,ି  and ݊ܓ,ା  — grows by two 
units of ԰ , hence compensating for the angular momentum 
change from NV–P1 spin cross-relaxation (last two quantum 
numbers in the kets). Note that other final states — involving, 
e.g., phonons with wave-vector different from the initial one — 
are forbidden, because spin cross-relaxation must conserve the 
total linear momentum and energy, i.e., ܓ  must remain 
unchanged.  

To calculate the rate of spin-phonon momentum transfer 
via these second order pathways, we consider two types of 
mechanisms26. In the first category, we group all off-resonance 
processes (i.e., |ܓ| ൐ |଴ܓ| ؠ ߱଴ ܿ⁄ , with ܿ denoting the speed 
of sound in diamond) where the transition from state |݅ۧܓ to | ݆ ,௝ൿ,ܓtakes place via virtual states ห݃ ۧܓ݂ = 1, 2 involving an 
NV spin flip |0ۧ ՜ |−1ۧ and the creation (annihilation) of a 
phonon with positive (negative) spin (Fig. 3a). The second 
group corresponds to resonant processes (i.e., |ܓ| = |଴ܓ| ) 
involving an intermediate state ห݃ܓబൿ with the same energy as ห݅ܓబൿ or ห -బൿ (Fig. 3b). Despite the massive majority of nonܓ݂
resonant relaxation channels, this second group of processes is 
more efficient in inducing spin-phonon conversion of angular 
momentum (at least at room temperature and below), mainly 
because phonon states with greater wave vectors quickly 
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depopulate due to the stiffness of diamond26. After a lengthy 
calculation, we find the characteristic spin-phonon conversion 
rate from these resonant, second-order processes is 
approximately given by the formula               Γୱି୮ሺଶሻ ؆ Γୱି୮ሺଶ,௥௘௦ሻ ൎ 10ܿ԰ߙ ൬݇Bܸܶߩ ൰ଵ ଶൗ ቆ2ݎߟߨ୫୧୬ଽ ቇଵ ସൗ  ,           ሺ8ሻ 

where ݇B  denotes Boltzmann’s constant, and ܶ  is the 
temperature. Interestingly, Γୱି୮ሺଶሻ  grows with the inverse square 
root of the crystal volume, implying that spin-phonon 
conversion is greater for diamond micro-particles. Since the 
wavelength of resonant phonon modes ߣ଴ ؠ ߨ2 ⁄|଴ܓ| ܿߨ2= ߱଴⁄  is of order 60 µm, this mechanism is quenched in 
sufficiently small crystals (unable to support these phonon 
modes). In all cases, nonetheless, we find Γୱି୮ሺଶሻ د 10ିଵ sିଵ Γୱି୰ا  (Fig. 3c), hence allowing us to conclude spin-phonon 
angular momentum conversion is not a sizable competing 
mechanism to spin-crystal rotation transfer.  

The latter must not be interpreted, however, as implying 
phonons play no role in the crystal-rotation-pumping process. 
Phonons are key to optically repolarizing the NV center, 
though this process has zero net input of angular momentum 
into the phonon bath (see Refs. [26], [30], and [31]). On the 
other hand, spin-lattice relaxation of bulk P1s (which spin 
polarize into |−1 2⁄ ۧ via spin diffusion from NV-coupled P1s) 
ultimately requires the transfer of (negative) angular 
momentum into the phonon bath. Therefore, the cycle of NV–
P1 spin initialization, evolution, and reset must be viewed as 

one simultaneously leading to net crystal rotation and phonon-
bath-spin pumping, as sketched in Figs. 3d and 3e.  

V. DISCUSSION AND OUTLOOK 
While our description thus far has been limited to a single 

NV–P1 pair, the experimental observation of spin-to-crystal 
momentum conversion will likely require the use of spin 
ensembles. Since the dynamics of each pair is coupled to the 
rotation of the solid — in turn, impacting all members of the 
ensemble — it is natural to wonder about the conditions 
required to treat individual contributions to the torque on the 
crystal as independent from each other. To address this 
question, we first rewrite the Hamiltonian in Eq. (3) as26            ܪథ = ௭ଶ2ࣣܬ + ෍ ݀ଶ,௝ሺܚሻߜଶି,௝ + ݀ଶ,௝כ ሺܚሻߜଶା,௝௝  ,            ሺ9ሻ 

where ܪథ ؠ ܷథܷܪథற  with ܷథ ؠ expሺ−݅߶ ሺܵ௭ + ௭ሻܫ ԰⁄ ሻ , and ܬ௭ = ܵ௭ + ௭ܫ + ௭ܮ  is the total angular momentum (we denote ܵ௭ ؠ ∑ ܵ௭,௝௝ ௭ܫ , ؠ ∑ ௭,௝௝ܫ ). The sum in Eq. (9) represents the 
standard (truncated) dipolar interaction of an ensemble of NV–
P1 pairs in a static solid under energy matching conditions, 
implying that all rotation-derived effects are encapsulated in 
the first term. To make these effects explicit, we transform ܪథ 
to the basis set where all terms in the sum are diagonal, i.e., 
where ఓܷ൫݀ଶ,௝ሺܚሻߜଶି,௝ + ݀ଶ,௝כ ሺܚሻߜଶା,௝൯ ఓܷற = ԰ଶ݀ଶ,௝ᇱ ௭ᇲ,௝ߤ  with ߤ௭ᇲ,௝ denoting a Pauli operator along a (pair-dependent) virtual 
axis z’. Limiting our description to the subspace involving 

 

 
Fig. 3: Spin-phonon angular momentum conversion. (a) Non-resonant mechanism of spin-phonon conversion, i.e., ܿ|ܓ| ൐ ߱଴. Straight 
(wavy) arrows indicate spin (phonon-spin) change; clock-wise (anti-clock-wise) corresponds to phonons with negative (positive) angular 
momentum. The initial and final states are |݅ۧܓ = |… ,ାܓ݊ ,ିܓ݊ … 0, + 1 2⁄ ۧ and | ۧܓ݂ = |… ିܓ݊ − ାܓ݊ ,1 + 1, … − 1, − 1 2⁄ ۧ, respectively. 
The upper and lower virtual states are ห݃ܓ,ଵൿ = |… ିܓ݊ − ,ାܓ݊,1 … − 1, + 1 2⁄ ۧ, and ห݃ܓ,ଶൿ = |… ାܓ݊ ,ିܓ݊ + 1, … − 1, + 1 2⁄ ۧ, respectively. 
(b) Resonant mechanism, i.e., ܿ|ܓ଴| = ߱଴. The notation used for all kets is the same as in (a), except that ܓ ՜  ଴, and the intermediateܓ
state is ห݃ܓబൿ = ห… బିܓ݊ − ,బାܓ݊ ,1 … − 1, + 1 2⁄ ۧ. (c) Resonant spin-phonon conversion rate as a function of the crystal volume; ߣ଴ ܿߨ2ؠ ߱଴⁄  denotes the wavelength of resonant phonons, not supported by crystals of smaller size. (d) NV–P1 spin ‘reset’ involving NV spin 
pumping and P1 spin diffusion into the bulk. Spin-phonon relaxation subsequently transfers the P1 polarization to the phonon bath. (e) 
Schematic representation of the NV–P1 spin cycle. Repeated sequences of NV spin pumping, P1-enabled spin cross-relaxation, and NV–P1 
spin resets simultaneously produce crystal rotation and polarization of the phonon bath spin. 
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states of crystal angular momentum ݉L, the Hamiltonian takes 
the final form ܪథ,ఓሺ௠ሻ ؠ ఓܷܪథሺ௠ሻ ఓܷற ൎ −԰ଶ ෍ ൫݀ଶ,௝ᇱ ௭ᇱ,௝ߤ − ሺ݉ − 1ሻ ௫ᇲ,௝ߤ ࣣ⁄ ൯௝                                   +ሺ԰ଶ ࣣ⁄ ሻ ෍ ൫ߤା,௝ିߤ,௜ + ା,௜൯ᇱ௝ஷ௜ߤ௝,ିߤ ,      ሺ10ሻ 

where we ignore constant terms, and we assume26 ԡ݀ଶᇱ ԡ ب 1 ࣣ⁄ . 
In the Hamiltonian representation of Eq. (10), the first term in 
the upper sum can be viewed as a (local) Zeeman interaction 
with an effective magnetic field of amplitude proportional to 
the NV–P1 pair dipolar coupling, whereas the second term 
represents a (global) transverse field whose amplitude grows 
with faster crystal rotation. Finally, the primed sum 
(comprising only NV–P1 pairs of similar dipolar interaction 
strength) amounts to a rotation-induced inter-pair coupling 
term, independent of the inter-pair distance. Remarkably, this 
interaction can mediate entanglement between remote NV–P1 
pairs, but because the coupling amplitude is inversely 
proportional to the crystal’s moment of inertia, long rotational 
coherence lifetimes — of order ࣣ ԰⁄  — would be required to 
make this process observable. Under optical excitation, the 
system coherence time is dictated (at best) by the inverse 
optical pumping rate, Γ୭ି ଵ, much smaller than ࣣ ԰⁄  for realistic 
conditions. In our present regime, therefore, we can correctly 
describe the impact of the ensemble on the crystal dynamics 
simply as a sum of independent spin-pair contributions.  

Experimentally observing the interplay between spin and 
crystalline angular momenta can capitalize on a variety of 
techniques explicitly conceived to sense weak forces 32 , 33 . 
Among them, silicon-crystal double-paddle oscillators 34  — 
capable of detecting torques as weak as 10ିଵ଼ N·m at room 
temperature 35  — are well-suited to the present application, 
because their large footprint can support mm-sized diamond 
crystals. For a crude comparison, we express the expected 
torque as  ߬ = ݐ݀ۄ௭ܮۃ݀ ~2԰ܸߟΓୱି୰ ,                             ሺ11ሻ 

where we assume26, for simplicity, near optimum NV-P1 
polarization in |0, + 1 2⁄ ۧ, a condition one can approach with 
reasonable illumination power densities of ~1 mW/µm2. For 
crystals with moderate NV-P1 pair concentrations (5~ߟ ppm), 
we find ߬~10ିଵ଻ N·m for optical excitation over a ~50-µm-
radius spot in a 300-µm-thick crystal. Further, the 
mechanically-detected spectrum that emerges — dominated by 
the strong P1 hyperfine interaction with its host nitrogen — 
serves as a signature to distinguish spin-induced torques from 
undesired sources26,36). In the opposite limit of diamond nano-
particles37-39, much higher detection sensitivities — from 10ିଶଵ 
N·m/Hz1/2 and up to 10ିଶଽ N·m/Hz1/2 — have been predicted40 
and demonstrated41 using optical tweezers hence making this 
route also feasible; in particular, sample heating (and the 
ensuing NV-P1 spin energy mismatch it creates22) can be 
minimized with the use of Paul traps42-44. As an alternative to 
torque sensing, one could capitalize on schemes adapted to 
detecting rotational velocities via birefringence-induced 
modulation of a probe laser15. Unlike the former, this latter 
strategy reveals the time integrated effect of optical excitation, 
and thus could help expose spin-rotation conversion in systems 
where the NV-P1 pair density is low. 

Although our description centered on NV and P1 centers in 
diamond, similar derivations apply to other spin systems 
provided that: (i) one of the defects can be optically pumped 
(through spin-dependent optical excitation or via broadband 
illumination and spin-selective intersystem crossing); (ii) the 
spin numbers are different and only one has total angular 
momentum greater than ½ (either in the form of an orbital 
singlet with spin number ܵ ൒ 1  or an orbital doublet with ܵ = 1 2⁄  and sufficiently large spin orbit interaction); and (iii) 
both spins have suitably long lifetimes (so that they can be 
tuned in and out of resonance with sufficient change in flip-flop 
rate that the effect can be observed). Besides the NV–P1 pair 
discussed herein, other defect combinations in systems such as 
SiC or garnet materials appear plausible.  

Extending the ideas introduced herein promises intriguing 
opportunities in various uncharted fronts. For example, unlike 
present schemes to inducing rotation, the ability to initialize 
and manipulate paramagnetic centers provides a versatile 
handle to control the rotational dynamics of the host crystal, 
which could be exploited to investigate the limits of quantum 
superposition in mesoscopic systems. Provided the rotational 
coherence of the host crystal is sufficiently long, it will also be 
interesting to investigate the impact of rotation on the 
collective dynamics of the spin ensemble, which, perhaps, 
could lead to forms of ‘coherence protection’ akin to that 
observed in heterogeneous ensembles of oscillators confined to 
an optical cavity45,46.   

Along the same lines, the interplay between spin-lattice 
relaxation and chiral phonons — here found comparatively 
inefficient at the NV–P1 pair level — could nonetheless be 
exploited at the single defect level. One possibility could be to 
mechanically pump the NV (and/or P1) spin, for instance, by 
stimulating spin-polarized acoustic phonons matched to the 
spin resonance frequency. To this end, one could resort to 
existing photo-acoustic methods based on timed femtosecond 
laser pulses47,48, in this case tailored so as to coherently inject 
chiral phonons into the diamond lattice. 
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APPENDIX A: METHODS 
Dynamics using the Trotter-Suzuki decomposition. The tight-
binding representation in Fig. 2(a) corresponds to the unitary 
dynamics given by the Hamiltonian in Eq. (3) and the non-
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unitary processes Γ୭  and ΓL  (optical pumping and rotational 
dephasing, respectively). The standard Trotterization allows for 
a stepwise evolution, where the system is evolved in small time 
steps ∆ݐ. Here, ∆ݐ is much smaller than the shortest time-scale 
in the problem, including Γୢ , Γ୭ and ΓL. The projection due to 
optical pumping (and the reset of the P1 spin state) follows the 
standard Quantum Jump recipe49. In practice, this implies a 
stochastic projection of population from state |−1, − 1 2⁄ ۧ to 
the state |0, + 1 2⁄ ۧ . The dephasing ΓL  corresponds to the 
analog Quantum Drift procedure50, and consists in a stochastic 
randomization of the phase of each state |݉Lۧ . The time 
dependence of the observable (in this case, the probability 
density associated to the wave-function) is obtained after 
averaging trajectories. 
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