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Saddle-point van Hove singularities in the topological surface states are interesting because they
can provide a new pathway for accessing exotic correlated phenomena in topological materials. Here,
based on first-principles calculations combined with a k · p model Hamiltonian analysis, we show
that the layered platinum mineral jacutingaite (Pt2HgSe3) harbors saddle-like topological surface
states with associated van Hove singularities. Pt2HgSe3 is shown to host two distinct types of nodal
lines without spin-orbit coupling (SOC) which are protected by combined inversion (I) and time-
reversal (T ) symmetries. Switching on the SOC gaps out the nodal lines and drives the system
into a topological state with nonzero weak topological invariant Z2 = (0; 001) and mirror Chern
number nM = −2. Surface states on the naturally cleaved (001) surface are found to be nontrivial
with a unique saddle-like energy dispersion with type II van Hove singularities. We also discuss how
modulating the crystal structure can drive Pt2HgSe3 into a Dirac semimetal state with a pair of
Dirac points. Our results indicate that Pt2HgSe3 is an ideal candidate material for exploring the
properties of topological insulators with saddle-like surface states.

I. INTRODUCTION

Finding new topological materials with unique proper-
ties is currently drawing intense interest as an open re-
search frontier in condensed matter physics and related
fields.1–3 Initial ideas of time-reversal symmetry (T ) pro-
tected topological states have been generalized to incor-
porate crystal symmetries, leading to the identification of
a variety of new topological states in insulators, semimet-
als, and metals.4–8 Examples include mirror-symmetry
protected topological crystalline insulators (TCIs), weak
topological insulators (WTIs), Dirac/Weyl semimetals,
nodal line semimetals, hourglass semimetals, triple-point
semimetals, among others.9–20 Theoretically predicted
topological properties of a number of materials have
been demonstrated experimentally via spectroscopic and
transport measurements.21–28 It has been recognized that
a topological state can also be protected simultane-
ously by different crystal symmetries as is the case in
Bi2(Se,Te)3 where the protection involves both T and
crystalline mirror symmetries.29,30 Such dual-symmetry-
protected topological states can open up new possibilities
for tuning topological properties via controlled symmetry
breaking.

Topological surface states (TSSs) are the hallmark
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and source of numerous useful properties in topologi-
cal quantum materials. Depending on the symmetries of
their crystalline surfaces, the electronic dispersion (Ek)
of TSSs can deviate substantially from the well-known
Dirac-like form.31 Specifically, when a surface lacks ro-
tational symmetry Cn for n > 2, a saddle-like Ek dis-
persion with saddle points is, in principle, allowed via
symmetry constraints. Such saddle points in k-space can
lead to Van Hove singularities (VHSs) where densities of
states (DOSs) diverge logarithmically in two-dimensions
(2D). The interest in VHSs has been revived recently in
the theory of correlated twisted bilayer graphene and,
in fact, the new concept of higher order VHSs has been
proposed.32–34 More generally, when VHSs lie close to the
Fermi level, the increased DOS amplifies electron corre-
lation effects that can drive various quantum many-body
instabilities involving the lattice, charge and spin degrees
of freedom.35–39 When these VHSs lie at generic k points,
they favor an odd-parity pairing, which can lead to un-
conventional superconductivity.40,41 Despite theoretical
prediction of TSSs with VHSs, experimental evidence of
such states is still lacking. The identification of new ma-
terials with saddle-like TSSs is thus of great importance.

Here, we investigate the topological electronic struc-
ture of layered platinum mineral jacutingaite Pt2HgSe3

and reveal a dual-symmetry-based protection of its topo-
logical state and the existence of saddle-point VHSs in its
surface electronic spectrum. The monolayer Pt2HgSe3

has been predicted recently as a large band gap Kane-
Mele quantum spin Hall (QSH) insulator.42 A nontrivial
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band gap of 0.53 eV has been found within the G0W0

approximation: its Fermiology under electron and hole
doping suggests the existence of VHSs and unconven-
tional superconductivity.43 The QSH state in Pt2HgSe3

monolayer has been experimentally demonstrated using
scanning tunneling microscopy (STM).44 Also, it is found
that few nanometers thick as well as bulk jacutingaite is
stable under ambient conditions for months and even up
to an year.44 However, the bulk topological state and the
associated TSSs with VHSs remain unexplored.

Our analysis reveals that Pt2HgSe3 supports two dis-
tinct types of nodal lines when spin-orbit coupling (SOC)
effects are ignored. Including SOC in the computations
gaps out the nodal lines and drives the system into a
topological state characterized by nonzero weak topo-
logical invariants, Z2 = (0; 001), as well as the mirror
Chern number nM = −2. To highlight the nontrivial
bulk band topology, we investigate the naturally cleaved
(001)-surface electronic structure and show the existence
of a unique symmetry-allowed saddle-like Ek dispersion
of topological surface states with saddle-point VHSs. In-
formed by our first-principles computations, we present a
viable k.p model Hamiltonian for the topological surface
states. We also discuss the effect of hydrostatic pressure
on bulk band topology and reveal the presence of a topo-
logical phase transition to a type-II Dirac semimetal state
with pressure. Our results suggest that Pt2HgSe3 is an
ideal material for experimental exploration of saddle-like
surface states with VHSs.

The remainder of the paper is organized as follows.
In Sec. II, we discuss computational details along with
the crystal structure of Pt2HgSe3. The bulk topolog-
ical properties are discussed in Sec. III. In section IV,
we characterize the topological states and present sur-
face electronic structure with and without SOC. The k.p
model Hamiltonian for the topological surface states is
described in Sec. V. In Sec. VI, we present the evolu-
tion of topological electronic structure under hydrostatic
pressure. Finally, we summarize our findings in Sec. VII.

II. COMPUTATIONAL DETAILS AND
CRYSTAL STRUCTURE

Electronic structure calculations were performed
within the framework of the density functional theory
(DFT) with the projector-augmented-wave (PAW) pseu-
dopotentials and a plane-wave basis set using the Quan-
tum Espresso package.45–47 We used an energy cut-off of
50 Ry for the plane wave basis set and a 9 × 9 × 8 k
mesh for the bulk calculations. The generalized gradi-
ent approximation (GGA) of Perdew, Burke, and Ernz-
erhof (PBE) was used to include exchange-correlation
effects.48 A tolerance of 10−8 Ry was used for electronic
energy minimization. Experimental lattice parameters
(a = b = 7.348 Å and c = 5.295 Å) were used, but
the atomic positions within the unit cell were optimized
until the residual force on each atom was less than 10−3
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FIG. 1: (a) Side and (b) top view of the layered crystal struc-
ture of Pt2HgSe3. Pt(1) and Pt(2) denote two symmetry in-
equivalent Pt atoms in the unit cell. The dashed-blue line in
(a) indicates the natural surface termination along the (001)-
surface direction. (c) Bulk and projected (100) and (001)
surface Brillouin zones. Various high-symmetry points are
marked.

Ry/au; see Appendix A for structural details. Results
presented in this study are based on the GGA-PBE. Ef-
fects of van der Waal’s corrections, which we ascertained
using the DFT-D3 method49, were found to be negligi-
ble. We constructed our tight-binding model Hamilto-
nian by deploying atom-centered Wannier functions and
computed topological properties using the WannierTools
package.50,51 The surface electronic spectrum was also
checked by calculations using a supercell of ten-layer
thick Pt2HgSe3 slabs separated by vacuum regions of 16
Å using the VASP suite of codes.52,66

Jacutingaite Pt2HgSe3 forms a bipartite lattice in the
symmorphic space group P 3̄m1 (No. 164).53 The ex-
perimental crystal structure is layered with AA stack-
ing and it can be viewed as a 2 × 2 × 1 supercell of
1T-PtSe2 with additional Hg atoms that are placed in
the anti-cubo-octahedral voids of Se atoms [Figs. 1(a)-
(b)]. There are two symmetry-inequivalent Pt atoms in
the primitive unit cell that form two distinct hexago-
nal sublattices. The Pt(1) atom connects to six nearest
Se atoms and forms Pt(1)Se6 local octahedral coordina-
tion while the Pt(2) atom constitutes the Pt(2)Se4 square
structure.53,54 The Pt(1)-Se bond length is 2.55 Å, which
is slightly larger than the Pt(2)-Se bond length of 2.47
Å. This crystal structure possesses three-fold rotational
symmetry around the z-axis (C3z), inversion symmetry
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FIG. 2: Bulk band structure of Pt2HgSe3 (a) without and (b)
with spin-orbit coupling (SOC). Irreducible representations at
the time-reversal invariant momentum points are marked for
bands near the Fermi energy. The insets in (a) and (b) show
closeups of the in-plane energy dispersion near the K and H
momentum points of the region highlighted by gray boxes in
the main figure. A clear gap is seen to emerge at the K and
H points with SOC in (b). (c) and (d) show the orbital-
resolved band structure of Pt2HgSe3 without and with SOC,
respectively.

I, and the mirror symmetries M100, M010 and M110.
Additionally, it respects the T -symmetry.

III. BULK ELECTRONIC STRUCTURE AND
TOPOLOGICAL INVARIANTS

The bulk electronic spectrum of Pt2HgSe3 (without
SOC) is shown in Fig. 2(a). It is semimetallic in char-
acter where the Au(Ag) symmetry band is seen to cross
with the Bg(Bu) band at the K(H) point in the bulk
BZ. These band crossings are linearly dispersed over a
substantial energy range along ΓMKΓ and ALHA. Sim-
ilar Dirac-cone-like band features are also present in the
band structure of graphite and their origin is attributed
to the honeycomb lattice arrangement of the constituent
atoms.55 The orbital-resolved band structure in Fig. 2(c)
shows that these crossing bands are mainly composed
of Hg s, Se p, and Pt dxz and dyz orbitals. The band
structure including the SOC is illustrated in Figs. 2(b)
and 2(d). The Dirac-cone-like band crossings without
the SOC at the K and H points are now gapped and
a continuous bandgap appears between the valence and
conduction bands.

In order to characterize the nodal lines and their sym-
metry protection, we systematically examine the band
crossings in Fig. 3. A careful inspection of band cross-
ings in full bulk BZ reveals that Pt2HgSe3 hosts two dis-

tinct types of nodal lines. The type I nodal lines (identi-
fied by NLC) are generated by accidental band crossings
and form an inversion-symmetric pair of closed loops at
generic k points around the Γ−A line inside the BZ. Im-
portantly, these nodal lines are not hooked to a fixed mo-
mentum plane but trace an arbitrary path encircling the
ΓA line [see red and blue curves in Fig. 3(a)]. They show
considerable energy spread in the momentum space as il-
lustrated in Fig. 3(b) where the energies of the gap closing
points are plotted in color in the kx−ky−kz momentum
space. We further demonstrate these nodal crossings by
plotting the band structure along the in-plane directions
for a fixed kz = 0.54(πc ) plane in Fig. 3(e).

The type II nodal lines (NLKH) stretch along theK−H
high symmetry directions at the hinges of the hexagonal
BZ [green lines in Fig. 3(a)]. These nodal lines are es-
sential and enforced by little group symmetries of the
KH line. Notably, KH line is invariant under three-fold
rotational symmetry C3z and anti-unitary operator IT .
For a spinless system, the eigenvalues of C3z are 1, e+i 2π3 ,
and e−i

2π
3 . The conjugate symmetry operator IT , how-

ever, enforces a double degeneracy between states with
ei

2π
3 and e−i

2π
3 eigenvalues. We have verified these sym-

metry states through an analysis of our first-principles
wavefunctions. We find that the symmetry-adapted basis

Ψ = (ψ+, ψ−)
T

of the degenerate bands can be expressed
as ψ± = w1|px±ipy〉+w2|dxz±idyz〉+w3|dx2−y2∓2idxy〉
where wi=1,2,3 are normalized coefficients. We further
explore the nodal line energy dispersions in Figs. 3(c)
and 3(g). We emphasize that similar type-II nodal lines
have also been reported in AA stacked graphite, the high-
temperature superconductor MgB2 and its iso-structural
counterparts such as AlB2.56–58

We present the Fermi surface of Pt2HgSe3 in Fig. 3(d)
with unique electron and hole pockets that originate from
both NLC and NLKH nodal lines. Such a Fermi surface
may lead to balanced electron-hole resonance conditions
and it could thus induce unusual transport signatures
such as a large positive unsaturated magnetoresistance.

Figures 3(f) and 3(h) show the energy bands with
SOC along the selected k paths of NLC and NLKH, re-
spectively. Clearly, the SOC opens an energy gap at
the nodal crossing points. This bandgap opening fa-
cilitates the calculation of symmetry-based indicators
(SI) to determine the topological state of the system.
Following Ref.[7], the band insulators in space group
P 3̄m1 are defined by three Z2 and a single Z4 indica-
tor i.e. (Z2,Z2,Z2,Z4). By explicitly calculating the
irreducible representations of the occupied bands at dif-
ferent time-reversal invariant momentum points, we find
(Z2,Z2,Z2,Z4) = (0, 0, 1, 2).59–61 Such an SI leads to two
distinct scenarios for the existence of a dual topological
phase characterized by weak invariants along with either
a nonzero mirror Chern number nM = ±2, or a nonzero
rotation invariant, n2100

= 1.7 In both cases, the inversion
invariant has a non-zero value (ni = 1). In order to pin
down the exact topological state, we further calculated
the mirror Chern number, nM , and found it to be −2.
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FIG. 3: (a) Nodal lines in the bulk BZ and their projections on the (100) and (001) surface planes in Pt2HgSe3. Two distinct
types of nodal lines are shown. Type-I nodal lines (NLC) are located inside the bulk BZ and marked in red and blue colors.
Type-II nodal lines (NLKH) are located along the hinges and shown in solid-green color. (b) Energy-momentum spread of the
NLC in the BZ. (c) Schematics of NLKH structure in the BZ. (d) Fermi surface with electron and hole pockets (without SOC).
Band structure in the kz = 0.54(π

c
) plane (e) without and (f) with SOC. The nodal band crossings are shown resolved along

Γ1 −M1 and Γ1 −K1 in (e). (g) and (h) show energy dispersion of the NLKH nodal line without and with SOC, respectively.

TABLE I: Calculated symmetry indicator and topological in-
variants for Pt2HgSe3.

(Z2,Z2,Z2,Z4) (ν0; ν1, ν2, ν3) nM n2100 ni
(0,0,1,2) (0;001) −2 0 1

The calculated SI and topological invariants are listed in
Table I. Thus, the topological phase of Pt2HgSe3 is char-
acterized by both (001) weak topological invariants and
a non-zero mirror Chern number nM = −2.

IV. SURFACE ELECTRONIC STRUCTURE

We present the electronic spectrum of the (001) sur-
face of Pt2HgSe3 in Fig. 4 with Hg surface termination,
which is the natural cleavage plane (Fig. 1). The projec-
tion of the NLC nodal lines on the (001) surface forms two
closed loops whereas the NLKH nodal lines project at the
corner points of the (001) surface BZ. Topological surface
states related to NLC are therefore more obvious over the
(001) surface as seen in Fig. 4(a) (without SOC). The two
drumhead surface states (DSSs) nested outside the nodal
lines are clearly visible, consistent with the calculated
nontrivial character of the nodal lines. Interestingly, the
DSS which lies closer to the Fermi energy has opposite
band curvatures along the M −Γ and M −K directions.

Specifically, this DSS has a maximum at the M point
if one looks from the Γ − M direction whereas the M
point is a minimum when approached from the K −M
direction. The DSS thus forms a unique saddle-like Ek

dispersion around the M point. When the SOC is in-
cluded in the computations, the DSSs split away from
the T -symmetric M point [see Fig. 4(b)], and evolve into
topological states with saddle-like energy dispersion, see
Sec. V for more details. The existence of two Dirac-like
surface-state crossings at the M point is in accord with
the bulk nonzero mirror Chern number of cM = −2.

Tight-binding based methods for calculating surface
spectrum generally neglect effects on the surface po-
tential due to charge redistribution near the surface.
In order to emphasize the robustness of our saddle-like
topological states, we calculated the electronic structure
of a 10-layer slab on a first-principles basis, where ef-
fects of surface charge redistribution are included self-
consistently. Figs. 4(c) and 4(d) show reasonable agree-
ment between the results of tight-binding and first-
principles computations, at least insofar as the saddle-like
energy dispersion of the DSSs is concerned. Figs. 4(e)
and 4(f) show the calculated DOS for the 10-layer slab
without and with the SOC, respectively. The high DOS
near the saddle-points reflects the presence of the VHSs.
The single VHS feature in the DOS (without SOC) splits
into two VHSs in Fig. 4(e) after the SOC is included due
to the appearance of more saddle-points in the underly-
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FIG. 4: Surface band structure of the (001) semi-infinite slab
calculated using the Green’s function method (a) without and
(b) with SOC. Sharp yellow lines represent surface states. The
projected bulk NLC nodal line crossing is resolved along Γ̄M̄
in (a). Surface band structure of a 10L thick Pt2HgSe3 slab
obtained via first-principles calculations (c) without and (d)
with SOC. The shaded-green region highlights the projected
bulk bands and solid-yellow lines mark the surface states.
Density-of-states (DOS) for the 10-layer slab (e) without and
(f) with SOC. Average DOS per layer is shown along with
the DOS from only the surface layer. The contribution of the
VHSs associated with the saddle-points in the surface states
is marked.

ing energy spectrum, see Sec. V for details. These results
demonstrate that the surface-state VHSs yield significant
features in the total DOS. The saddle-like surface states
and the associated VHSs would, therefore, be accessible
in spectroscopic experiments.

The (100) surface band structure with Hg termination
is presented in Figs. 5(a) and 5(b) without and with the
SOC effects, respectively. Over the (100) surface, the
projection of NLKH nodal lines connects Γ−Y and Z−U
symmetry lines as shown in Fig. 3(a). The topological
DSSs connect these projections which are seen clearly in
Fig. 5(a). When the SOC is included, the DSSs evolve
into the Dirac-cone-like states with Dirac points at the U
and Y points (Fig. 5(b)). While these surface states are
in accord with the weak bulk topological invariant (001),
it becomes difficult to ascertain that they cross the Fermi

level an odd number of times along the Γ− Y or Z − U
lines as the gap in the surface spectrum closes due to the
presence of projected bulk bands.62
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FIG. 5: Surface band structure of the (100) semi-infinite
slab calculated using the Green’s function method (a) without
and (b) with SOC. The drumhead surface states connecting
the bulk NLKH nodal line projections inside the valence band
region are visible. When the SOC is included, these states
evolve into topological Dirac cones at the Y and U points of
the (100) surface BZ.

V. k · p MODEL HAMILTONIAN

We now discuss a minimal low-energy k · p Hamilto-
nian for the topological surface states on the (001) surface
that captures essential features of these states. Based on
our first-principles calculations, the TSSs spread around
the M point on the (001) surface. Therefore, a k · p
Hamiltonian around M = (0, π) point is sufficient to
describe the TSSs. On the (001) surface at M , the
little group Cs contain a mirror plane symmetry. In
the presence of the SOC, the symmetry operators are
M1 = −iτ0σ1 and T = −iσ2K, where σ and τ are Pauli
matrices in the spin and sublattice space, respectively.
The associated symmetry-allowed basis functions for the

TSSs are Ψ = (ψAα,↑, ψ
A
α,↓, ψ

B
α,↑, ψ

B
α,↓)

T
, where A and B

denote the two sublattices of the bipartite lattice. These
can be expressed as

|ψα,σ〉 = λs|s, σ〉+ λdyz |dyz, σ〉+ λdx2−y2
|dx2−y2 , σ〉

+λdz2 |dz2 , σ〉

Here, the subscript s =↑ / ↓ denotes spin-up/spin-down,
respectively, and λs, λdyz , λdx2−y2

, and λdz2 describe nor-

malization coefficients. Using the above basis, the min-
imal four-band Hamiltonian around the surface Dirac
point (up to second order in momentum) can be writ-
ten as,

HTSS(p) =
1

2m∗
(p2
x + ηp2

y) + vR(pxσ2 − pyσ1)

+ v33pxτ3σ3 + λ23pxpyτ2σ3

+ δ30τ3σ0 + δ21τ2σ1.

(1)

where η, vR, v33, λ23 and δ12 are real numbers and vR
denotes the Rashba parameter. As discussed in Ref.31,
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η < 0 ensures a saddle-like Ek dispersion. Since the little
group of M hosts a mirror plane without any rotational
symmetry, the saddle-like energy dispersion is symme-
try allowed. This however is only a necessary condition

for realizing the saddle-like Ek dispersion whose actual
existence will depend on material properties. The cor-
responding eigenenergies of HTSS(p) are

ETSS(p) =
1

2m∗
(p2
x + ηp2

y) + ξ

√
v2
Rp

2 + δ2
21 + p2

x(v2
33 + λ2

23p
2
y) + ξ′2δ21

√
v2
Rp

2
y + v2

33p
2
x (2)

with p2 = p2
x + p2

y and ξ(ξ′) = ±1. Equation (2) shows
that the lower branch of the conduction band cross the

top branch of the valence band at (px, py) = (0,±δ21

vR
)

along the mirror invariant M − Γ line. This gives rise
to the Dirac cone states protected by mirror symmetry,
as shown explicitly in Figs. 6(a)-6(c). In addition, for
η < 0, we find a pair of type II saddle-point VHSs,31 as
illustrated in Fig. 6(d) in accord with our first-principles
results. We have verified that the energy dispersions
obtained by considering symmetry-allowed terms beyond
the second order in the Hamiltonian retain the saddle-
like features of the topological surface states with VHSs;
these results are not shown in the interest of brevity.

VI. TOPOLOGICAL PHASE TRANSITION

We now demonstrate the possibility of tuning the topo-
logical order of Pt2HgSe3 and realizing a Dirac semimetal
by modulating the unit cell volume with reference to
Fig. 7. For this purpose, it is useful to define the SOC-
induced gap as ∆K = EΛ1

K − EΛ2

K at K and ∆H =

EΛ1

H −E
Λ2

H at H between the Λ1 and Λ2 states that form a
nodal line without the SOC along the KH direction (see
Fig. 7). The evolution of ∆K and ∆H with relative unit
cell volume V/V0, where V0 denotes the equilibrium unit
cell volume, is presented in Fig. 7(a). We find that ∆K

and ∆H are comparable in the gapped pristine state but
show opposite behavior on changing the unit cell volume
(V ). On decreasing (increasing) V/V0 from its equilib-
rium value, the Λ1 and Λ2 bands cross near H(K) point
and realize a tilted band crossing along theKH direction,
see Figs. 7(b)-(d). A detailed symmetry analysis shows
that the crossing bands have opposite C3z rotation eigen-
values and thus the Dirac point is symmetry protected
against band hybridization. Importantly, we find that
when ∆K∆H > 0, the Λ1 and Λ2 are separated by a con-
tinuous gap and realize a gapped topological phase. But,
when ∆K∆H < 0, the two states cross along the KH
line and the system realizes a symmetry-protected type
II Dirac semimetal state.

Our analysis suggests that V/V0 can provide a control
knob for continuous tuning of the position and velocity
of the Dirac cones when ∆K∆H < 0. Owing to the
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FIG. 6: (a) Energy dispersion of the surface state Hamilto-
nian HTSS(px, py) for η = −1,m∗ = 0.5, and vR = v33 =
λ23 = λ21 = 1. These parameters, which capture the essen-
tial features of the surface states, are not obtained from first-
principles calculations. (b) The associated iso-energy con-
tours for the upper surface states. In the presence of the
SOC four saddle-points appear in the topological states. The
two of these lie along the M −K direction (S1 and S2) in the
upper branch of the conduction band, whereas the other two
belong to the lower branch and are located along the M − Γ
direction. (c) Energy dispersion along px and py directions
to emphasize the presence of saddle-points in the surface elec-
tronic spectrum. (d) Density of states showing VHSs associ-
ated with the topological surface states.

parabolic energy dispersion of Λ1 and Λ2, the energy lo-
cation of Dirac points can be tuned to lie on the Fermi
level. For V/V0 > 0.83, a pair of Dirac cones located on
the HKH line moves toward the H point. These Dirac
cones merge at H for V/V0 ∼ 0.975, thereby realizing a
gapped insulator state. For V/V0 beyond ∼ 1.031, the
Dirac points start reappearing near the K-point67.

Generally, a topological semimetal phase separates two
distinct gapped insulating topological phases. In sharp
contrast to this, in Pt2HgSe3 we find that a topologi-
cal insulating phase exists as a critical region between
two gapless Dirac semimetal phases. Moreover, the



7

(b) (c) (d)

(e)

0.4

0

-0.4

DSM TI DSM

V
V0

E
ne

rg
y 

(e
V

)
G

ap
(e

V
)

-0.1

0

0.1

0.85 0.90 0.95 1.05 1.15 1.201.00 1.10

K H K H K H

(f)

Λ2

Λ1

V
V0

=0.83
V
V0

=1.19
V
V0

=1.00

Λ1

Λ2

Λ1

Λ2

Λ1

Λ2

Λ2

Λ1

Λ1

Λ2

(a)

(g)

ΔK

ΔH

DSM DSMTI

FIG. 7: (a) Phase diagram showing the evolution of the
bandgap ∆K at the K and ∆H at the H point with relative
unit cell volume V/V0. The product ∆K∆H determines the
topological state. ∆K∆H > 0 yields a gapped topological
phase, whereas for ∆K∆H < 0 we obtain a Dirac semimetal
state. Band structure along the KH line for different rela-
tive cell volumes: (b) V

V0
= 0.83; (c) V

V0
= 1.00; and, (d)

V
V0

= 1.19. Panels (e)-(g) illustrate the corresponding atomic
displacements with respect to the equilibrium structure. The
length of the arrows is proportional to the magnitude of dis-
placement.

Dirac points in Pt2HgSe3 are located on BZ hinges along
the KH line in contrast to the other well-known Dirac
semimetals such as Na3Bi and PtTe2 where they are lo-
cated on the ΓA line in the hexagonal BZ.12,13,63 Such
a Dirac semimetal state is unique to Pt2HgSe3, and has
not been identified before.

VII. CONCLUSION

In conclusion, based on our first-principles calculations
combined with a k.p model Hamiltonian analysis, we
identify and characterize the dual-symmetry-protected
topological state of Pt2HgSe3. The material is shown
to harbor two distinct types of nodal lines when SOC
effects are neglected in the computations. Inclusion of
SOC gaps out the nodal lines and drives the system into a
topological phase which is characterized by both the weak
topological invariant Z2 = (0; 001) and the mirror Chern
number nM = −2. The (001) surface band structure re-
veals the existence of unique saddle-like topological sur-
face states with saddle-point VHSs. We also discuss the
tunability of the topological state of Pt2HgSe3 by mod-
ulating its crystal structure. In this way, the system is
shown to undergo a unique topological phase transition
where a gapped topological state exists as an intermedi-

ate phase between gapless Dirac semimetal states. Our
analysis suggests that the naturally cleaved (001) sur-
face of Pt2HgSe3 presents an ideal testbed for exploring
saddle-like topological surface states with VHSs and the
associated physics in topological materials.

Note added: We recently became aware of a related
eprint in which dual topological state of Pt2HgSe3 is
discussed64. A more recent preprint on ARPES mea-
surements of Pt2HgSe3 reveals the existence of saddle-like
topological surface states with VHSs which are consistent
with the results presented in this study65.

ACKNOWLEDGEMENTS

Work at the Shenzhen University is finan-
cially supported by the Shenzhen Peacock Plan
(KQTD2016053112042971) and Science and Tech-
nology Planning Project of Guangdong Province
(2016B050501005). The work at Northeastern Univer-
sity is supported by the U.S. Department of Energy
(DOE), Office of Science, Basic Energy Sciences Grant
No. DE-FG02-07ER46352, and benefited from North-
eastern Universitys Advanced Scientific Computation
Center and the National Energy Research Scientific
Computing Center through DOE Grant No. DE-
AC02-05CH11231. T.-R.C. was supported from Young
Scholar Fellowship Program by Ministry of Science and
Technology (MOST) in Taiwan, under MOST Grant
for the Columbus Program MOST107-2636-M-006-004,
National Cheng Kung University, Taiwan, and National
Center for Theoretical Sciences (NCTS), Taiwan. This
work is supported partially by the MOST, Taiwan,
Grants No. MOST 107-2627-E-006-001. H. L. ac-
knowledges Academia Sinica, Taiwan for the support
under Innovative Materials and Analysis Technology
Exploration (AS-iMATE-107-11). BG acknowledges
the CSIR for Senior Research Fellowship. We thank
CC-IITK for providing the HPC facility.

Appendix A: Structural details

The experimental lattice constants and the relaxed
atomic positions for bulk Pt2HgSe3 that have been used
in our computations are listed in the table below.

Wyckoff positions
Atom (Wyckoff symbol) Experiments Optimized

(x, y, z) (x, y, z)
Pt1 (1a) (0, 0, 0) (0, 0, 0)
Pt2 (3e) ( 1

2
, 0, 0) ( 1

2
, 0, 0)

Hg (2d) ( 1
3
, 2
3
, 0.3507) ( 1

3
, 2
3
, 0.3526)

Se (6i) (0.8196, 0.1804, 0.2492) (0.8285, 0.1716, 0.2477)
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