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We report the temperature dependent optical conductivity and angle-resolved photoemission spec-
troscopy (ARPES) studies of the multiband iron-based superconductor Sr0.67Na0.33Fe2As2. Mea-
surements were made in the high-temperature tetragonal paramagnetic phase; below the structural
and magnetic transitions at TN ' 125 K in the orthorhombic spin-density-wave (SDW)-like phase,
and Tr ' 42 K in the reentrant tetragonal double-Q magnetic phase where both charge and SDW
order exist; and below the superconducting transition at Tc ' 10 K. The free-carrier component in
the optical conductivity is described by two Drude contributions; one strong and broad, the other
weak and narrow. The broad Drude component decreases dramatically below TN and Tr, with
much of its strength being transferred to a bound excitation in the mid-infrared, while the narrow
Drude component shows no anomalies at either of the transitions, actually increasing in strength at
low temperature while narrowing dramatically. The behavior of an infrared-active mode suggests
zone-folding below Tr. Below Tc the dramatic decrease in the low-frequency optical conductivity
signals the formation of a superconducting energy gap. ARPES reveals hole-like bands at the center
of the Brillouin zone (BZ), with both electron- and hole-like bands at the corners. Below TN, the
hole pockets at the center of the BZ decrease in size, consistent with the behavior of the broad
Drude component; while below Tr the electron-like bands shift and split, giving rise to a low-energy
excitation in the optical conductivity at ' 20 meV. The C2 and C4 magnetic states, with resulting
spin-density-wave and charge-SDW order, respectively, lead to a significant reconstruction of the
Fermi surface that has profound implications for the transport originating from the electron and
hole pockets, but appears to have relatively little impact on the superconductivity in this material.

PACS numbers: 72.15.-v, 74.70.-b, 78.20.-e17

I. INTRODUCTION18

The discovery of iron-based superconductors prompted19

an intensive investigation in the hope of identifying new20

compounds with high superconducting critical tempera-21

tures (Tc’s) [1–4]. In many of the iron-based materials,22

superconductivity emerges with the suppression of anti-23

ferromagnetic (AFM) order, suggesting that the pairing24

mechanism is related to the magnetism. Indeed, the iron-25

based materials display a variety of magnetically-ordered26

ground states [5–9] that may either compete with or fos-27

ter the emergence of superconductivity.28

One class of materials, AeFe2As2, where Ae = Ba, Ca29
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or Sr (the so-called “122” materials), is particularly use-30

ful as superconductivity may be induced through a vari-31

ety of chemical substitutions [10–20], as well as through32

the application of pressure [21–24]. The phase diagram of33

Sr1−xNaxFe2As2 has a number of interesting features. At34

room temperature, the parent compound SrFe2As2 is a35

paramagnetic metal with a tetragonal (I4/mmm) struc-36

ture. The resistivity in the iron-arsenic planes decreases37

with temperature until it drops anomalously as the ma-38

terial undergoes a magnetic transition at TN ' 195 K to39

a spin-density-wave (SDW)-like AFM ground state that40

is also accompanied by a structural transition to an or-41

thorhombic (Fmmm) phase [25–30]. The crystals are42

heavily twinned in the orthorhombic phase; however, the43

application of uniaxial stress along the (110) direction of44

the tetragonal unit cell results in a nearly twin-free sam-45

ple [31, 32]. The magnetic order may be described as46

AFM stripes, where the iron spins are aligned antiferro-47

magnetically along the a axis and ferromagnetically along48
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Figure 1. The temperature dependence of the in-plane resis-
tivity for Sr0.67Na0.33Fe2As2 with inflection points at TN '
125 K and Tr ' 42 K; the resistivity at room temperature
has been adjusted to match the optical conductivity in the
zero-frequency limit. Inset: The generic unit cell in the high-
temperature tetragonal phase for the 122 materials.

the b axis [33, 34]; this is also referred to as the magnetic49

C2 phase due to its twofold rotation symmetry. As the50

sodium content increases, the magnetic and structural51

transition temperatures decrease until both disappear52

at x ' 0.48; superconductivity appears well before this53

point at x ' 0.2, and reaches a maximum of Tc ' 37 K for54

x ' 0.5 − 0.6. Between 0.29 < x < 0.42, an additional55

magnetic and structural transition occurs below TN at56

Tr; the tetragonal (I4/mmm) phase reemerges, forming a57

dome which lies completely within the AFM region. This58

phase appears to be a common element in the hole-doped59

122 materials [35–45]; however, in Sr1−xNaxFe2As2 the60

dome is more robust and occurs over a wider doping range61

at temperatures up to Tr ' 65 K [39, 40], which is higher62

than has been observed in other compounds. This mag-63

netic order is described as the collinear superposition of64

two itinerant SDW’s with nesting wavevector Q, leading65

to a double-Q SDW [44, 45] in which half the iron sites66

are nonmagnetic, and half have twice the moment mea-67

sured in the orthorhombic AFM phase, oriented along68

the c axis [46, 47]; this is referred to as the magnetic C469

phase because of its fourfold rotational invariance. This70

magnetic state is accompanied by a charge-density wave71

(CDW) with the charge coupling to the square of the72

magnetization, resulting in a charge-SDW (CSDW) [48].73

In this work, the complex optical properties and74

angle-resolved photoemission spectroscopy (ARPES), of75

Sr0.67Na0.33Fe2As2 have been investigated in the high-76

temperature tetragonal phase, as well as the magnetic C277

and C4 phases. The value of x ' 0.33 used in the current78

study is slightly below the optimal value of x ' 0.37 that79

bisects the C4 dome in the Sr1−xNaxFe2As2 phase di-80

agram [39]. Based on transport studies, TN ' 125 K,81

Tr ' 42 K, and Tc ' 10K. In the high temperature82

tetragonal paramagnetic state, the optical response of the83

free-carriers is described by two Drude terms (Sec. IIIA);84

one strong and broad (large scattering rate), and the85

other weak and narrower (smaller scattering rate); as the86

temperature is reduced, the strength of the Drude terms87

show relatively little temperature dependence, while the88

scattering rates slowly decrease. Below TN, the Fermi89

surface reconstruction driven by the structural and mag-90

netic transitions causes both the strength and the scat-91

tering rate for the broad Drude term to decrease dra-92

matically; the missing spectral weight (the area under93

the conductivity curve) associated with the free carriers94

is transferred to a peak that emerges in the mid-infrared.95

The narrow Drude term actually increases slightly in96

strength below TN while narrowing. Below Tr, in the97

magnetic C4 phase, the broad Drude term again nar-98

rows and decreases in strength; while the strength of the99

narrow term does not appear to change, its scattering100

rate decreases dramatically. Based on the behavior of101

an infrared-active lattice mode, the presence of CSDW102

order likely results in the formation of a supercell result-103

ing in zone folding, leading to a further reconstruction of104

the Fermi surface; while spectral weight is again trans-105

ferred from the broad Drude to the midinfrared peak, a106

new low-energy peak emerges at ' 20 meV. Below Tc,107

there is a dramatic decrease in the low-frequency con-108

ductivity, signalling the formation of a superconducting109

energy gap. ARPES reveals several large hole pockets at110

the center of the Brillouin zone above TN, one of which111

shifts below the Fermi level below TN in the C2 mag-112

netic phase, a trend which continues below Tr, suggest-113

ing that these bands may be related to the broad Drude114

response. At the corners of the Brillouin zone, there are115

both hole- and electron-like bands. Below TN and Tr,116

several of these bands appear to split and shift, but it is117

not clear if there are any significant changes to the size118

of the associated Fermi surfaces, suggesting that some of119

these carriers may be related to the narrow Drude term;120

below Tr the band splitting is likely responsible for the121

emergence of the low-energy peak. The structural and122

magnetic transitions from which the C2 (SDW) and C4123

(double-Q SDW) phases emerge result in a Fermi sur-124

face reconstruction that has profound effects on the op-125

tical conductivity and electronic structure; however, the126

superfluid stiffness appears to be more or less unaffected127

by the CSDW order.128

II. EXPERIMENT129

High-quality single crystals of Sr0.67Na0.33Fe2As2 with130

good cleavage planes (001) were synthesized using a self-131

flux technique [39, 49]. The temperature dependence of132

the in-plane resistivity, shown in Fig. 1, was measured133

using a standard four-probe configuration using a Quan-134

tum Design physical property measurement system; the135

unit cell for the high-temperature tetragonal phase is136
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Figure 2. (a) The temperature dependence of the real part of the optical conductivity of Sr0.67Na0.33Fe2As2 in the infrared
region for light polarized in the Fe–As planes. Inset: the conductivity over a wide spectral range at several temperatures. (b)
The σ1(ω, T ) − σ1(ω, 295 K) difference plot for T ≥ TN over a wide spectral range showing the narrowing of the free-carrier
response and the transfer of spectral weight from high to low frequency. (c) The σ1(ω, T )−σ1(ω, 125 K) difference plot. Int the
Tr < T < TN region the free-carrier response continues to narrow and a peak emerges in the mid-infrared region; for T < Tr, the
low-frequency conductivity is further suppressed, the mid-infrared peak shifts to low energy, and a prominent peak is observed
at ' 170 cm−1 (arrows).

shown in the inset. The resistivity decreases gradually137

with temperature, showing a weak inflection point at138

TN ' 125 K with a more pronounced decrease in the139

resistivity at Tr ' 42 K; the resistivity goes to zero be-140

low the superconducting transition at Tc ' 10 K. The re-141

flectance from freshly-cleaved surfaces has been measured142

at a near-normal angle of incidence over a wide temper-143

ature (' 5 to 300 K) and frequency range (' 2 meV144

to about 5 eV) with Bruker IFS 113v and Vertex 80v145

Fourier transform spectrometers for light polarized in146

the a-b planes using an in situ evaporation technique147

[50]. The complex optical properties have been deter-148

mined from a Kramers-Kronig analysis of the reflectiv-149

ity. The reflectivity is shown in supplementary Fig. S1;150

the details of the Kramers-Kronig analysis are described151

in the Supplementary Material [51]. Temperature de-152

pendent ARPES measurements have been performed to153

track the evolution of the electron and hole pockets in154

the various phases. Measurements at BNL, which fo-155

cused on the electronic structure near the center of the156

Brillouin zone, were performed using 21.2 eV light from157

a monochromator-filtered He I source (Omicron VUV5k)158

and a Scienta SES-R4000 electron spectrometer; emitted159

electrons were collected along the direction perpendicular160

to the light-surface mirror plane. Samples were cleaved161

at low temperature and measured in an ultrahigh vac-162

uum with a base pressure better than 5 × 10−10 mbar.163

Measurements at the National Laboratory for Supercon-164

ductivity, Institute of Physics, Chinese Academy of Sci-165

ences, were performed using a 21.2 eV helium discharge166

lamp and a Scienta DA30L electron spectrometer. The167

latter’s overall energy resolution was 10 meV for Fermi168

surface mapping and 4 meV for the cuts; the angular169

resolution was ∼ 0.1◦. All the samples were cleaved at170

low temperature and measured in an ultrahigh vacuum171

with a base pressure better than 5 × 10−11 mbar. Note172

that because uniaxial strain is not applied to the samples173

below TN, they will be heavily twinned, thus the optical174

and ARPES results represent an average of the a and b175

axis response in the magnetic C2 phase.176

III. RESULTS AND DISCUSSION177

A. Optical properties178

The temperature dependence of the real part of the in-179

plane optical conductivity [σ1(ω)] of Sr0.67Na0.33Fe2As2180

is shown in the infrared region in Fig. 2(a) (an additional181

plot of the optical conductivity is shown in supplemen-182
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Figure 3. The Drude-Lorentz model fits to the real and imaginary (inset) parts of the in-plane optical conductivity of
Sr0.67Na0.33Fe2As2 decomposed into the narrow (D1) and broad (D2) Drude components, as well as several bound excita-
tions (a) above TN at 200 K, (b) below TN at 75 K showing the narrowing of the Drude features and the emergence of a peak
at ' 950cm−1, and (c) below Tr at 30 K, showing further narrowing and peaks at ' 170 and 700 cm−1.

tary Fig. S2). The character of the conductivity changes183

dramatically through the structural and magnetic transi-184

tions, which can be characterized by four distinct regions:185

(i) T > TN; (ii) Tr < T < TN; (iii) T < Tr, and below the186

superconducting transition (iv) T < Tc. The changes to187

the nature of the conductivity are shown as the difference188

plots σ1(ω, T )−σ1(ω, 295 K), and σ1(ω, T )−σ1(ω, 125 K),189

shown in Figs. 2(b) and 2(c), respectively.190

At room temperature, the free-carrier response appears191

Drude-like (a Lorentzian centered at zero frequency with192

a scattering rate defined as the full width at half max-193

imum), giving way to a flat response at higher frequen-194

cies, until the first interband transitions are encountered195

at about 1 eV. As the temperature is reduced, the scat-196

tering rate decreases and there is a slight reduction of197

the conductivity in the mid-infrared region as spectral198

weight is transferred from high to low frequency, which199

leads to an increase at low frequency and a decrease at200

high frequency in the difference spectra in Fig. 2(b). Be-201

low TN in the C2 phase, the free-carrier response narrows202

dramatically and a peak-like structure emerges at about203

950 cm−1, somewhat lower than a similar feature that204

was observed below TN at ' 1400 cm−1 in the parent205

compound SrFe2As2 [52]. This is illustrated by the upper206

three curves in Fig. 2(c) that show the continuing increase207

in the low-frequency conductivity, as well as the emer-208

gence of a peak in the mid-infrared region. Interestingly,209

below' 75 K, a low-energy peak at' 170 cm−1 begins to210

emerge. This behavior continues until T ≤ Tr, at which211

point the Drude-like response becomes extremely narrow212

in the C4 phase, illustrated by the dramatic suppression213

of the low-frequency conductivity in the difference plot214

in Fig. 2(c), leaving clearly identifiable peaks at ' 170215

and 700 cm−1. Below Tc ' 10 K, there is a depletion of216

the low-frequency conductivity with the emergence of a217

shoulder-like structure around 70 cm−1 that signals the218

formation of a superconducting energy gap (supplemen-219

tary Fig. S2).220

The sharp feature observed in the conductivity at221

' 260 cm−1 is attributed to a normally infrared-active222

lattice vibration in the iron-arsenic planes; while this223

mode increases in frequency with decreasing tempera-224

ture, it does not display the anomalous increase in oscil-225

lator strength below TN that was observed in the parent226

compound [53]. However, below Tr there is evidence for227

a new satellite mode appearing at ' 282 cm−1 (supple-228

mentary Fig. S3); a similar feature has also been observed229

in the C4 phase of Ba1−xKxFe2As2 and is attributed to230

Brillouin-zone folding due to the formation of a supercell231

in the CSDW phase [54].232

Previous optical studies of the iron-arsenic materials233

recognized that these are multiband materials with hole234

and electron pockets at the center and corners of the235

Brillouin zone [55, 56]; a minimal description consists of236

two electronic subsystems using the so-called two-Drude237

model [57]. The complex dielectric function ε̃ = ε1 + iε2238

can be written as,239

ε̃(ω) = ε∞−
2∑

j=1

ω2
p,D;j

ω2 + iω/τD,j
+
∑
k

Ω2
k

ω2
k − ω2 − iωγk

, (1)

where ε∞ is the real part at high frequency. In the first240

sum, ω2
p,D;j = 4πnje

2/m∗j and 1/τD,j are the square of241

the plasma frequency and scattering rate for the delo-242

calized (Drude) carriers in the jth band, respectively,243

and nj and m∗j are the carrier concentration and effec-244

tive mass. In the second summation, ωk, γk and Ωk245

are the position, width, and strength of the kth vibra-246

tion or bound excitation. The complex conductivity is247

σ̃(ω) = σ1 + iσ2 = −2πiω[ε̃(ω) − ε∞]/Z0 (in units of248

Ω−1cm−1); Z0 ' 377 Ω is the impedance of free space.249

The model is fit to the real and imaginary parts of the250
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optical conductivity simultaneously using a non-linear251

least-squares technique. The results of the fits are shown252

in Figs. 3(a), 3(b), and 3(c) at 200 K (T > TN), 75 K253

(Tr < T < TN), and 30 K (T < Tr), respectively; the254

combined response has been decomposed into individ-255

ual Drude and Lorentz components. In agreement with256

previous studies on the iron-based materials, the com-257

plex conductivity can be described by two Drude terms,258

one weak and narrow (D1), the other strong and broad259

(D2), as well as several Lorentzian oscillators. The tem-260

perature dependence of the plasma frequencies, the D1261

and D2 components, as well as the strength of the mid-262

infrared (MIR) peak, are shown in Fig. 4(a); the tem-263

perature dependence of the scattering rates for the two264

Drude components is shown in Fig. 4(b).265

1. T > TN266

At room temperature, the plasma frequencies for the267

narrow and broad Drude terms, ωp,D1 ' 4400 cm−1268

and ωp,D2 ' 15 800 cm−1, respectively, are slightly less269

than those of the undoped parent compound SrFe2As2270

(ωp,D1 ' 5200 cm−1 and ωp,D2 ' 17 700 cm−1); how-271

ever, the scattering rates of 1/τD1 ' 330 cm−1 and272

1/τD2 ' 1400 cm−1 are noticeably lower than the values273

of 1/τD1 ' 470 cm−1 and 1/τD2 ' 2330 cm−1 observed274

in the undoped material [52]. This is somewhat surpris-275

ing considering that in this material the layers in be-276

tween the Fe–As sheets are disordered. While the plasma277

frequencies show little temperature dependence between278

room temperature and TN, the scattering rates for both279

Drude components decrease with temperature, with the280

narrow Drude decreasing from about 1/τD1 ' 330 to281

about 60 cm−1, and the broad Drude decreasing from282

1/τD2 ' 1400 cm−1 to about 1100 cm−1 just above TN.283

2. Tr < T < TN284

Below TN in the magnetic C2 phase, the plasma fre-285

quency for the narrow Drude increases slightly from286

ωp,D1 ' 4400 to ' 6000 cm−1, while the scattering rate287

continues to decrease to 1/τD1 ' 40 cm−1 just above288

Tr. The broad Drude displays much larger changes, with289

the plasma frequency decreasing from ωp,D2 ' 15 800 to290

9 000 cm−1, which corresponds to a decrease in carrier291

concentration of nearly 65% (ω2
p ∝ n/m∗); the scattering292

rate also drops dramatically from 1/τD2 ' 1100 cm−1293

just above TN to 300 cm−1 in the Tr < T < TN region.294

The dramatic loss of spectral weight of the broad Drude295

term is accompanied by the emergence of a new peak in296

the MIR region with position ωMIR ' 950 cm−1, width297

γMIR ' 1550 cm−1, and strength ΩMIR ' 13 000 cm−1298

[Fig. 3(b)]; the missing weight from the free carriers299

is transferred into this bound excitation, and accord-300

ingly the total spectral weight is defined as ω2
p,tot =301

ω2
p,D1 +ω2

p,D2 + Ω2
MIR, is constant, as shown in Fig. 4(a).302

This behavior is similar to what was previously observed303

in the parent compound, and has been explained as the304

partial gapping of the pocket responsible for the broad305

Drude term due and the appearance of a low-energy in-306

terband transition [52, 58].307

3. T < Tr308

As the temperature is reduced the system undergoes a309

further magnetic and structural transition at Tr ' 42 K310

and enters the magnetic C4 phase. Below Tr the plasma311

frequency for the narrow Drude term appears to actu-312

ally increase slightly; however, this is accompanied by313

a dramatic collapse of 1/τD1 ' 40 cm−1 just above Tr314

to a value of ' 2 cm−1 at 15 K; this is nearly an or-315

der of magnitude smaller than what is observed in the316

parent compound [52]. Consequently, the narrow Drude317

is no longer observable in σ1(ω), leaving a relatively318

flat optical conductivity due to the broad Drude term319

and Lorentzian components; instead, its effects are de-320

termined from σ2(ω) [shown in the inset of Fig. 3(c)].321
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Figure 5. (a) Fermi surface mapping of Sr0.67Na0.33Fe2As2 in the C4 magnetic phase at 23 K with the spectral weight integrated
within a ±10 meV energy window with respect to the Fermi level, showing the hole-like pockets at the center (Γ), and the
electron-like pockets at the corner (M) of the Brillouin zone. Several different cuts are shown along the Γ→ M path focus on
the evolution of the hole and electron pockets. (b) The temperature dependence of the second derivative of the energy bands
measured along the first cut around the M point at (−π,−π) at 135 K (T > TN), 55 K (Tr < T < TN), and 20 K (Tc < T < Tr).
(c) The temperature dependence of the second derivative of the energy bands measured along the second cut around the Γ
point at 135, 55, and 20 K. The dotted lines are drawn as a guide to the eye.

The plasma frequency of the broad Drude term contin-322

ues to decrease from ωp,D2 ' 9000 to about 4200 cm−1323

at 15 K, a further 80% reduction in the carrier con-324

centration associated with this pocket, and over 90%325

from the room temperature value; this is comparable to326

what was observed in the parent compound for T � TN327

[52]. In addition, the scattering rate decreases from328

1/τD2 ' 300 cm−1 at Tr to ' 120 cm−1 at 15 K. At the329

same time, the peak at ωMIR ' 950 cm−1 shifts down to330

about ' 650 cm−1; while the width decreases slightly to331

γMIR ' 1480 cm−1, the strength of this feature increases332

to ΩMIR ' 15 400 cm−1. However, ωp,tot continues to333

be conserved, indicating that the loss of spectral weight334

associated with the free carriers in the broad Drude term335

has been transferred to this peak.336

4. T < Tc337

Below Tc ' 10 K there is a dramatic suppression of338

the low-frequency conductivity, signalling the formation339

of a superconducting energy gap [Fig. 2(a) and supple-340

mentary Fig. S2]. Although the low-frequency data is341

somewhat limited, a comparison of the optical conduc-342

tivity for T & Tc and T � Tc allows the superfluid den-343

sity, ρs = ω2
ps, where ωps is the superconducting plasma344

frequency, to be determined from the missing spec-345

tral weight, calculated using the Ferrell-Glover-Tinkham346

(FGT) sum rule [59, 60]. The FGT sum rule converges347

to ωps ' 5800±500 cm−1, which corresponds to a super-348

conducting penetration depth of λ ' 2700±300 Å at 5 K,349

comparable to the K-doped material [47]; however, be-350

cause the lowest temperature obtained was only ' Tc/2,351

it is almost certain that ωps is underestimated. From352

Fig. 2(a) and supplementary Fig. S2, the characteristic353

energy scale for the superconducting energy gap is about354

2∆ ' 50 cm−1. In the narrow Drude band, 1/τD1 � 2∆,355

placing this material in the clean limit; as a result, most356

of the weight in the condensate will come from this band.357

In the broad Drude band, 1/τD2 > 2∆, placing this band358

in the dirty limit; consequently, only a small fraction of359

the weight in this band will collapse into the conden-360

sate. This is another example of a multiband iron-based361

superconductor that is simultaneously in both the clean362

and dirty limits [61]. One of the interesting properties363

of this material is its relatively low resistivity just above364

Tc, ρab ' 20 µΩ cm, or σdc ' 5 × 104 Ω−1cm−1 [Fig 1].365

These values place this material just below the univer-366
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Figure 6. The temperature dependence of the second-derivative of the hole-like bands of Sr0.67Na0.33Fe2As2 around the Γ point
along the Γ→ M cut at: (a) above TN at 153 K, (b) for Tr < T < TN at 82 K, and (c) below Tr at 18 K. At high temperature
three hole-like bands may be resolved that cross εF . Below TN two of these bands shift to below the Fermi level; this trend
continues below Tr as the bands shift further below εF . The lines are drawn as a guide to the eye.

sal scaling line ρs(T � Tc) ∝ σdc(T & Tc)Tc [62–64], in367

close proximity to other doped “122” superconductors,368

as well as many cuprate materials [65].369

B. Low-energy peak370

The dramatic collapse of the scattering rate below Tr371

of the narrow Drude allows a new low-energy peak at372

ω0 ' 170 cm−1, with width γ0 ' 110 cm−1 and oscillator373

strength of Ω0 ' 2230 cm−1, to be observed [Figs. 2(a),374

3(c), and supplementary Fig. S2]. This is close to where375

a peak was observed in (CaFe1−xPtxAs)10Pt3As8 for x =376

0.1 at ' 120 cm−1 [66]; that feature was attributed to a377

localization process due to impurity scattering described378

by a classical generalization of the Drude model [67],379

σ̃(ω) =

(
2π

Z0

)
ω2
pτ

(1− iωτ)

[
1 +

c

(1− iωτ)

]
, (2)

where c is the persistence of velocity that is retained380

for a single collision. The scattering rate for the nar-381

row Drude is far too small to yield a peak at the382

experimentally-observed position, while the broad Drude383

predicts a localization peak at ' 120 cm−1, well below384

the experimentally-observed value of ω0 ' 170 cm−1 [68].385

Thus, it is likely that the low-energy peak originates from386

a further reconstruction of the Fermi surface in the C4387

phase rather than any sort of localization process. In-388

deed, a remarkably similar peak has also been observed389

to emerge at ' 150 cm−1 in the optical conductivity390

of underdoped Ba1−xKxFe2As2 at low temperature [69];391

this feature may also be a related to the magnetic C4392

phase observed in that compound.393

C. ARPES394

A simple density functional theory calculation of395

SrFe2As2 in the paramagnetic high-temperature tetrago-396

nal phase reveals a familiar band structure consisting of397

three hole-like pockets at the center of the Brillouin zone398

(Γ), and two electron-like pockets at the corners (M); the399

orbital character is primarily Fe dxz/dyz in nature (shown400

in supplementary Fig. S4, details of the calculation are401

discussed in the Supplementary Material.) The Fermi402

surface of Sr0.67Na0.33Fe2As2, with the spectral weight403

integrated within a ±10 meV energy window with re-404

spect to the Fermi level, is shown below Tr in the C4405

magnetic phase at 23 K, in Fig. 5(a). Two momentum406

cuts have been made along the Γ → M path; the first407

examines the temperature dependence of the anisotropic408

electron-like bands around an M point, Fig. 5(b), and the409

second details the behavior of the isotropic hole-like pock-410

ets around the Γ point, shown in Fig. 5(c). This Fermi411

surface is qualitatively similar to what was observed in412

Ba1−xKxFe2As2 [70, 71]413

At high temperature, the cut along the Γ → M direc-414

tion at the M point there appears to be a hole-like band415

as well as a possible electron-like band at 135 K, shown416

in the upper panel of Fig. 5(b). In the simple picture for417

the Fermi surface of SrFe2As2 (supplementary Fig. S4)418

this result can be reproduced by lowering the Fermi level419

εF by about 0.2 eV, which is consistent with the removal420

of electrons due to sodium substitution (hole doping). As421

the temperature is lowered below TN and enters the mag-422

netic C2 phase, the hole-like band may split, while the423

electron-like band appears to shift below εF . Below Tr in424

the C4 magnetic phase, a single hole-like band is recov-425

ered, while the electron-like band now appears to be split426

into two bands, with a separation of ' 20 meV, which is427
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comparable to the position of the low-energy peak (this428

behavior is explored further in supplementary Fig. S5).429

The initial investigation into the temperature depen-430

dence of the energy bands around the Γ point in Fig. 5(c)431

revealed two large hole pockets at the Fermi level, but rel-432

atively little temperature dependence. This prompted a433

more detailed investigation of the hole-like bands along434

the Γ → M path, shown in Fig. 6 (further detail is pro-435

vided in supplementary Figs. S6 and S7). Above TN the436

bands are rather broad, but at least three bands may437

be resolved, all of which cross the Fermi level, result-438

ing in several large hole-like Fermi surfaces, shown in439

the second-derivative curves in Fig. 6(a). Below TN the440

bands sharpen considerably in the C2 phase, and one of441

the bands is observed to shift to ' 40 meV below the442

Fermi level, shown in Fig. 6(b), leading to the removal443

of a hole-like Fermi surface; this is consistent with the444

Fermi surface reconstruction below TN observed in the445

parent compounds [58, 72]. This trend continues in the446

magnetic C4 phase, with the band shifting to ' 60 meV447

below the Fermi level, Fig. 6(c).448

D. Discussion449

Both the electron and hole pockets appear to undergo450

significant changes in response to the Fermi surface re-451

construction in the magnetic C2 and C4 phases that ex-452

hibit SDW and CSDW order, respectively. In the case453

of the hole pockets, the fact that one of the bands shifts454

below εF below TN in the magnetic C2 phase, shifting455

further below Tr in the magnetic C4 phase, signals the456

decrease in the size of the Fermi surface associated with457

the hole pockets. It is possible that this may be related to458

the dramatic decrease in the spectral weight of the broad459

Drude component as described by the plasma frequency460

in Fig. 4(a); from ω2
p,D2 ∝ n/m∗ we infer a significant461

decrease in the carriers associated with the hole pock-462

ets at low temperature (' 90% reduction of the room463

temperature value).464

The evolution of the electron-like bands is more com-465

plicated, as the bands at the M point have both electron-466

and hole-like character. The initial splitting of the hole-467

like band below TN is consistent with the lifting of the468

degeneracy between the dxz and dyz orbitals; however,469

the fact that one of the hole-like bands lies completely470

below the Fermi level suggests no significant changes to471

the size of the Fermi surfaces. Below Tr the orbital degen-472

eracy is restored, but the presence of CSDW order leads473

to the formation of a supercell; the electron-like bands474

are split as a result of zone-folding, which may lead to an475

increase in the size of the Fermi surface. This is consis-476

tent with the slight increase in the plasma frequency of477

the narrow Drude component at low temperature, shown478

in Fig. 4(a). Furthermore, the splitting between the two479

electron-like bands of ' 20 meV, is very close to the po-480

sition of the low-energy peak. This suggests that, similar481

to the mid-infrared peak, the low-energy peak emerges482

in response to the Fermi surface reconstruction driven483

by the C4 magnetic phase and the CSDW order at low484

temperature [43].485

IV. SUMMARY486

The ARPES and complex optical properties of487

freshly-cleaved surfaces of the iron-based superconductor488

Sr0.67Na0.33Fe2As2 have been determined for light polar-489

ized in the iron-arsenic (a-b) planes at a variety of tem-490

peratures for the room temperature tetragonal paramag-491

netic phase, the orthorhombic C2 SDW magnetic phase,492

the tetragonal C4 double-Q SDW (CSDW) phase, as493

well as below Tc in the superconducting state. The free-494

carrier response is described by two Drude components,495

one broad and strong, the other narrow and weak. The496

strength of the narrow component shows little temper-497

ature dependence, increasing slightly in strength at low498

temperature, while narrowing dramatically. The broad499

Drude component decreases dramatically in strength and500

narrows below TN at the same time a peak emerges in the501

mid-infrared; the decrease in the spectral weight associ-502

ated with the free carriers is transferred into the emergent503

peak. Below Tr, this trend continues, with the emergence504

of a new low-energy peak at ' 20 meV. The appearance505

of a new infrared-active mode in the Fe–As planes be-506

low Tr is attributed to zone-folding due to the formation507

of a supercell in response to the CSDW; this suggests508

that the low-energy peak originates from a further Fermi509

surface reconstruction in the C4 phase. Below Tc the low-510

frequency conductivity decreases dramatically, signalling511

the formation of a superconducting energy gap. ARPES512

reveals large hole-like Fermi surfaces at the Γ point, one513

of which is apparently removed below the structural and514

magnetic transitions, suggesting that they may be related515

to the behavior of the broad Drude component. The516

electron- and hole-like bands at the corners of the Bril-517

louin zone shift and split below TN and Tr, but the Fermi518

surfaces do not appear to undergo any significant change519

in size, suggesting they may be related to the narrow520

Drude component; the apparent splitting of the electron-521

like bands in the C4 phase would appear to explain the522

emergence of the low-energy peak at ' 20 meV in the op-523

tical conductivity. While the C2 and C4 magnetic transi-524

tions, with resulting SDW and CSDW order, respectively,525

lead to a significant reconstruction of the Fermi surface526

that has profound implications for the transport originat-527

ing from the electron- and hole-like pockets, they appear528

to have relatively little impact on the superconductivity529

in this material.530
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A. Juneau-Fecteau, J.-Ph. Reid, H. Kim, M. A.710

Tanatar, R. Prozorov, B. Shen, H.-H. Wen, N. Doiron-711

Leyraud, and Louis Taillefer, “Pressure-induced Fermi-712

surface reconstruction in the iron-arsenide superconduc-713

tor Ba1−xKxFe2As2: Evidence of a phase transition in-714

side the antiferromagnetic phase,” Phys. Rev. B 86,715

140502(R) (2012).716
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