

CHORUS

This is the accepted manuscript made available via CHORUS. The article has been published as:

Optical and photoemission investigation of structural and magnetic transitions in the iron-based superconductor Sr_{0.67}Na_{0.33}Fe_{2}As_{2}

R. Yang, J. W. Huang, N. Zaki, I. Pletikosić, Y. M. Dai, H. Xiao, T. Valla, P. D. Johnson, X. J.

Zhou, X. G. Qiu, and C. C. Homes Phys. Rev. B **100**, 235132 — Published 20 December 2019 DOI: [10.1103/PhysRevB.100.235132](http://dx.doi.org/10.1103/PhysRevB.100.235132)

¹ Optical and photoemission investigation of structural and magnetic transitions in the iron-based superconductor $Sr_{0.67}Na_{0.33}Fe₂As₂$

¹⁶ (Dated: December 6, 2019; version 5.2)

We report the temperature dependent optical conductivity and angle-resolved photoemission spectroscopy (ARPES) studies of the multiband iron-based superconductor $Sr_{0.67}Na_{0.33}Fe_2As_2$. Measurements were made in the high-temperature tetragonal paramagnetic phase; below the structural and magnetic transitions at $T_{\rm N} \simeq 125$ K in the orthorhombic spin-density-wave (SDW)-like phase, and $T_r \simeq 42$ K in the reentrant tetragonal double-Q magnetic phase where both charge and SDW order exist; and below the superconducting transition at $T_c \simeq 10$ K. The free-carrier component in the optical conductivity is described by two Drude contributions; one strong and broad, the other weak and narrow. The broad Drude component decreases dramatically below T_N and T_r , with much of its strength being transferred to a bound excitation in the mid-infrared, while the narrow Drude component shows no anomalies at either of the transitions, actually increasing in strength at low temperature while narrowing dramatically. The behavior of an infrared-active mode suggests zone-folding below T_r . Below T_c the dramatic decrease in the low-frequency optical conductivity signals the formation of a superconducting energy gap. ARPES reveals hole-like bands at the center of the Brillouin zone (BZ), with both electron- and hole-like bands at the corners. Below T_N , the hole pockets at the center of the BZ decrease in size, consistent with the behavior of the broad Drude component; while below T_r the electron-like bands shift and split, giving rise to a low-energy excitation in the optical conductivity at $\simeq 20$ meV. The C_2 and C_4 magnetic states, with resulting spin-density-wave and charge-SDW order, respectively, lead to a significant reconstruction of the Fermi surface that has profound implications for the transport originating from the electron and hole pockets, but appears to have relatively little impact on the superconductivity in this material.

¹⁷ PACS numbers: 72.15.-v, 74.70.-b, 78.20.-e

18 I. INTRODUCTION

 The discovery of iron-based superconductors prompted an intensive investigation in the hope of identifying new compounds with high superconducting critical tempera- $_{22}$ tures $(T_c$'s) [\[1–](#page-9-0)[4\]](#page-9-1). In many of the iron-based materials, superconductivity emerges with the suppression of anti- ferromagnetic (AFM) order, suggesting that the pairing mechanism is related to the magnetism. Indeed, the iron- based materials display a variety of magnetically-ordered ground states [\[5](#page-9-2)[–9\]](#page-9-3) that may either compete with or fos-ter the emergence of superconductivity.

29 One class of materials, $AeFe₂As₂$, where $Ae = Ba$, Ca

 or Sr (the so-called "122" materials), is particularly use- ful as superconductivity may be induced through a vari- ety of chemical substitutions $[10–20]$ $[10–20]$, as well as through the application of pressure [\[21–](#page-9-6)[24\]](#page-9-7). The phase diagram of $S_{1-x}N_{x}Fe₂As₂ has a number of interesting features. At$ 35 room temperature, the parent compound $SrFe₂As₂$ is a ∞ paramagnetic metal with a tetragonal $(14/mmm)$ struc- ture. The resistivity in the iron-arsenic planes decreases with temperature until it drops anomalously as the ma-39 terial undergoes a magnetic transition at $T_N \simeq 195$ K to a spin-density-wave (SDW)-like AFM ground state that is also accompanied by a structural transition to an or- thorhombic (Fmmm) phase [\[25–](#page-10-0)[30\]](#page-10-1). The crystals are heavily twinned in the orthorhombic phase; however, the application of uniaxial stress along the (110) direction of the tetragonal unit cell results in a nearly twin-free sam- ple [\[31,](#page-10-2) [32\]](#page-10-3). The magnetic order may be described as AFM stripes, where the iron spins are aligned antiferro-magnetically along the a axis and ferromagnetically along

[∗] Present address: Laboratorium f¨ur Festk¨orperphysik, ETH Zürich, CH-8093 Züich, Switzerland

[†] xgqiu@iphy.ac.cn

[‡] homes@bnl.gov

Figure 1. The temperature dependence of the in-plane resistivity for $Sr_{0.67}Na_{0.33}Fe₂As₂$ with inflection points at $T_N \simeq$ 125 K and $T_r \simeq 42$ K; the resistivity at room temperature has been adjusted to match the optical conductivity in the zero-frequency limit. Inset: The generic unit cell in the hightemperature tetragonal phase for the 122 materials.

 ω the b axis [\[33,](#page-10-4) [34\]](#page-10-5); this is also referred to as the magnetic $50 C₂$ phase due to its twofold rotation symmetry. As the sodium content increases, the magnetic and structural transition temperatures decrease until both disappear σ ₅₃ at $x \simeq 0.48$; superconductivity appears well before this ⁵⁴ point at $x \approx 0.2$, and reaches a maximum of $T_c \approx 37$ K for $x \approx 0.5 - 0.6$. Between $0.29 < x < 0.42$, an additional $\frac{56}{10}$ magnetic and structural transition occurs below T_N at $57 T_r$; the tetragonal $(14/mmm)$ phase reemerges, forming a dome which lies completely within the AFM region. This phase appears to be a common element in the hole-doped 60 122 materials [\[35–](#page-10-6)[45\]](#page-10-7); however, in $Sr_{1-x}Na_xFe_2As_2$ the dome is more robust and occurs over a wider doping range 62 at temperatures up to $T_r \simeq 65 \text{ K } [39, 40]$ $T_r \simeq 65 \text{ K } [39, 40]$ $T_r \simeq 65 \text{ K } [39, 40]$, which is higher than has been observed in other compounds. This mag- netic order is described as the collinear superposition of two itinerant SDW's with nesting wavevector Q, leading to a double-Q SDW [\[44,](#page-10-10) [45\]](#page-10-7) in which half the iron sites are nonmagnetic, and half have twice the moment mea- sured in the orthorhombic AFM phase, oriented along 69 the c axis [\[46,](#page-10-11) [47\]](#page-10-12); this is referred to as the magnetic C_4 phase because of its fourfold rotational invariance. This magnetic state is accompanied by a charge-density wave (CDW) with the charge coupling to the square of the magnetization, resulting in a charge-SDW (CSDW) [\[48\]](#page-10-13). In this work, the complex optical properties and angle-resolved photoemission spectroscopy (ARPES), of

⁸² $T_r \simeq 42$ K, and $T_c \simeq 10$ K. In the high temperature tetragonal paramagnetic state, the optical response of the ⁸⁴ free-carriers is described by two Drude terms (Sec. IIIA); one strong and broad (large scattering rate), and the other weak and narrower (smaller scattering rate); as the temperature is reduced, the strength of the Drude terms show relatively little temperature dependence, while the 89 scattering rates slowly decrease. Below T_N , the Fermi surface reconstruction driven by the structural and mag- netic transitions causes both the strength and the scat- tering rate for the broad Drude term to decrease dra- matically; the missing spectral weight (the area under the conductivity curve) associated with the free carriers is transferred to a peak that emerges in the mid-infrared. The narrow Drude term actually increases slightly in 97 strength below T_N while narrowing. Below T_r , in the γ ⁸⁸ magnetic C_4 phase, the broad Drude term again nar- rows and decreases in strength; while the strength of the narrow term does not appear to change, its scattering rate decreases dramatically. Based on the behavior of an infrared-active lattice mode, the presence of CSDW order likely results in the formation of a supercell result- ing in zone folding, leading to a further reconstruction of the Fermi surface; while spectral weight is again trans- ferred from the broad Drude to the midinfrared peak, a 107 new low-energy peak emerges at $\simeq 20$ meV. Below T_c , there is a dramatic decrease in the low-frequency con- ductivity, signalling the formation of a superconducting energy gap. ARPES reveals several large hole pockets at the center of the Brillouin zone above T_N , one of which 112 shifts below the Fermi level below T_N in the C_2 mag-113 netic phase, a trend which continues below T_r , suggest- ing that these bands may be related to the broad Drude response. At the corners of the Brillouin zone, there are ¹¹⁶ both hole- and electron-like bands. Below T_N and T_r , several of these bands appear to split and shift, but it is not clear if there are any significant changes to the size of the associated Fermi surfaces, suggesting that some of these carriers may be related to the narrow Drude term; below T_r the band splitting is likely responsible for the emergence of the low-energy peak. The structural and magnetic transitions from which the C_2 (SDW) and C_4 (double-Q SDW) phases emerge result in a Fermi sur- face reconstruction that has profound effects on the op- tical conductivity and electronic structure; however, the superfluid stiffness appears to be more or less unaffected by the CSDW order.

129 **II. EXPERIMENT**

⁷⁶ $Sr_{0.67}Na_{0.33}Fe₂As₂$ have been investigated in the high- 131 good cleavage planes (001) were synthesized using a self- π temperature tetragonal phase, as well as the magnetic C_2 as flux technique [\[39,](#page-10-8) [49\]](#page-11-0). The temperature dependence of ⁷⁸ and C_4 phases. The value of $x \approx 0.33$ used in the current 133 the in-plane resistivity, shown in Fig. [1,](#page-2-0) was measured ⁷⁹ study is slightly below the optimal value of $x \approx 0.37$ that $\frac{1}{134}$ using a standard four-probe configuration using a Quan-⁸⁰ bisects the C_4 dome in the $Sr_{1-x}Na_xFe_2As_2$ phase di-135 tum Design physical property measurement system; the α agram [\[39\]](#page-10-8). Based on transport studies, $T_N \simeq 125$ K, 136 unit cell for the high-temperature tetragonal phase is High-quality single crystals of $Sr_{0.67}Na_{0.33}Fe₂As₂ with$

Figure 2. (a) The temperature dependence of the real part of the optical conductivity of $\text{Sr}_{0.67}\text{Na}_{0.33}\text{Fe}_2\text{As}_2$ in the infrared region for light polarized in the Fe–As planes. Inset: the conductivity over a wide spectral range at several temperatures. (b) The $\sigma_1(\omega,T) - \sigma_1(\omega,295 \text{ K})$ difference plot for $T \geq T_N$ over a wide spectral range showing the narrowing of the free-carrier response and the transfer of spectral weight from high to low frequency. (c) The $\sigma_1(\omega, T) - \sigma_1(\omega, 125 \text{ K})$ difference plot. Int the $T_r < T < T_N$ region the free-carrier response continues to narrow and a peak emerges in the mid-infrared region; for $T < T_r$, the low-frequency conductivity is further suppressed, the mid-infrared peak shifts to low energy, and a prominent peak is observed at $\simeq 170 \text{ cm}^{-1}$ (arrows).

¹³⁷ shown in the inset. The resistivity decreases gradually ¹⁶² at low temperature and measured in an ultrahigh vac-¹³⁸ with temperature, showing a weak inflection point at ¹⁶³ uum with a base pressure better than 5×10^{-10} mbar. $T_N \simeq 125$ K with a more pronounced decrease in the 164 Measurements at the National Laboratory for Supercon-¹⁴⁰ resistivity at $T_r \simeq 42$ K; the resistivity goes to zero be- 165 ductivity, Institute of Physics, Chinese Academy of Sci-¹⁴¹ low the superconducting transition at $T_c \simeq 10$ K. The re- ¹⁶⁶ ences, were performed using a 21.2 eV helium discharge ¹⁴² flectance from freshly-cleaved surfaces has been measured ¹⁶⁷ lamp and a Scienta DA30L electron spectrometer. The ¹⁴³ at a near-normal angle of incidence over a wide temper-¹⁶⁸ latter's overall energy resolution was 10 meV for Fermi ¹⁴⁴ ature (\simeq 5 to 300 K) and frequency range (\simeq 2 meV 169 surface mapping and 4 meV for the cuts; the angular ¹⁴⁵ to about 5 eV) with Bruker IFS 113v and Vertex 80v 170 resolution was ~ 0.1°. All the samples were cleaved at ¹⁴⁶ Fourier transform spectrometers for light polarized in ¹⁷¹ low temperature and measured in an ultrahigh vacuum ¹⁴⁷ the *a-b* planes using an *in situ* evaporation technique ₁₇₂ with a base pressure better than 5×10^{-11} mbar. Note ¹⁴⁸ [\[50\]](#page-11-1). The complex optical properties have been deter-¹⁷³ that because uniaxial strain is not applied to the samples ¹⁴⁹ mined from a Kramers-Kronig analysis of the reflectiv- $\frac{174}{174}$ below T_N , they will be heavily twinned, thus the optical $_{150}$ ity. The reflectivity is shown in supplementary Fig. S1; $_{175}$ and ARPES results represent an average of the a and b ¹⁵¹ the details of the Kramers-Kronig analysis are described $\frac{176}{176}$ axis response in the magnetic C_2 phase. ¹⁵² in the Supplementary Material [\[51\]](#page-11-2). Temperature de-¹⁵³ pendent ARPES measurements have been performed to ¹⁵⁴ track the evolution of the electron and hole pockets in ¹⁵⁵ the various phases. Measurements at BNL, which fo-¹⁵⁶ cused on the electronic structure near the center of the ¹⁵⁷ Brillouin zone, were performed using 21.2 eV light from ¹⁵⁸ a monochromator-filtered He I source (Omicron VUV5k) ¹⁵⁹ and a Scienta SES-R4000 electron spectrometer; emitted ¹⁶⁰ electrons were collected along the direction perpendicular ¹⁶¹ to the light-surface mirror plane. Samples were cleaved

177 **III. RESULTS AND DISCUSSION**

178 **A.** Optical properties

¹⁷⁹ The temperature dependence of the real part of the in-180 plane optical conductivity $[\sigma_1(\omega)]$ of $\text{Sr}_{0.67}\text{Na}_{0.33}\text{Fe}_2\text{As}_2$ $_{181}$ is shown in the infrared region in Fig. [2\(](#page-3-0)a) (an additional ¹⁸² plot of the optical conductivity is shown in supplemen-

Figure 3. The Drude-Lorentz model fits to the real and imaginary (inset) parts of the in-plane optical conductivity of $Sr_{0.67}Na_{0.33}Fe₂As₂ decomposed into the narrow (D1) and broad (D2) Drude components, as well as several bound excita$ tions (a) above T_N at 200 K, (b) below T_N at 75 K showing the narrowing of the Drude features and the emergence of a peak at $\simeq 950$ cm⁻¹, and (c) below T_r at 30 K, showing further narrowing and peaks at $\simeq 170$ and 700 cm⁻¹.

¹⁸⁴ dramatically through the structural and magnetic transi-²²⁰ tary Fig. S2). ¹⁸⁵ tions, which can be characterized by four distinct regions: ²²¹ The sharp feature observed in the conductivity at $_{186}$ (i) $T > T_N$; (ii) $T_r < T < T_N$; (iii) $T < T_r$, and below the $_{222} \simeq 260$ cm⁻¹ is attributed to a normally infrared-active ¹⁸⁷ superconducting transition (iv) $T < T_c$. The changes to z_{23} lattice vibration in the iron-arsenic planes; while this ¹⁸⁸ the nature of the conductivity are shown as the difference ²²⁴ mode increases in frequency with decreasing tempera-189 plots $\sigma_1(\omega,T) - \sigma_1(\omega,295\,\mathrm{K})$, and $\sigma_1(\omega,T) - \sigma_1(\omega,125\,\mathrm{K})$, 225 ture, it does not display the anomalous increase in oscil- $_{190}$ shown in Figs. [2\(](#page-3-0)b) and 2(c), respectively.

¹⁹¹ At room temperature, the free-carrier response appears ¹⁹² Drude-like (a Lorentzian centered at zero frequency with ¹⁹³ a scattering rate defined as the full width at half max-¹⁹⁴ imum), giving way to a flat response at higher frequen-¹⁹⁵ cies, until the first interband transitions are encountered ¹⁹⁶ at about 1 eV. As the temperature is reduced, the scat-¹⁹⁷ tering rate decreases and there is a slight reduction of ¹⁹⁸ the conductivity in the mid-infrared region as spectral ¹⁹⁹ weight is transferred from high to low frequency, which ²⁰⁰ leads to an increase at low frequency and a decrease at ²⁰¹ high frequency in the difference spectra in Fig. [2\(](#page-3-0)b). Be- $_{202}$ low $T_{\rm N}$ in the C_2 phase, the free-carrier response narrows ²⁰³ dramatically and a peak-like structure emerges at about $204~950~\mathrm{cm}^{-1}$, somewhat lower than a similar feature that ²⁰⁵ was observed below T_N at $\simeq 1400 \text{ cm}^{-1}$ in the parent 206 compound $SrFe₂As₂$ [\[52\]](#page-11-3). This is illustrated by the upper 207 three curves in Fig. $2(c)$ that show the continuing increase 208 in the low-frequency conductivity, as well as the emer-240 where ϵ_{∞} is the real part at high frequency. In the first ²⁰⁹ gence of a peak in the mid-infrared region. Interestingly, ²⁴¹ sum, $\omega_{p,D;j}^2 = 4\pi n_j e^2/m_j^*$ and $1/\tau_{D,j}$ are the square of 210 below $\simeq 75$ K, a low-energy peak at $\simeq 170 \text{ cm}^{-1}$ begins to 242 the plasma frequency and scattering rate for the delo-211 emerge. This behavior continues until $T \leq T_r$, at which 243 calized (Drude) carriers in the jth band, respectively, ₂₁₂ point the Drude-like response becomes extremely narrow ₂₄₄ and n_j and m_j^* are the carrier concentration and effec-213 in the C_4 phase, illustrated by the dramatic suppression 245 tive mass. In the second summation, ω_k , γ_k and Ω_k ²¹⁴ of the low-frequency conductivity in the difference plot ²⁴⁶ are the position, width, and strength of the kth vibra-215 in Fig. [2\(](#page-3-0)c), leaving clearly identifiable peaks at $\simeq 170$ $_{247}$ tion or bound excitation. The complex conductivity is 216 and 700 cm⁻¹. Below $T_c \simeq 10$ K, there is a depletion of 248 $\tilde{\sigma}(\omega) = \sigma_1 + i\sigma_2 = -2\pi i \omega [\tilde{\epsilon}(\omega) - \epsilon_{\infty}]/Z_0$ (in units of 217 the low-frequency conductivity with the emergence of a 249 Ω^{-1} cm⁻¹); $Z_0 \simeq 377 \Omega$ is the impedance of free space.

¹⁸³ tary Fig. S2). The character of the conductivity changes ²¹⁹ formation of a superconducting energy gap (supplemen-

 $_{226}$ lator strength below T_N that was observed in the parent 227 compound [\[53\]](#page-11-4). However, below T_r there is evidence for ²²⁸ a new satellite mode appearing at $\simeq 282$ cm⁻¹ (supple-²²⁹ mentary Fig. S3); a similar feature has also been observed ²³⁰ in the C_4 phase of Ba_{1−x}K_xFe₂As₂ and is attributed to ²³¹ Brillouin-zone folding due to the formation of a supercell ²³² in the CSDW phase [\[54\]](#page-11-5).

 Previous optical studies of the iron-arsenic materials recognized that these are multiband materials with hole and electron pockets at the center and corners of the Brillouin zone [\[55,](#page-11-6) [56\]](#page-11-7); a minimal description consists of two electronic subsystems using the so-called two-Drude ²³⁸ model [\[57\]](#page-11-8). The complex dielectric function $\tilde{\epsilon} = \epsilon_1 + i\epsilon_2$ can be written as,

$$
\tilde{\epsilon}(\omega) = \epsilon_{\infty} - \sum_{j=1}^{2} \frac{\omega_{p,D;j}^2}{\omega^2 + i\omega/\tau_{D,j}} + \sum_{k} \frac{\Omega_k^2}{\omega_k^2 - \omega^2 - i\omega\gamma_k}, (1)
$$

218 shoulder-like structure around 70 cm⁻¹ that signals the 250 The model is fit to the real and imaginary parts of the

Figure 4. (a) The temperature dependence of the plasma frequencies of the narrow (D1) and broad (D2) Drude components, the oscillator strength of the mid-infrared peak $(\Omega_{\text{MIR}},$ and the total when these three components are added in quadrature $(\omega_{p,tot})$, for $Sr_{0.67}Na_{0.33}Fe₂As₂$. (b) The temperature dependence of the scattering rates of the narrow and broad Drude components.

 optical conductivity simultaneously using a non-linear least-squares technique. The results of the fits are shown 253 in Figs. [3\(](#page-4-0)a), 3(b), and 3(c) at 200 K ($T > T_N$), 75 K ²⁵⁴ $(T_r < T < T_N)$, and 30 K $(T < T_r)$, respectively; the combined response has been decomposed into individ- ual Drude and Lorentz components. In agreement with previous studies on the iron-based materials, the com- plex conductivity can be described by two Drude terms, one weak and narrow (D1), the other strong and broad (D2), as well as several Lorentzian oscillators. The tem- perature dependence of the plasma frequencies, the D1 and D2 components, as well as the strength of the mid- $_{263}$ infrared (MIR) peak, are shown in Fig. [4\(](#page-5-0)a); the tem- perature dependence of the scattering rates for the two Drude components is shown in Fig. [4\(](#page-5-0)b).

$$
266 \t\t 1. \tT > T_N
$$

²⁶⁸ narrow and broad Drude terms, $\omega_{p,D1} \simeq 4400 \text{ cm}^{-1}$ 320 and Lorentzian components; instead, its effects are de-²⁶⁹ and $\omega_{p,D2} \simeq 15800 \text{ cm}^{-1}$, respectively, are slightly less ₃₂₁ termined from $\sigma_2(\omega)$ [shown in the inset of Fig. [3\(](#page-4-0)c)].

 270 than those of the undoped parent compound $SrFe₂As₂$ 271 ($\omega_{p,D1}$ ≥ 5200 cm⁻¹ and $\omega_{p,D2}$ ≥ 17700 cm⁻¹); how-₂₇₂ ever, the scattering rates of $1/\tau_{D1} \simeq 330 \text{ cm}^{-1}$ and ²⁷³ $1/\tau_{D2} \simeq 1400 \text{ cm}^{-1}$ are noticeably lower than the values ²⁷⁴ of $1/\tau_{D1} \simeq 470 \text{ cm}^{-1}$ and $1/\tau_{D2} \simeq 2330 \text{ cm}^{-1}$ observed ²⁷⁵ in the undoped material [\[52\]](#page-11-3). This is somewhat surpris-²⁷⁶ ing considering that in this material the layers in be-²⁷⁷ tween the Fe–As sheets are disordered. While the plasma ²⁷⁸ frequencies show little temperature dependence between 279 room temperature and T_N , the scattering rates for both ²⁸⁰ Drude components decrease with temperature, with the ²⁸¹ narrow Drude decreasing from about $1/\tau_{D1} \approx 330$ to 282 about 60 cm⁻¹, and the broad Drude decreasing from ²⁸³ $1/\tau_{D2} \simeq 1400 \text{ cm}^{-1}$ to about 1100 cm^{-1} just above T_N .

284 2. $T_r < T < T_N$

285 Below T_N in the magnetic C_2 phase, the plasma fre-²⁸⁶ quency for the narrow Drude increases slightly from ²⁸⁷ $\omega_{p,D1} \simeq 4400$ to $\simeq 6000$ cm⁻¹, while the scattering rate ²⁸⁸ continues to decrease to $1/\tau_{D1} \simeq 40 \text{ cm}^{-1}$ just above $_{289}$ T_r . The broad Drude displays much larger changes, with ²⁹⁰ the plasma frequency decreasing from $\omega_{p,D2} \simeq 15\,800$ to 291.9000 cm^{-1} , which corresponds to a decrease in carrier ²⁹² concentration of nearly 65% ($\omega_p^2 \propto n/m^*$); the scattering ²⁹³ rate also drops dramatically from $1/\tau_{D2} \simeq 1100 \text{ cm}^{-1}$ ²⁹⁴ just above T_N to 300 cm⁻¹ in the $T_r < T < T_N$ region. ²⁹⁵ The dramatic loss of spectral weight of the broad Drude ²⁹⁶ term is accompanied by the emergence of a new peak in ²⁹⁷ the MIR region with position $\omega_{\text{MIR}} \simeq 950 \text{ cm}^{-1}$, width $\gamma_{\rm MIR} \simeq 1550 \text{ cm}^{-1}$, and strength $\Omega_{\rm MIR} \simeq 13000 \text{ cm}^{-1}$ 298 ²⁹⁹ [Fig. [3\(](#page-4-0)b)]; the missing weight from the free carriers ³⁰⁰ is transferred into this bound excitation, and accord-301 ingly the total spectral weight is defined as $\omega_{p,tot}^2$ = ³⁰² $\omega_{p,D1}^2 + \omega_{p,D2}^2 + \Omega_{\text{MIR}}^2$, is constant, as shown in Fig. [4\(](#page-5-0)a). ³⁰³ This behavior is similar to what was previously observed ³⁰⁴ in the parent compound, and has been explained as the ³⁰⁵ partial gapping of the pocket responsible for the broad ³⁰⁶ Drude term due and the appearance of a low-energy in-³⁰⁷ terband transition [\[52,](#page-11-3) [58\]](#page-11-9).

308 $3. \quad T < T_r$

²⁶⁷ At room temperature, the plasma frequencies for the ³¹⁹ flat optical conductivity due to the broad Drude term ³⁰⁹ As the temperature is reduced the system undergoes a 310 further magnetic and structural transition at $T_r \simeq 42$ K $_{311}$ and enters the magnetic C_4 phase. Below T_r the plasma ³¹² frequency for the narrow Drude term appears to actu-³¹³ ally increase slightly; however, this is accompanied by ³¹⁴ a dramatic collapse of $1/\tau_{D1} \simeq 40 \text{ cm}^{-1}$ just above T_r 315 to a value of $\simeq 2$ cm⁻¹ at 15 K; this is nearly an or-³¹⁶ der of magnitude smaller than what is observed in the ³¹⁷ parent compound [\[52\]](#page-11-3). Consequently, the narrow Drude 318 is no longer observable in $\sigma_1(\omega)$, leaving a relatively

Figure 5. (a) Fermi surface mapping of $Sr_{0.67}Na_{0.33}Fe₂As₂$ in the C_4 magnetic phase at 23 K with the spectral weight integrated within a ± 10 meV energy window with respect to the Fermi level, showing the hole-like pockets at the center (Γ), and the electron-like pockets at the corner (M) of the Brillouin zone. Several different cuts are shown along the $\Gamma \to M$ path focus on the evolution of the hole and electron pockets. (b) The temperature dependence of the second derivative of the energy bands measured along the first cut around the M point at $(-\pi, -\pi)$ at 135 K $(T > T_N)$, 55 K $(T_r < T < T_N)$, and 20 K $(T_c < T < T_r)$. (c) The temperature dependence of the second derivative of the energy bands measured along the second cut around the Γ point at 135, 55, and 20 K. The dotted lines are drawn as a guide to the eye.

³²² The plasma frequency of the broad Drude term contin-³²³ ues to decrease from $\omega_{p,D2} \simeq 9000$ to about 4200 cm⁻¹
³²⁴ at 15 K, a further 80% reduction in the carrier con-³²⁵ centration associated with this pocket, and over 90% ³⁴⁶ tral weight, calculated using the Ferrell-Glover-Tinkham $_{326}$ from the room temperature value; this is comparable to $_{347}$ (FGT) sum rule [\[59,](#page-11-10) [60\]](#page-11-11). The FGT sum rule converges ³²⁷ what was observed in the parent compound for $T \ll T_N$ ³²⁸ [\[52\]](#page-11-3). In addition, the scattering rate decreases from 329 $1/\tau_{D2} \simeq 300 \text{ cm}^{-1}$ at T_r to $\simeq 120 \text{ cm}^{-1}$ at 15 K. At the 330 same time, the peak at $\omega_{\text{MIR}} \simeq 950 \text{ cm}^{-1}$ shifts down to ₃₅₁ cause the lowest temperature obtained was only $\simeq T_c/2$, 331 about $\simeq 650 \text{ cm}^{-1}$; while the width decreases slightly to ₃₅₂ it is almost certain that ω_{ps} is underestimated. From $_{332}$ $\gamma_{\text{MIR}} \simeq 1480 \text{ cm}^{-1}$, the strength of this feature increases ₃₅₃ Fig. [2\(](#page-3-0)a) and supplementary Fig. S2, the characteristic 333 to $\Omega_{\text{MIR}} \simeq 15\,400 \text{ cm}^{-1}$. However, $\omega_{p,tot}$ continues to ₃₅₄ energy scale for the superconducting energy gap is about ³³⁴ be conserved, indicating that the loss of spectral weight ³⁵⁵ $2\Delta \simeq 50 \text{ cm}^{-1}$. In the narrow Drude band, $1/\tau_{D1} \ll 2\Delta$, ³³⁵ associated with the free carriers in the broad Drude term ³⁵⁶ placing this material in the clean limit; as a result, most ³³⁶ has been transferred to this peak.

$$
4. \quad T < T_c
$$

338 Below $T_c \simeq 10$ K there is a dramatic suppression of the low-frequency conductivity, signalling the formation of a superconducting energy gap [Fig. [2\(](#page-3-0)a) and supple- mentary Fig. S2]. Although the low-frequency data is somewhat limited, a comparison of the optical conduc-

³⁴³ tivity for $T \gtrsim T_c$ and $T \ll T_c$ allows the superfluid den-³⁴⁴ sity, $\rho_s = \omega_{ps}^2$, where ω_{ps} is the superconducting plasma frequency, to be determined from the missing spec-³⁴⁸ to $\omega_{ps} \simeq 5800 \pm 500 \text{ cm}^{-1}$, which corresponds to a super-349 conducting penetration depth of $\lambda \simeq 2700\pm 300$ Å at 5 K, comparable to the K-doped material [\[47\]](#page-10-12); however, be- of the weight in the condensate will come from this band. 358 In the broad Drude band, $1/\tau_{D2} > 2\Delta$, placing this band in the dirty limit; consequently, only a small fraction of the weight in this band will collapse into the conden- sate. This is another example of a multiband iron-based superconductor that is simultaneously in both the clean and dirty limits [\[61\]](#page-11-12). One of the interesting properties of this material is its relatively low resistivity just above ³⁶⁵ T_c , $\rho_{ab} \simeq 20 \ \mu \Omega \, \text{cm}$, or $\sigma_{dc} \simeq 5 \times 10^4 \ \Omega^{-1} \text{cm}^{-1}$ [Fig [1\]](#page-2-0). These values place this material just below the univer-

Figure 6. The temperature dependence of the second-derivative of the hole-like bands of $Sr_{0.67}Na_{0.33}Fe_2As_2$ around the Γ point along the $\Gamma \to M$ cut at: (a) above T_N at 153 K, (b) for $T_r < T < T_N$ at 82 K, and (c) below T_r at 18 K. At high temperature three hole-like bands may be resolved that cross ϵ_F . Below T_N two of these bands shift to below the Fermi level; this trend continues below T_r as the bands shift further below ϵ_F . The lines are drawn as a guide to the eye.

367 sal scaling line $\rho_s(T \ll T_c) \propto \sigma_{dc}(T \gtrsim T_c) T_c$ [\[62–](#page-11-13)[64\]](#page-11-14), in 394 ³⁶⁸ close proximity to other doped "122" superconductors, ³⁶⁹ as well as many cuprate materials [\[65\]](#page-11-15).

³⁷⁰ B. Low-energy peak

 $_{371}$ The dramatic collapse of the scattering rate below T_r ³⁷² of the narrow Drude allows a new low-energy peak at ³⁷³ $\omega_0 \simeq 170 \text{ cm}^{-1}$, with width $\gamma_0 \simeq 110 \text{ cm}^{-1}$ and oscillator ³⁷⁴ strength of $\Omega_0 \simeq 2230 \text{ cm}^{-1}$, to be observed [Figs. [2\(](#page-3-0)a), $3(0)$ $3(0)$, and supplementary Fig. S2. This is close to where 376 a peak was observed in $(CaFe_{1-x}Pt_xAs)_{10}Pt_3As_8$ for $x =$ $_{377}$ 0.1 at \simeq 120 cm⁻¹ [\[66\]](#page-11-16); that feature was attributed to a ³⁷⁸ localization process due to impurity scattering described ³⁷⁹ by a classical generalization of the Drude model [\[67\]](#page-11-17),

$$
\tilde{\sigma}(\omega) = \left(\frac{2\pi}{Z_0}\right) \frac{\omega_p^2 \tau}{(1 - i\omega \tau)} \left[1 + \frac{c}{(1 - i\omega \tau)}\right],\qquad(2)
$$

where c is the persistence of velocity that is retained $_{414}$ ³⁸¹ for a single collision. The scattering rate for the nar-⁴¹⁵ tion at the M point there appears to be a hole-like band ³⁸² row Drude is far too small to yield a peak at the ⁴¹⁶ as well as a possible electron-like band at 135 K, shown ³⁸³ experimentally-observed position, while the broad Drude ⁴¹⁷ in the upper panel of Fig. [5\(](#page-6-0)b). In the simple picture for 384 predicts a localization peak at $\simeq 120 \text{ cm}^{-1}$, well below 418 the Fermi surface of SrFe₂As₂ (supplementary Fig. S4) ³⁸⁵ the experimentally-observed value of $\omega_0 \simeq 170 \text{ cm}^{-1}$ [\[68\]](#page-11-18). 419 this result can be reproduced by lowering the Fermi level 386 Thus, it is likely that the low-energy peak originates from 420 ϵ_F by about 0.2 eV, which is consistent with the removal 387 a further reconstruction of the Fermi surface in the C_4 α of electrons due to sodium substitution (hole doping). As ³⁸⁸ phase rather than any sort of localization process. In-422 the temperature is lowered below T_N and enters the mag-389 deed, a remarkably similar peak has also been observed $\frac{4}{23}$ netic C_2 phase, the hole-like band may split, while the ³⁹⁰ to emerge at $\simeq 150$ cm⁻¹ in the optical conductivity ω_4 electron-like band appears to shift below ϵ_F . Below T_r in 391 of underdoped $Ba_{1-x}K_xFe_2As_2$ at low temperature [\[69\]](#page-11-19); 425 the C_4 magnetic phase, a single hole-like band is recov- $_{392}$ this feature may also be a related to the magnetic C_4 $_{426}$ ered, while the electron-like band now appears to be split ³⁹³ phase observed in that compound.

C. ARPES

 A simple density functional theory calculation of SrFe₂As₂ in the paramagnetic high-temperature tetrago- nal phase reveals a familiar band structure consisting of three hole-like pockets at the center of the Brillouin zone (Γ), and two electron-like pockets at the corners (M); the 400 orbital character is primarily Fe d_{xz}/d_{yz} in nature (shown in supplementary Fig. S4, details of the calculation are discussed in the Supplementary Material.) The Fermi 403 surface of $Sr_{0.67}Na_{0.33}Fe₂As₂$, with the spectral weight integrated within a ± 10 meV energy window with re-405 spect to the Fermi level, is shown below T_r in the C_4 magnetic phase at 23 K, in Fig. [5\(](#page-6-0)a). Two momentum $\frac{407}{407}$ cuts have been made along the $\Gamma \rightarrow M$ path; the first examines the temperature dependence of the anisotropic electron-like bands around an M point, Fig. [5\(](#page-6-0)b), and the second details the behavior of the isotropic hole-like pock-411 ets around the Γ point, shown in Fig. [5\(](#page-6-0)c). This Fermi surface is qualitatively similar to what was observed in $Ba_{1-x}K_xFe_2As_2$ [\[70,](#page-11-20) [71\]](#page-11-21)

At high temperature, the cut along the $\Gamma \to M$ direc- $\frac{427}{427}$ into two bands, with a separation of $\simeq 20 \text{ meV}$, which is behavior is explored further in supplementary Fig. S5). ⁴⁸⁵ temperature [\[43\]](#page-10-14).

 The initial investigation into the temperature depen-431 dence of the energy bands around the Γ point in Fig. [5\(](#page-6-0)c) revealed two large hole pockets at the Fermi level, but rel- atively little temperature dependence. This prompted a more detailed investigation of the hole-like bands along μ_{435} the $\Gamma \rightarrow M$ path, shown in Fig. [6](#page-7-0) (further detail is pro-436 vided in supplementary Figs. S6 and S7). Above T_N the bands are rather broad, but at least three bands may be resolved, all of which cross the Fermi level, result- ing in several large hole-like Fermi surfaces, shown in 440 the second-derivative curves in Fig. [6\(](#page-7-0)a). Below T_N the bands sharpen considerably in the C_2 phase, and one of $_{442}$ the bands is observed to shift to \simeq 40 meV below the Fermi level, shown in Fig. [6\(](#page-7-0)b), leading to the removal of a hole-like Fermi surface; this is consistent with the Fermi surface reconstruction below T_N observed in the parent compounds [\[58,](#page-11-9) [72\]](#page-11-22). This trend continues in the 447 magnetic C_4 phase, with the band shifting to $\simeq 60$ meV $_{448}$ below the Fermi level, Fig. $6(c)$.

D. Discussion

 Both the electron and hole pockets appear to undergo significant changes in response to the Fermi surface re- construction in the magnetic C_2 and C_4 phases that ex- hibit SDW and CSDW order, respectively. In the case of the hole pockets, the fact that one of the bands shifts 455 below ϵ_F below T_N in the magnetic C_2 phase, shifting $\frac{456}{456}$ further below T_r in the magnetic C_4 phase, signals the $_{\rm 457}$ decrease in the size of the Fermi surface associated with the hole pockets. It is possible that this may be related to the dramatic decrease in the spectral weight of the broad Drude component as described by the plasma frequency ⁴⁶¹ in Fig. [4\(](#page-5-0)a); from $\omega_{p,D2}^2 \propto n/m^*$ we infer a significant decrease in the carriers associated with the hole pock- $\frac{463}{463}$ ets at low temperature ($\simeq 90\%$ reduction of the room temperature value).

 The evolution of the electron-like bands is more com- plicated, as the bands at the M point have both electron- and hole-like character. The initial splitting of the hole- like band below T_N is consistent with the lifting of the 469 degeneracy between the d_{xz} and d_{yz} orbitals; however, the fact that one of the hole-like bands lies completely below the Fermi level suggests no significant changes to the size of the Fermi surfaces. Below T_r the orbital degen- eracy is restored, but the presence of CSDW order leads to the formation of a supercell; the electron-like bands are split as a result of zone-folding, which may lead to an increase in the size of the Fermi surface. This is consis- tent with the slight increase in the plasma frequency of the narrow Drude component at low temperature, shown in Fig. [4\(](#page-5-0)a). Furthermore, the splitting between the two 480 electron-like bands of $\simeq 20$ meV, is very close to the po- 532 sition of the low-energy peak. This suggests that, similar ⁵³³ by NSFC (Project Nos. 11774400, 11888101, and to the mid-infrared peak, the low-energy peak emerges ⁵³⁴ 11974412) and MOST (Project Nos. 2015CB921102,

 α_{28} comparable to the position of the low-energy peak (this α_{484} by the C_4 magnetic phase and the CSDW order at low

486 IV. SUMMARY

 The ARPES and complex optical properties of freshly-cleaved surfaces of the iron-based superconductor Sr_{0.67}Na_{0.33}Fe₂As₂ have been determined for light polar- ized in the iron-arsenic $(a-b)$ planes at a variety of tem- peratures for the room temperature tetragonal paramag- netic phase, the orthorhombic C_2 SDW magnetic phase, the tetragonal C_4 double-Q SDW (CSDW) phase, as $_{494}$ well as below T_c in the superconducting state. The free- carrier response is described by two Drude components, one broad and strong, the other narrow and weak. The strength of the narrow component shows little temper- ature dependence, increasing slightly in strength at low temperature, while narrowing dramatically. The broad Drude component decreases dramatically in strength and narrows below T_N at the same time a peak emerges in the mid-infrared; the decrease in the spectral weight associ- ated with the free carriers is transferred into the emergent $_{504}$ peak. Below T_r , this trend continues, with the emergence $_{505}$ of a new low-energy peak at $\simeq 20$ meV. The appearance of a new infrared-active mode in the Fe–As planes be- $_{507}$ low T_r is attributed to zone-folding due to the formation of a supercell in response to the CSDW; this suggests that the low-energy peak originates from a further Fermi 510 surface reconstruction in the C_4 phase. Below T_c the low- frequency conductivity decreases dramatically, signalling the formation of a superconducting energy gap. ARPES reveals large hole-like Fermi surfaces at the Γ point, one of which is apparently removed below the structural and magnetic transitions, suggesting that they may be related to the behavior of the broad Drude component. The electron- and hole-like bands at the corners of the Bril- $_{518}$ louin zone shift and split below T_N and T_r , but the Fermi surfaces do not appear to undergo any significant change in size, suggesting they may be related to the narrow Drude component; the apparent splitting of the electron- like bands in the C_4 phase would appear to explain the emergence of the low-energy peak at $\simeq 20 \text{ meV}$ in the op- tical conductivity. While the C_2 and C_4 magnetic transi- tions, with resulting SDW and CSDW order, respectively, lead to a significant reconstruction of the Fermi surface that has profound implications for the transport originat- ing from the electron- and hole-like pockets, they appear to have relatively little impact on the superconductivity in this material.

ACKNOWLEDGMENTS

 in response to the Fermi surface reconstruction driven ⁵³⁵ 2016YFA0300300, and 2017YFA0302903). Work at HP-Work at Chinese Academy of Science was supported

 STAR was supported by NSAF, Grant No. U1530402. ⁵³⁸ by the Office of Science, U.S. Department of Energy un-Work at Brookhaven National Laboratory was supported ⁵³⁹ der Contract No. DE-SC0012704.

- [1] David C. Johnston, "The puzzle of high temperature superconductivity in layered iron pnictides and chalco-genides," Adv. Phys. 59[, 803–1061 \(2010\).](http://dx.doi.org/10.1080/00018732.2010.513480)
- [2] Johnpierre Paglione and Richard L. Greene, "High-temperature superconductivity in iron-based materials,"
- Nat. Phys. 6[, 645–658 \(2010\).](http://dx.doi.org/10.1038/nphys1759) [3] Paul C. Canfield and Sergey L. Bud'ko, "FeAs-Based Su-
- perconductivity: A Case Study of the Effects of Transi-
- tion Metal Doping on BaFe2As2," [Ann. Rev. Cond. Mat.](http://dx.doi.org/ 10.1146/annurev-conmatphys-070909-104041) Phys. 1[, 27–50 \(2010\).](http://dx.doi.org/ 10.1146/annurev-conmatphys-070909-104041)
- [4] Qimiao Si, Rong Yu, and Elihu Abrahams, "High- temperature superconductivity in iron pnictides and chalcogenides," [Nat. Rev. Mater.](http://dx.doi.org/ 10.1038/natrevmats.2016.17) 1, 16017 (2016).
- [5] M. P. M. Dean, M. G. Kim, A. Kreyssig, J. W. Kim, X. Liu, P. J. Ryan, A. Thaler, S. L. Bud'ko, W. Strassheim, P. C. Canfield, J. P. Hill, and A. I. Goldman, "Magnetically polarized Ir dopant atoms in 557 superconducting $Ba(Fe_{1-x}Ir_x)_{2}As_2$," [Phys. Rev. B](http://dx.doi.org/ 10.1103/PhysRevB.85.140514) 85, 614 [140514\(R\) \(2012\).](http://dx.doi.org/ 10.1103/PhysRevB.85.140514)
- [6] Pengcheng Dai, "Antiferromagnetic order and spin dy- namics in iron-based superconductors," [Rev. Mod. Phys.](http://dx.doi.org/10.1103/RevModPhys.87.855) 87[, 855–896 \(2015\).](http://dx.doi.org/10.1103/RevModPhys.87.855)
- [7] M. Moroni, P. Carretta, G. Allodi, R. De Renzi, M. N. Gastiasoro, B. M. Andersen, P. Materne, H.-H. Klauss, Y. Kobayashi, M. Sato, and S. Sanna, "Fast recovery of the stripe magnetic order by Mn/Fe substitution in
- F-doped LaFeAsO superconductors," [Phys. Rev. B](http://dx.doi.org/10.1103/PhysRevB.95.180501) 95, [180501\(R\) \(2017\).](http://dx.doi.org/10.1103/PhysRevB.95.180501) 568 [8] A. Kreyssig, J. M. Wilde, A. E. Böhmer, W. Tian, W. R. 625
- Meier, Bing Li, B. G. Ueland, Mingyu Xu, S. L. Bud'ko, P. C. Canfield, R. J. McQueeney, and A. I. Gold- man, "Antiferromagnetic order in CaK(Fe_{1-x}Ni_x)₄As₄ and its interplay with superconductivity," [Phys. Rev. B](http://dx.doi.org/ 10.1103/PhysRevB.97.224521) 97[, 224521 \(2018\).](http://dx.doi.org/ 10.1103/PhysRevB.97.224521)
- [9] William R. Meier, Qing-Ping Ding, Andreas Kreyssig, Sergey L. Bud'ko, Aashish Sapkota, Karunakar Kotha- palli, Vladislav Borisov, Roser Valent´ı, Cristian D. Batista, Peter P. Orth, Rafael M. Fernandes, Alan I. 578 Goldman, Yuji Furukawa, Anna E. Böhmer, and Paul C. 635 Canfield, "Hedgehog spin-vortex crystal stabilized in a hole-doped iron-based superconductor," [npj Quantum](http://dx.doi.org/10.1038/s41535-017-0076-x) Materials 3[, 5 \(2018\).](http://dx.doi.org/10.1038/s41535-017-0076-x)
- [10] Marianne Rotter, Marcus Tegel, and Dirk Johrendt, "Superconductivity at 38 K in the Iron Arsenide 584 (Ba_{1−x}K_x)Fe₂As₂," [Phys. Rev. Lett.](http://dx.doi.org/ 10.1103/PhysRevLett.101.107006) **101**, 107006 (2008). ⁶⁴¹
- [11] Athena S. Sefat, Rongying Jin, Michael A. McGuire,
- Brian C. Sales, David J. Singh, and David Mandrus, "Superconductivity at 22 K in Co-Doped BaFe₂As₂ Crys-tals," [Phys. Rev. Lett.](http://dx.doi.org/10.1103/PhysRevLett.101.117004) 101, 117004 (2008).
- [12] N. Ni, M. E. Tillman, J.-Q. Yan, A. Kracher, S. T. Han- nahs, S. L. Bud'ko, and P. C. Canfield, "Effects of Co substitution on thermodynamic and transport properties 592 and anisotropic H_{c2} in Ba(Fe_{1-x}Co_x)₂As₂ single crys-
- tals," Phys. Rev. B 78[, 214515 \(2008\).](http://dx.doi.org/10.1103/PhysRevB.78.214515) [13] Kalyan Sasmal, Bing Lv, Bernd Lorenz, Arnold M. Gu-
- loy, Feng Chen, Yu-Yi Xue, and Ching-Wu Chu, "Super-596 conducting Fe-Based Compounds $(A_{1-x}Sr_x)Fe_2As_2$ with 653
-

 A = K and Cs with Transition Temperatures up to 37 K," [Phys. Rev. Lett.](http://dx.doi.org/10.1103/PhysRevLett.101.107007) 101, 107007 (2008).

- [14] Gen-Fu Chen, Zheng Li, Gang Li, Wan-Zheng Hu, Jing Dong, Xiao-Dong Zhang Jun Zhou, Ping Zheng, Nan-Lin Wang, and Jian-Lin Luo, "Superconductivity in Hole-602 Doped $(Sr_{1-x}K_x)Fe₂As₂$," [Chin. Phys. Lett.](http://dx.doi.org/10.1088/0256-307X/25/9/083) 25, 3403 (2008) .
- [15] Jiun-Haw Chu, James G. Analytis, Chris Kuchar- czyk, and Ian R. Fisher, "Determination of the phase diagram of the electron-doped superconductor 607 Ba(Fe_{1−x}Co_x)₂As₂," Phys. Rev. B **79**[, 014506 \(2009\).](http://dx.doi.org/ 10.1103/PhysRevB.79.014506)
- [16] T. Goko, A. A. Aczel, E. Baggio-Saitovitch, S. L. Bud'ko, P. C. Canfield, J. P. Carlo, G. F. Chen, Pengcheng Dai, A. C. Hamann, W. Z. Hu, H. Kageyama, G. M. Luke, J. L. Luo, B. Nachumi, N. Ni, D. Reznik, D. R. Sanchez- Candela, A. T. Savici, K. J. Sikes, N. L. Wang, C. R. Wiebe, T. J. Williams, T. Yamamoto, W. Yu, and Y. J. Uemura, "Superconducting state coexisting with a $_{615}$ phase-separated static magnetic order in $(Ba,K)Fe₂As₂$, 616 (Sr,Na)Fe₂As₂, and CaFe₂As₂," [Phys. Rev. B](http://dx.doi.org/10.1103/PhysRevB.80.024508) **80**, 024508 (2009) .
- [17] S. R. Saha, N. P. Butch, K. Kirshenbaum, and John- pierre Paglione, "Evolution of bulk superconductivity in $SrFe₂As₂ with Ni substitution, "Phys. Rev. B 79, 224519$ (2009)
- [18] Shuai Jiang, Hui Xing, Guofang Xuan, Cao Wang, Zhi Ren, Chunmu Feng, Jianhui Dai, Zhu'an Xu, and Guanghan Cao, "Superconductivity up to 30 K in the vicinity of the quantum critical point in $BaFe₂(As_{1-x}P_x)₂$," [J. Phys.: Condens. Matter](http://dx.doi.org/ 10.1088/0953-8984/21/38/382203) 21, [382203 \(2009\).](http://dx.doi.org/ 10.1088/0953-8984/21/38/382203)
- [19] H. L. Shi, H. X. Yang, H. F. Tian, J. B. Lu, Z. W. Wang, Y. B. Qin, Y. J. Song, and J. Q. Li, "Structural 630 properties and superconductivity of $SrFe₂As_{2-x}P_x$ and 631 $(0.0 \le x \le 1.0)$ and $CaFe₂As_{2-y}P_y$ $(0.0 \le y \le 0.3),$ " [J.](http://stacks.iop.org/0953-8984/22/i=12/a=125702) [Phys.: Condens. Matter](http://stacks.iop.org/0953-8984/22/i=12/a=125702) 22, 125702 (2010).
	- [20] Raquel Cortes-Gil and Simon J. Clarke, "Structure, Magnetism, and Superconductivity of the Layered Iron Arsenides $Sr_{1-x}Na_xFe_2As_2$," [Chem. Mater.](http://dx.doi.org/10.1021/cm1028244) 23, 1009–1016 $(2011).$
- [21] Fumihiro Ishikawa, Naoya Eguchi, Michihiro Kodama, Koji Fujimaki, Mari Einaga, Ayako Ohmura, Atsuko Nakayama, Akihiro Mitsuda, and Yuh Yamada, "Zeroresistance superconducting phase in BaFe₂As₂ under high pressure," Phys. Rev. B **79**[, 172506 \(2009\).](http://dx.doi.org/ 10.1103/PhysRevB.79.172506)
- [22] Patricia L. Alireza, Y. T. Chris Ko, Jack Gillett, Chiara M. Petrone, Jacqui M. Cole, Suchitra E. Sebas- tian, and Gilbert G. Lonzarich, "Superconductivity up $_{645}$ to 29 K in SrFe₂As₂ and BaFe₂As₂ at high pressures," [J.](http://dx.doi.org/10.1088/0953-8984/21/1/012208) [Phys: Cond. Matter](http://dx.doi.org/10.1088/0953-8984/21/1/012208) 21, 012208 (2009).
- [23] E. Colombier, S. L. Bud'ko, N. Ni, and P. C. Can- field, "Complete pressure-dependent phase diagrams for SrFe₂As₂ and BaFe₂As₂," [Phys. Rev. B](http://dx.doi.org/10.1103/PhysRevB.79.224518) **79**, 224518 [\(2009\).](http://dx.doi.org/10.1103/PhysRevB.79.224518)
	- K. Kitagawa, N. Katayama, H. Gotou, T. Yagi, K. Ohgushi, T. Matsumoto, Y. Uwatoko, and M. Takigawa, "Spontaneous Formation of a Superconducting and Anti-
- 654 ferromagnetic Hybrid State in SrFe₂As₂ under High Pres- 717 [37] A. E. Böhmer, F. Hardy, L. Wang, T. Wolf, ⁶⁵⁵ sure," [Phys. Rev. Lett.](http://dx.doi.org/10.1103/PhysRevLett.103.257002) 103, 257002 (2009).
- ⁶⁵⁶ [25] Marcus Tegel, Marianne Rotter, Veronika Weiβ, Falko M
- 657 Schappacher, Rainer Pöttgen, and Dirk Johrendt, 720
- ⁶⁵⁸ "Structural and magnetic phase transitions in the ternary 659 iron arsenides $SrFe₂As₂$ and $EuFe₂As₂$," [J. Phys.: Con-](http://dx.doi.org/10.1088/0953-8984/20/45/452201)
- ⁶⁶⁰ dens. Matter 20[, 452201 \(2008\).](http://dx.doi.org/10.1088/0953-8984/20/45/452201) ⁶⁶¹ [26] J.-Q. Yan, A. Kreyssig, S. Nandi, N. Ni, S. L. Bud'ko, ⁶⁶² A. Kracher, R. J. McQueeney, R. W. McCallum, T. A. ⁶⁶³ Lograsso, A. I. Goldman, and P. C. Canfield, "Structural ⁶⁶⁴ transition and anisotropic properties of single-crystalline
- 665 SrFe₂As₂," Phys. Rev. B **78**[, 024516 \(2008\).](http://dx.doi.org/10.1103/PhysRevB.78.024516)
- ⁶⁶⁶ [27] Jun Zhao, W. Ratcliff, J. W. Lynn, G. F. Chen, J. L. Luo, ⁶⁶⁷ N. L. Wang, Jiangping Hu, and Pengcheng Dai, "Spin
- ϵ_{668} and lattice structures of single-crystalline SrFe₂As₂," 669 Phys. Rev. B 78, $140504(R)$ (2008).
- ⁶⁷⁰ [28] W. Z. Hu, J. Dong, G. Li, Z. Li, P. Zheng, G. F. Chen, ⁶⁷¹ J. L. Luo, and N. L. Wang, "Origin of the Spin Den- 672 sity Wave Instability in $AFe₂As₂$ ($A=Ba$, Sr) as Revealed ⁶⁷³ by Optical Spectroscopy," [Phys. Rev. Lett.](http://dx.doi.org/10.1103/PhysRevLett.101.257005) 101, 257005 674 [\(2008\).](http://dx.doi.org/10.1103/PhysRevLett.101.257005)
- ⁶⁷⁵ [29] J. N. Hancock, S. I. Mirzaei, J. Gillett, S. E. Sebastian, ⁶⁷⁶ J. Teyssier, R. Viennois, E. Giannini, and D. van der ⁶⁷⁷ Marel, "Strong coupling to magnetic fluctuations in the ⁶⁷⁸ charge dynamics of iron-based superconductors," [Phys.](http://dx.doi.org/ 10.1103/PhysRevB.82.014523) 679 Rev. B **82**[, 014523 \(2010\).](http://dx.doi.org/ 10.1103/PhysRevB.82.014523)
680 [30] E. C. Blomberg, M. A.
- ⁶⁸⁰ [30] E. C. Blomberg, M. A. Tanatar, A. Kreyssig, N. Ni, ⁶⁸¹ A. Thaler, Rongwei Hu, S. L. Bud'ko, P. C. Canfield, ⁶⁸² A. I. Goldman, and R. Prozorov, "In-plane anisotropy of 683 electrical resistivity in strain-detwinned SrFe_2As_2 ," [Phys.](http://dx.doi.org/10.1103/PhysRevB.83.134505) 746 684 Rev. B 83[, 134505 \(2011\).](http://dx.doi.org/10.1103/PhysRevB.83.134505)
- ⁶⁸⁵ [31] M. A. Tanatar, A. Kreyssig, S. Nandi, N. Ni, S. L. ⁶⁸⁶ Bud'ko, P. C. Canfield, A. I. Goldman, and R. Pro-⁶⁸⁷ zorov, "Direct imaging of the structural domains in the 688 iron pnictides $A\text{Fe}_2\text{As}_2$ $(A = \text{Ca}, \text{Sr}, \text{Ba})$," [Phys. Rev. B](http://dx.doi.org/ 10.1103/PhysRevB.79.180508) τ_{51} 689 79, $180508(R)$ (2009).
- ⁶⁹⁰ [32] I. R. Fisher, L. Degiorgi, and Z. X. Shen, "In-plane elec-⁶⁹¹ tronic anisotropy of underdoped '122' Fe-arsenide super-⁶⁹² conductors revealed by measurements of detwinned single ⁶⁹³ crystals," [Rep. Prog. Phys.](http://dx.doi.org/ 10.1088/0034-4885/74/12/124506) 74, 124506 (2011).
- ⁶⁹⁴ [33] A. I. Goldman, D. N. Argyriou, B. Ouladdiaf, T. Chat-⁶⁹⁵ terji, A. Kreyssig, S. Nandi, N. Ni, S. L. Bud'ko, P. C. ⁶⁹⁶ Canfield, and R. J. McQueeney, "Lattice and mag- ϵ_{697} netic instabilities in CaFe₂As₂: A single-crystal neutron τ_{60} 698 diffraction study," Phys. Rev. B 78, $100506(R)$ (2008).
- ⁶⁹⁹ [34] M. Kofu, Y. Qiu, Wei Bao, S.-H. Lee, S. Chang, T. Wu, ⁷⁰⁰ G. Wu, and X. H. Chen, "Neutron scattering in-⁷⁰¹ vestigation of the magnetic order in single crystalline $_{702}$ BaFe₂As₂," New J. Phys. **11**[, 055001 \(2009\).](http://dx.doi.org/10.1088/1367-2630/11/5/055001)
- ⁷⁰³ [35] M. G. Kim, A. Kreyssig, A. Thaler, D. K. Pratt, W. Tian, ⁷⁰⁴ J. L. Zarestky, M. A. Green, S. L. Bud'ko, P. C. Can-⁷⁰⁵ field, R. J. McQueeney, and A. I. Goldman, "Antifer-⁷⁰⁶ romagnetic ordering in the absence of structural distor- 707 tion in Ba(Fe_{1-x}Mn_x)₂As₂," [Phys. Rev. B](http://dx.doi.org/ 10.1103/PhysRevB.82.220503) **82**, 220503(R) 770 [46]
- ⁷⁰⁸ [\(2010\).](http://dx.doi.org/ 10.1103/PhysRevB.82.220503) ⁷⁰⁹ [36] E. Hassinger, G. Gredat, F. Valade, S. Ren´e de Cotret,
- ⁷¹⁰ A. Juneau-Fecteau, J.-Ph. Reid, H. Kim, M. A. ⁷¹¹ Tanatar, R. Prozorov, B. Shen, H.-H. Wen, N. Doiron-⁷¹² Leyraud, and Louis Taillefer, "Pressure-induced Fermi-⁷¹³ surface reconstruction in the iron-arsenide superconduc- τ ¹⁴ tor Ba_{1−x}K_xFe₂As₂: Evidence of a phase transition in-⁷¹⁵ side the antiferromagnetic phase," [Phys. Rev. B](http://dx.doi.org/ 10.1103/PhysRevB.86.140502) 86,
- 716 [140502\(R\) \(2012\).](http://dx.doi.org/ 10.1103/PhysRevB.86.140502)
- ⁷¹⁸ P. Schweiss, and C. Meingast, "Superconductivityinduced re-entrance of the orthorhombic distortion in $Ba_{1-x}K_xFe_2As_2,$ " [Nat. Commun.](http://dx.doi.org/ 10.1038/ncomms8911) 6, 7911 (2015).
- [38] L. Wang, F. Hardy, A. E. Böhmer, T. Wolf, ⁷²² P. Schweiss, and C. Meingast, "Complex phase diagram 723 of Ba_{1−x}Na_xFe₂As₂: A multitude of phases striving for the electronic entropy," Phys. Rev. B 93 [, 014514 \(2016\).](http://dx.doi.org/10.1103/PhysRevB.93.014514)
- [39] K. M. Taddei, J. M. Allred, D. E. Bugaris, S. Lapidus, M. J. Krogstad, R. Stadel, H. Claus, D. Y. Chung, M. G. Kanatzidis, S. Rosenkranz, R. Osborn, and O. Chmais-⁷²⁸ sem, "Detailed magnetic and structural analysis mapping r_{29} a robust magnetic C_4 dome in $Sr_{1-x}Na_xFe_2As_2$," [Phys.](http://dx.doi.org/ 10.1103/PhysRevB.93.134510) Rev. B 93[, 134510 \(2016\).](http://dx.doi.org/ 10.1103/PhysRevB.93.134510)
- 731 [40] Liran Wang, Mingquan He, Daniel D. Scherer, Frédéric ⁷³² Hardy, Peter Schweiss, Thomas Wolf, Michael Merz, ⁷³³ Brian M. Andersen, and Christoph Meingast, "Compet-⁷³⁴ ing Electronic Phases near the Onset of Superconduc-⁷³⁵ tivity in Hole-doped SrFe2As2," [J. Phys. Soc. Jpn.](http://dx.doi.org/ 10.7566/JPSJ.88.104710) 88, ⁷³⁶ [104710 \(2019\).](http://dx.doi.org/ 10.7566/JPSJ.88.104710)
- ⁷³⁷ [41] E. Hassinger, G. Gredat, F. Valade, S. Ren´e de Cotret, 738 O. Cyr-Choinière, A. Juneau-Fecteau, J.-Ph. Reid, ⁷³⁹ H. Kim, M. A. Tanatar, R. Prozorov, B. Shen, H.-H. ⁷⁴⁰ Wen, N. Doiron-Leyraud, and Louis Taillefer, "Expansion of the tetragonal magnetic phase with pressure in the 742 iron arsenide superconductor $Ba_{1-x}K_xFe_2As_2$," [Phys.](http://dx.doi.org/10.1103/PhysRevB.93.144401) Rev. B 93[, 144401 \(2016\).](http://dx.doi.org/10.1103/PhysRevB.93.144401)
- K. M. Taddei, J. M. Allred, D. E. Bugaris, S. H. Lapidus, M. J. Krogstad, H. Claus, D. Y. Chung, M. G. Kanatzidis, R. Osborn, S. Rosenkranz, and 747 O. Chmaissem, "Observation of the magnetic C_4 phase in $Ca_{1-x}Na_{x}Fe_{2}As_{2}$ and its universality in the hole-doped 122 superconductors," Phys. Rev. B **95**[, 064508 \(2017\).](http://dx.doi.org/ 10.1103/PhysRevB.95.064508)
- M. Yi, A. Frano, D. H. Lu, Y. He, Meng Wang, B. A. ⁷⁵¹ Frandsen, A. F. Kemper, R. Yu, Q. Si, L. Wang, ⁷⁵² M. He, F. Hardy, P. Schweiss, P. Adelmann, T. Wolf, M. Hashimoto, S.-K. Mo, Z. Hussain, M. Le Tacon, A. E. Böhmer, D.-H. Lee, Z.-X. Shen, C. Meingast, and R. J. Birgeneau, "Spectral Evidence for Emergent Order in 756 Ba_{1−x}Na_xFe₂As₂," [Phys. Rev. Lett.](http://dx.doi.org/ 10.1103/PhysRevLett.121.127001) **121**, 127001 (2018).
- S. Avci, O. Chmaissem, J. M. Allred, S. Rosenkranz, I. Eremin, A. V. Chubukov, D. E. Bugaris, D. Y. ⁷⁵⁹ Chung, M. G. Kanatzidis, J.-P Castellan, J. A. Schlueter, H. Claus, D. D. Khalyavin, P. Manuel, A. Daoud-⁷⁶¹ Aladine, and R. Osborn, "Magnetically driven suppression fo nematic order in an iron-based superconductor," [Nat. Commun.](http://dx.doi.org/10.1038/ncomms4845) 5, 3845 (2014).
- [45] J. M. Allred, K. M. Taddei, D. E. Bugaris, M. J. ⁷⁶⁵ Krogstad, S. H. Lapidus, D. Y. Chung, H. Claus, M. G. Kanatzidis, D. E. Brown, J. Kang, R. M. Fernandes, I. Eremin, S. Rosenkranz, O. Chmaissem, and R. Osborn, "Double-Q spin-density wave in iron arsenide superconductors," Nat. Phys. **12**[, 493 \(2016\).](http://dx.doi.org/10.1038/nphys3629)
- F. Waßer, A. Schneidewind, Y. Sidis, S. Wurmehl, ⁷⁷¹ S. Aswartham, B. B¨uchner, and M. Braden, "Spin reorientation in $Ba_{0.65}Na_{0.35}Fe₂As₂ studied by single-crystal$ neutron diffraction," Phys. Rev. B $91,060505(R)$ (2015).
- [47] B. P. P. Mallett, Yu. G. Pashkevich, A. Gusev, Th. ⁷⁷⁵ Wolf, and C. Bernhard, "Muon spin rotation study of the magnetic structure in the tetragonal antiferromag- 777 netic state of weakly underdoped $Ba_{1-x}K_xFe_2As_2$," [EPL](http://dx.doi.org/ 10.1209/0295-5075/111/57001) ⁷⁷⁸ [\(Europhysics Letters\)](http://dx.doi.org/ 10.1209/0295-5075/111/57001) 111, 57001 (2015).
- ⁷⁷⁹ [48] Mareike Hoyer, Rafael M. Fernandes, Alex Levchenko, 780 and Jörg Schmalian, "Disorder-promoted C_4 -symmetric
- ⁷⁸¹ magnetic order in iron-based superconductors," [Phys.](http://dx.doi.org/10.1103/PhysRevB.93.144414) ⁷⁸² Rev. B 93[, 144414 \(2016\).](http://dx.doi.org/10.1103/PhysRevB.93.144414)
- ⁷⁸³ [49] Jianqing Guo, Li Yue, Kazuki Iida, Kazuya Kamazawa,
- ⁷⁸⁴ Lei Chen, Tingting Han, Yan Zhang, and Yuan
- ⁷⁸⁵ Li, "Preferred magnetic excitations in the iron-based $Sr_{1-x}Na_xFe_2As_2$ superconductor," [Phys. Rev. Lett.](http://dx.doi.org/10.1103/PhysRevLett.122.017001) 122,
- ⁷⁸⁷ [017001 \(2019\).](http://dx.doi.org/10.1103/PhysRevLett.122.017001)
- ⁷⁸⁸ [50] Christopher C. Homes, M. Reedyk, D. A. Crandles, and ⁷⁸⁹ T. Timusk, "Technique for measuring the reflectance of ⁷⁹⁰ irregular, submillimeter-sized samples," [Appl. Opt.](http://dx.doi.org/10.1364/AO.32.002976) 32, ⁷⁹¹ [2976–2983 \(1993\).](http://dx.doi.org/10.1364/AO.32.002976)
- ⁷⁹² [51] See Supplemental Material at [URL will be inserted by ⁷⁹³ publisher] for details of the experimental reflectivity and ⁷⁹⁴ Kramers-Kronig analysis, which includes Refs. [73–](#page-11-23)[77.](#page-11-24)
- ⁷⁹⁵ [52] Y. M. Dai, Ana Akrap, S. L. Bud'ko, P. C. Canfield, and
- σ ₇₉₆ C. C. Homes, "Optical properties of $A\text{Fe}_2\text{As}_2$ ($A = \text{Ca}$, ⁷⁹⁷ Sr, and Ba) single crystals," [Phys. Rev. B](http://dx.doi.org/ 10.1103/PhysRevB.94.195142) 94, 195142 ⁷⁹⁸ [\(2016\).](http://dx.doi.org/ 10.1103/PhysRevB.94.195142)
- ⁷⁹⁹ [53] C. C. Homes, Y. M. Dai, Ana Akrap, S. L. Bud'ko, and 800 P. C. Canfield, "Vibrational anomalies in $A\text{Fe}_2\text{As}_2$ ($A =$ ⁸⁰¹ Ca, Sr, and Ba) single crystals," [Phys. Rev. B](http://dx.doi.org/10.1103/PhysRevB.98.035103) 98, 035103
- $802 \t(2018).$ $802 \t(2018).$ ⁸⁰³ [54] B. P. P. Mallett, P. Marsik, M. Yazdi-Rizi, Th. Wolf, 804 A. E. Böhmer, F. Hardy, C. Meingast, D. Munzar, and
- ⁸⁰⁵ C. Bernhard, "Infrared Study of the Spin Reorientation 806 Transition and Its Reversal in the Superconducting State 870
- 807 in Underdoped $Ba_{1-x}K_xFe_2As_2$," [Phys. Rev. Lett.](http://dx.doi.org/ 10.1103/PhysRevLett.115.027003) 115, 871 [69]
- ⁸⁰⁸ [027003 \(2015\).](http://dx.doi.org/ 10.1103/PhysRevLett.115.027003)
- ⁸⁰⁹ [55] D. J. Singh, "Electronic structure and doping in 810 BaFe₂As₂ and LiFeAs: Density functional calculations," 811 Phys. Rev. B **78**[, 094511 \(2008\).](http://dx.doi.org/10.1103/PhysRevB.78.094511)
- 812 [56] J. Fink, S. Thirupathaiah, R. Ovsyannikov, H. A. Dürr, 876 ⁸¹³ R. Follath, Y. Huang, S. de Jong, M. S. Golden, Yu-814 Zhong Zhang, H. O. Jeschke, R. Valentí, C. Felser, 878 ⁸¹⁵ S. Dastjani Farahani, M. Rotter, and D. Johrendt, "Elec-816 tronic structure studies of BaFe₂As₂ by angle-resolved 880 817 photoemission spectroscopy," [Phys. Rev. B](http://dx.doi.org/10.1103/PhysRevB.79.155118) 79, 155118 881 [71] 818 [\(2009\).](http://dx.doi.org/10.1103/PhysRevB.79.155118)
- 819 [57] D. Wu, N. Barišić, P. Kallina, A. Faridian, B. Gorshunov, ⁸²⁰ N. Drichko, L. J. Li, X. Lin, G. H. Cao, Z. A. Xu, 821 N. L. Wang, and M. Dressel, "Optical investigations of 885 822 the normal and superconducting states reveal two elec-886 823 tronic subsystems in iron pnictides," [Phys. Rev. B](http://dx.doi.org/10.1103/PhysRevB.81.100512) 81, 887 $_{824}$ [100512\(R\) \(2010\).](http://dx.doi.org/10.1103/PhysRevB.81.100512)
- 825 [58] Z. P. Yin, K. Haule, and G. Kotliar, "Magnetism and 889 ⁸²⁶ charge dynamics in iron pnictides," [Nat. Phys.](http://dx.doi.org/10.1038/nphys1923) 7, 294– 827 [297 \(2011\).](http://dx.doi.org/10.1038/nphys1923)
- 828 [59] Richard A. Ferrell and Rolfe E. Glover, "Conductivity of 892 ⁸²⁹ Superconducting Films: A Sum Rule," [Phys. Rev.](http://dx.doi.org/ 10.1103/PhysRev.109.1398) 109, ⁸³⁰ [1398–1399 \(1958\).](http://dx.doi.org/ 10.1103/PhysRev.109.1398)
- 831 [60] M. Tinkham and R. A. Ferrell, "Determination of the 895 832 Superconducting Skin Depth from the Energy Gap and ⁸³³ Sum Rule," Phys. Rev. Lett. 2[, 331–333 \(1959\).](http://dx.doi.org/10.1103/PhysRevLett.2.331)
- ⁸³⁴ [61] C. C. Homes, Y. M. Dai, J. S. Wen, Z. J. Xu, and G. D. 835 Gu, "FeTe_{0.55}Se_{0.45}: A multiband superconductor in the 899 ⁸³⁶ clean and dirty limit," Phys. Rev. B 91[, 144503 \(2015\).](http://dx.doi.org/10.1103/PhysRevB.91.144503)
- 837 [62] C. C. Homes, S. V. Dordevic, M. Strongin, D. A. Bonn, 901 ⁸³⁸ Ruixing Liang, W. N. Hardy, Seiki Komiya, Yoichi Ando,
- 839 G. Yu, N. Kaneko, X. Zhao, M. Greven, D. N. Basov, 903 ⁸⁴⁰ and T. Timusk, "Universal scaling relation in high-⁸⁴¹ temperature superconductors," [Nature \(London\)](http://dx.doi.org/ 10.1038/nature02673) 430, 842 539 (2004) .
- ⁸⁴³ [63] C. C. Homes, S. V. Dordevic, D. A. Bonn, Ruixing Liang, ⁸⁴⁴ W. N. Hardy, and T. Timusk, "Coherence, incoherence,

and scaling along the c axis of $YBa_2Cu_3O_{6+x}$," [Phys.](http://dx.doi.org/ 10.1103/PhysRevB.71.184515) 846 Rev. B 71, 184515 (2005) .

- ⁸⁴⁷ [64] C. C. Homes, S. V. Dordevic, T. Valla, and M. Strongin, "Scaling of the superfluid density in high-temperature 849 superconductors," Phys. Rev. B 72[, 134517 \(2005\).](http://dx.doi.org/ 10.1103/PhysRevB.72.134517)
850 [65] J. J. Tu, J. Li, W. Liu, A. Punnoose, Y. Gong. Y
- ⁸⁵⁰ [65] J. J. Tu, J. Li, W. Liu, A. Punnoose, Y. Gong, Y. H. ⁸⁵¹ Ren, L. J. Li, G. H. Cao, Z. A. Xu, and C. C. Homes, ⁸⁵² "Optical properties of the iron arsenic superconductor ⁸⁵³ BaFe1.85Co0.15As2," Phys. Rev. B 82[, 174509 \(2010\).](http://dx.doi.org/ 10.1103/PhysRevB.82.174509)
- ⁸⁵⁴ [66] Run Yang, Yaomin Dai, Jia Yu, Qiangtao Sui, Yongqing ⁸⁵⁵ Cai, Zhian Ren, Jungseek Hwang, Hong Xiao, Xingjiang ⁸⁵⁶ Zhou, Xianggang Qiu, and Christopher C. Homes, ⁸⁵⁷ "Unravelling the mechanism of the semiconducting-⁸⁵⁸ like behavior and its relation to superconductivity in $(CaFe_{1-x}Pt_xAs)_{10}Pt_3As_8$," [Phys. Rev. B](http://dx.doi.org/10.1103/PhysRevB.99.144520) 99, 144520
⁸⁶⁰ (2019). $(2019).$
- ⁸⁶¹ [67] N. V. Smith, "Classical generalization of the Drude for-⁸⁶² mula for the optical conductivity," [Phys. Rev. B](http://dx.doi.org/10.1103/PhysRevB.64.155106) 64, ⁸⁶³ [155106 \(2001\).](http://dx.doi.org/10.1103/PhysRevB.64.155106)
- ⁸⁶⁴ [68] Replacing the broad Drude term with the expression in ⁸⁶⁵ Eq. [\(2\)](#page-7-1) and fitting to the real and imaginary parts of ⁸⁶⁶ the optical conductivity using a non-linear least-squares ⁸⁶⁷ technique yields $ω_p ≈ 5350$ cm⁻¹, $1/τ ≈ 146$ cm⁻¹, and s_{68} c = −0.7. The plasma frequency is larger because it now α_{iso} describes both the localized as well as free carriers; $\omega_p^2 \simeq$ 870 $\omega_{p,D2}^2+\Omega_0^2.$
- ⁸⁷¹ [69] Y. M. Dai, B. Xu, B. Shen, H. H. Wen, J. P. Hu, X. G. ⁸⁷² Qiu, and R. P. S. M. Lobo, "Pseudogap in underdoped $Ba_{1-x}K_xFe_2As_2$ as seen via optical conductivity," [Phys.](http://dx.doi.org/10.1103/PhysRevB.86.100501) 874 Rev. B 86 [, 100501\(R\) \(2012\).](http://dx.doi.org/10.1103/PhysRevB.86.100501)
- ⁸⁷⁵ [70] V. B. Zabolotnyy, D. S. Inosov, D. V. Evtushinsky, ⁸⁷⁶ A. Koitzsch, A. A. Kordyuk, G. L. Sun, J. T. Park, ⁸⁷⁷ D. Haug, V. Hinkov, A. V. Boris, C. T. Lin, M. Knupfer, A. N. Yaresko, B. Büchner, A. Varykhalov, R. Follath, and S. V. Borisenko, " (π, π) electronic order in iron ar-senide superconductors," Nature 457[, 569–572 \(2009\).](http://dx.doi.org/10.1038/nature07714)
- Gerald Derondeau, Federico Bisti, Masaki Kobayashi, 882 Jürgen Braun, Hubert Ebert, Victor A. Rogalev, Ming ⁸⁸³ Shi, Thorsten Schmitt, Junzhang Ma, Hong Ding, Vladimir N. Strocov, and Ján Minár, "Fermi surface and effective masses in photoemission response of the $(Ba_{1-x}K_x)Fe₂As₂ superconductor, " Sci. Rep. 7, 8787$ $(Ba_{1-x}K_x)Fe₂As₂ superconductor, " Sci. Rep. 7, 8787$ $(Ba_{1-x}K_x)Fe₂As₂ superconductor, " Sci. Rep. 7, 8787$ $(2017).$
- ⁸⁸⁸ [72] M. Yi, D. H. Lu, J. G. Analytis, J.-H. Chu, S.-K. Mo, R.-H. He, M. Hashimoto, R. G. Moore, I. I. Mazin, ⁸⁹⁰ D. J. Singh, Z. Hussain, I. R. Fisher, and Z.-X. Shen, ⁸⁹¹ "Unconventional electronic reconstruction in undoped $(Ba, Sr)Fe₂As₂$ across the spin density wave transition," 893 Phys. Rev. B **80**[, 174510 \(2009\).](http://dx.doi.org/10.1103/PhysRevB.80.174510)
- ⁸⁹⁴ [73] F. Wooten, Optical Properties of Solids (Academic Press, New York, 1972) pp. 244-250.
- 896 [74] M. Dressel and G. Grüner, Electrodynamics of Solids ⁸⁹⁷ (Cambridge University Press, Cambridge, 2001).
- ⁸⁹⁸ [75] D. J. Singh, Planewaves, Pseudopotentials and the LAPW method (Kluwer Adademic, Boston, 1994).
- ⁹⁰⁰ [76] David Singh, "Ground-state properties of lanthanum: Treatment of extended-core states," [Phys. Rev. B](http://dx.doi.org/10.1103/PhysRevB.43.6388) 43, [6388–6392 \(1991\).](http://dx.doi.org/10.1103/PhysRevB.43.6388)
- [77] P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka and J. Luitz, WIEN2k, An augmented plane wave plus ⁹⁰⁵ local orbitals program for calculating crystal properties 906 (Techn. Universität Wien, Austria, 2001).