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Exciting new work on Bi2212 shows the presence of non-trivial spin-orbit coupling effects as seen
in spin resolved ARPES data [Gotlieb et al., Science, 362, 1271-1275 (2018)]. Motivated by these
observations we consider how the picture of spin-orbit coupling through local inversion symmetry
breaking might be observed in cuprate superconductors. Furthermore, we examine two spin-orbit
driven effects, the spin-Hall effect and the Edelstein effect, focusing on the details of their realizations
within both the normal and superconducting states.

I. INTRODUCTION

Since their discovery three decades ago, the cuprate
family of superconductors has been a focus of intense
research interest.1 To this day they maintain the high-
est superconducting transition temperature at ambient
pressure.2 Despite many years of active investigation
the cuprates continue to generate new discoveries and
new puzzles. Discussion continues on phenomena rang-
ing from the exact nature of the pairing mechanism, to
the origin of the pseudogap,3–5 and the various charge-
ordered states now being observed.6–9

While there has been some work on the consequences
of spin-orbit coupling in the cuprates, it is generally be-
lieved that such effects are weak10–14 and they are often
ignored. However, recent spin-resolved ARPES measure-
ments have shown striking evidence of spin textures in
the Brillouin zone.15 In particular, the observed behav-
ior can be explained by a model of spin-orbit coupling
which is opposite on the two layers of the BSCCO unit
cell. Such a model preserves the inversion symmetry of
system but can still host non-trivial effects arising from
the spin-orbit coupling. There is precedent for supercon-
ductors with such a staggered noncentrosymmetry,16 but
the consequences for the cuprate superconductors have
not yet been investigated.

It is well established both theoretically17–21 and
experimentally22–24 that systems with spin-orbit cou-
pling may display novel transport properties linking spin
and charge degrees of freedom. These are typically called
spintronic effects, and provide a potential means to ma-
nipulate spins with charges and vice versa.25,26 One of
the most commonly considered of these effects is the spin-
Hall effect, in which a net spin polarization accumulates
at the boundaries of a sample in response to an electric
current. As in the case of the Hall effect, the spin-Hall ef-
fect can also be related to a transverse current associated
with the accumulated quantity, although in the case of a
superconductor the relation between the two viewpoints
is more subtle. Another notable phenomenon is the Edel-
stein or inverse spin-galvanic effect, which relates a spin
polarization throughout the bulk of a sample to the flow
of a charge current.10 In light of the observations of spin-
orbit coupling in cuprate superconductors, the question
naturally arises as to how such effects manifest in these

materials, particularly within the superconducting phase.
The structure of this paper is as follows. In Section II

we introduce the model of spin-orbit coupling in BSCCO
and discuss some of its properties. In Section III we re-
view the theory of superconductivity in spin-orbit cou-
pled materials and construct a general Bogoliubov-de
Gennes Hamiltonian describing d-wave superconductiv-
ity in this model. In Sections IV and V we then use this
model to calculate spintronic effects in both the normal
and superconducting states. In Section VI we review and
discuss our results.

II. MODEL

In this work we use a model which was introduced
to explain the experimentally observed spin-texture in
Bi2212 under spin-resolved ARPES.27 The model is a
tight-binding description of the copper sites in a bilayer
of CuO2 planes. It is given by

H0 =
∑

k

c†k
(
ξ(k) + t⊥(k)τx + λ(k) · στz

)
ck, (1)

where ξ(k) includes hopping terms up to third-nearest
neighbor, leading to a hole-like Fermi surface, λ(k) =
λ(sin ky,− sinkx, 0) is the spin-orbit coupling vector, and
t⊥(k) = t⊥(cos kx − cos ky)

2 is the interlayer hopping
term.28,29 Here τ and σ represent two sets of Pauli ma-
trices, with the τ matrices operating in the layer space
and the σ matrices operating in spin space, and ck is the
4-component vector of electron annihilation operators in
the spin and layer spaces. The form of the spin-orbit cou-
pling can be ascribed to local inversion symmetry break-
ing between the layers; field effects in between the layers
lead to inversion symmetry breaking with opposite sense
in the top and bottom layer, such that the system as a
whole retains inversion symmetry.
This system contains two Kramers degenerate bands

with energies

ǫb(k) = ξ(k) + bA(k), (2)

where b = ± and A(k) =

√
∣
∣λ(k)

∣
∣
2
+ t⊥(k)2. It should

be noted that at the level of the electronic dispersion,
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FIG. 1. The Fermi surfaces for the two bands with spin
aligned along the spin-orbit coupling vector λ(k). For the
opposite helicity the two bands are exchanged. The spin-
texture for the band parallel to the spin-orbit vector is shown
by the arrows.

spin-orbit coupling enters in the same manner as inter-
layer coupling and it is difficult to disentangle the two.
The eigenstates of this model can be expressed as tensor
products of spin and layer space states as

|b ↑〉 = |↑〉σ ⊗ |b〉τ
|b ↓〉 = |↓〉σ ⊗ τx |b〉τ

. (3)

The states |↑〉σ and |↓〉σ are defined as the spin states
pointing parallel or anti-parallel to λ(k), i.e. helicity
states, while |b = ±〉τ are the states with layer pseudo-
spin parallel or anti-parallel to (t⊥, 0, |λ|). They can be
expressed as

〈σ|h〉σ =
1√
2

(

1 he−iφ(k)
)T

〈τ |+〉τ =
(
w(k) z(k)

)T

〈τ |−〉τ =
(
−z(k) w(k)

)T

(4)

where λ cos
(
φ(k)

)
= λ(k) · x̂ and

w(k), z(k) =

√

1

2

(

1± λ(k)

A(k)

)

(5)

which implicitly defines the change of basis ψk = Ǔck
to eigenstate operators. The structure of the eigenstates
leads to two Kramers degenerate Fermi surfaces, split
from each other by the spin-orbit and interlayer coupling
as depicted in Fig. 1. Each Kramers doublet consists of
states with helical winding of the electronic spin about
the Brillouin zone center in opposite senses.
For the purposes of calculating response functions in

Sections IV and V below it is convenient to re-express

the Hamiltonian in the following manner. We define the
matrices

Σ̌0 = σzτx, Σ̌1 = σxτy,

Σ̌2 = σyτy, Σ̌3 = σzτ0.
(6)

These matrices along with the products Σ̌0Σ̌i are closed
under the commutators

[

Σ̌0, Σ̌i

]

= 0,
[

Σ̌i, Σ̌j

]

= 2iǫijkΣ̌k (7)

and generate the algebra so(4)⊕u(1) with the Σ̌i forming
an su(2) sub-algebra. In terms of these matrices along
with the the modified adjoint c̄ ≡ c†Σ̌0, the Hamiltonian
is simply

H0 =
∑

k

c̄k

(

ξkΣ̌0 + d(k) · Σ̌
)

ck (8)

where we have defined the vector

d(k) ≡ A(k)n(k) ≡ (λ sin kx, λ sin ky, t⊥(k))
T , (9)

with
∣
∣d(k)

∣
∣ ≡ A(k) and unit vector n(k).

For all calculations in this work we use intralayer hop-
ping strengths t1 = 1, t2 = −0.32, t3 = 0.16, inter-
layer hopping strength t⊥ = 0.08, and chemical potential
µ = −1.18.

III. BOGOLIUBOV-DE GENNES

HAMILTONIAN

When writing the Bogoliubov-de Gennes Hamiltonian
for the superconducting state of this model, we impose
several constraints in order to match empirical details of
superconductivity in this system. The order parameter
in cuprates is known to belong to the B1g representation
(dx2−y2), which we enforce by hand. We additionally re-
strict pairing to be between degenerate bands; pairing
between bands with different energies would either re-
quire pairing at finite momentum, which is not observed,
or pairing of excitations away from the Fermi surface,
which is energetically disfavored. Finally, we impose that
the system remains inversion symmetric.
With these restrictions we can now write the BdG

Hamiltonian for this system as

HBdG =
∑

kbh

′

Ψ†
khb

[
ǫb(k) ∆bf(k)

∆∗
bf(k) −ǫb(k)

]

Ψkhb. (10)

Here ∆b is the order parameter for pairing in each band
and f(k) = cos kx − cos ky is the d-wave form factor.

The Nambu spinor Ψ =
(

ψk ψ̃†
k

)T

is defined in terms of

the eigenstate operators ψbh associated with the states in
Eq. (3) and their time-reverse ψ̃ = ΘψΘ−1, where Θ is
the time-reversal operator. We do this because this sys-
tem has non-trivial properties under time-reversal owing
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to the presence of spin-orbit coupling. The notation
∑′

indicates that we sum over only half the Brillouin zone to
avoid double counting states that would naturally arise
in this framework.
We have written our Nambu spinors in this form be-

cause the usual procedure of considering pairing be-
tween states of opposite spin and momentum would
have unfavorable consequences in systems with inversion-
symmetry breaking or spin-orbit coupling, namely the su-
perconducting gap function would no longer transform-
ing as a representation of the point group of the system.
The order parameter would acquire an extra phase under
group operations that could not be removed by a gauge
transformation, and so provides an obstruction to clas-
sifying its symmetry. By writing the BdG Hamiltonian
explicitly in terms of operators and their time-reversal,
however, this problem is avoided.30–32 Additionally, one
recovers the notion of separation into singlet and triplet
gaps, where now this distinction is with respect to helic-
ity instead of spin along a fixed quantization axis.
The global inversion symmetry of this system enforces

that the gap is singlet in helicity space, analogously to
the case of a system without spin-orbit coupling. Note
that unlike in the case of an inversion symmetry-breaking
superconductor, our quasiparticle bands remain doubly
degenerate. The difference of the gap magnitude in the
two bands depends on the strength of the interaction in
the respective channels, which we do not focus on here.
One can diagonalize the Hamiltonian Eq. (10) as a sum

of normal BdG Hamiltonians, and the Bogoliubov quasi-
particle dispersions are found to be

Eb(k) =

√

ǫb(k)2 + |∆b|2f(k)2. (11)

Because of the singlet nature of the gap, Bogoliubov
quasiparticles are superpositions of a quasi-electron state
and a quasi-hole in the corresponding time-reversed state.
These two states will have the same spin and so as a di-
rect consequence, the Bogoliubov quasiparticles inherit
the spin-texture of the normal state bands. This means
that near the nodes, there are gapless spin-orbit-coupled
excitations.
Finally, we note that the parametrization introduced

in Eq. (9) can be straightforwardly extended to the BdG
Hamiltonian Eq. (10), allowing the response functions
to be neatly expressed in terms of the vector d and its
derivatives (for more details see Appendix A).

IV. SPIN-HALL EFFECT

One of the most commonly studied spin transport ef-
fects in spin-orbit coupled materials is the spin-Hall ef-
fect (SHE), in which spin accumulates on the boundaries
of a material parallel to the electrical current flowing
through it, with the projection of the spin being opposite
on opposing boundaries, as depicted in Fig. 2. A quan-
tity often considered in the context of the SHE is the

FIG. 2. (Color online) A schematic depiction of the spin-Hall
effect. The charge current j is split into spin-up (red) and
spin-down (blue) components, which accumulate on oppos-
ing boundaries. This can be interpreted as a charge current
inducing a transverse spin current, jzS .

spin-hall conductivity, which describes the flow of a spin-
current perpendicular to an applied electric current, with
the projection of the carried spin being perpendicular to
the plane defined by the currents themselves.26 Here we
focus on the spin-hall conductivity as a hallmark of the
SHE, but note that the two are not necessarily simply
related, as will be discussed further below.
In particular, we are interested in the dc intrinsic spin-

Hall conductivity

σz
xy = lim

ω→0
lim
q→0

Πint
xy (q, iωm → ω + i0+)

iω
, (12)

written here in terms of the intrinsic contribution to the
spin-Hall response,

Πint
xy (q, ωm) =

〈

jzS,x(q, ωm)jy(−q,−ωm)
〉

, (13)

jzS,x(q, ωm) =
∑

k,ǫn

c†
k− q

2

1
2

{
vx(k), σz

}
ck+ q

2
, (14)

jy(q, ωm) = e
∑

k,ǫn

c†
k− q

2

vy(k)ck+ q
2
. (15)

Here k = (k, ǫn) stands for the momentum and Mat-
subara frequency, respectively, e = −|e| is the electron
charge, vi(k) = ∂H0(k)/∂ki is the velocity operator,

and c†k, ck are the electron creation and annihilation op-
erators. For our analysis these operators create quasi-
particles of definite spin and layer index. Equation (14)
gives a common convention for the spin-current, and
the superscript z indicates the polarization of the spin-
current.33 Explicit calculation leads to

σz
xy = 4e

∑

k

′ ∂ξ

∂kx

(

∂d

∂ky
× n

)

· ẑ

×
[(

ǫ+
E+

+
ǫ−
E−

)
πN

E+ − E−

+

(
ǫ+
E+

− ǫ−
E−

)
πS

E+ + E−

]

(16)
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FIG. 3. (Color online) The total DC spin-Hall conductivity
σz
xy as a function of temperature for different values of the

spin-orbit coupling strength λ. The conductivity is roughly
constant in the normal phase. We therefore normalize all
results by the value of the spin-hall conductivity in the nor-
mal phase for the corresponding choice of λ. The spin hall
conductivity however exhibits a decrease with the onset of su-
perconductivity. This can be attributed to a finite energy for
reorienting spins associated with the formation of singlet-like
Cooper pairs in the superconducting phase. In these calcula-
tions, we have chosen Tc = 0.016t1.

where we have defines the normal- and superfluid-like
bubbles

πN/S(k) =
n(E−(k))− n(±E+(k))

E+(k) ∓ E−(k)
(17)

with n the quasiparticle occupation function, and n and
d the vectors introduced in the parametrization Eq. (9).
We have suppressed the dependence on the momentum
k.
Spin-orbit coupling will in general lead to a non-zero

spin-Hall conductivity. There are notable exceptions,
however, where the spin-Hall conductivity exactly van-
ishes, and the exact conditions under which it remains
finite, particularly for Rashba spin-orbit coupling, have
been a subject of lively discussion.20,34–41 These argu-
ments for a vanishing of the spin-Hall conductivity do
not hold in our model, however, and we find a non-zero
result.
One of the main issues regarding the consideration of

the spin-Hall conductivity is the difficulty in relating it to
experimental measurements of the spin-Hall effect. Since
spin is not a conserved quantity in a system with spin-
orbit coupling, it does not obey a continuity equation,
so a spin-current cannot be consistently and rigorously
defined; Eq. (14), which we use in our calculation, is a
common choice, but is not uniquely determined. There-
fore, the accumulation of spin at the boundaries of the
system is not directly related to the spin-Hall conductiv-
ity in the same way that accumulation of charge is related
to electrical Hall conductivity.
This can be most easily demonstrated by considering

FIG. 4. (Color online) A schematic depiction of the Edelstein
effect. The charge current j induces a uniform transverse spin
polarization s = α̂EEj throughout the bulk of the material.

the transformation properties of spin and spin-current
under time reversal. As pointed out by Rashba,42 the def-
inition of the spin current used in defining the spin-Hall
conductivity is even under time reversal, while magneti-
zation measured at sample boundaries is odd under the
same operation. Consequently, there must be some addi-
tional time-reversal-symmetry breaking process that re-
lates spin-current to spin accumulation at sample bound-
aries, which is not included in calculations of the spin-
Hall conductivity. Indeed, we note that we find a total

spin-Hall conductivity, despite the fact that the system
does not break global inversion symmetry. Furthermore,
the sense of the spin-Hall conductivity does not depend
on the sign of the spin-orbit coupling. This is a strong in-
dication that the spin-Hall conductivity as traditionally
calculated is not directly related to an observable.
Nonetheless, we have included this calculation of the

spin-Hall conductivity for completeness. For the afore-
mentioned reasons it is not clear how to relate this result
to a precise experimental prediction, except to note that
a non-zero spin-Hall conductivity typically indicates that
a spin-Hall effect can be observed. Because the spin-orbit
coupling is seen to change sense between layers, we may
expect whatever spin-Hall response there is in experiment
to be layer-staggered as well.

V. EDELSTEIN EFFECT

Another frequently considered spintronic effect is the
Edelstein effect, also called the inverse spin-galvanic ef-
fect (ISGE). In the Edelstein effect a charge current gen-
erates a uniform spin polarization throughout the bulk of
a SOC material.10 Traditionally the effect is discussed in
the context of applying an electric field and observing the
resultant spin polarization, and such behavior has been
experimentally observed.22,43

The effect can typically be quantified through the dc
Edelstein conductivity σEE given by

χEE(q, iωm) =
〈
sx(q, iωm)jy(−q,−iωm)

〉

σEE = lim
ω→0

lim
q→0

χEE(q, iωm → ω + i0+)

iω
,

(18)
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which defines the linear response relationship sx =
σEEEy. This relation is, however, problematic in the con-
text of a superconductor. As stated above, the Edelstein
effect is, properly, the relationship between spin polar-
ization and current flow. In the normal state the current
is directly related to an applied electric field through the
dc electrical conductivity ji = σEi, and so σEE is an
accurate proxy for the strength of the effect. However,
in a superconductor (or the pathological case of a metal
without disorder), the electrical conductivity σ is infi-
nite, so application of an electric field does not result in
a steady state current, and the dc Edelstein conductivity
in Eq. (18) is not a meaningful quantity.
Instead, in order to consider the Edelstein effect in a

superconductor we need to directly relate the spin po-
larization and the supercurrent as sx = αEEjy, with
αEE now being the quantity of primary interest. Con-
sidering the finite frequency response of the system, we
can relate αEE(ω) to the Edelstein susceptibility χEE(ω)
above and the electromagnetic response function Π(ω)
from which one obtains the dc electrical conductivity as
σ = limω→0 Π(ω)/(iω). We have

sx(ω) = αEE(ω)
Π(ω)

iω
Ey(ω)

︸ ︷︷ ︸

=jy(ω)

=
χEE(ω)

iω
Ey(ω)

=⇒ αEE(ω) =
χEE(ω)

Π(ω)
, (19)

giving αEE(ω), for which the dc limit ω → 0 is finite. This
result will also be useful in evaluating the normal state
response since our model contains no disorder effects.
We can understand, at a heuristic level, how the cur-

rent and spin can be related through the following argu-
ment. Let us consider the case where this model contains
a supercurrent. The Cooper pairs then acquire finite mo-
mentum Q. We can absorb this momentum by making
the gauge transformation A → A + Q/(2e). To lowest
order in Q the action is shifted to S − j ·Q/(2e). Com-
puting the spin expectation value of the system, we find
to lowest order in Q

〈sx〉 = −Q

2e

〈
sxjy

〉
= −Q

2e
χEE(0, ω → 0). (20)

From Ginzburg-Landau theory we have that the super-
current is

jy = − e

m
nsQ, (21)

where ns is the density of superfluid electrons, and we
assume that quasiparticles do not significantly contribute
to the current, so this approximately represents the entire
charge current of the system. We thus have that in the
superconducting state

〈sx〉 =
mχEE

2e2ns
jy. (22)

So in the case of a uniform supercurrent the non-
vanishing of the Edelstein susceptibility χEE implies

a relationship between the supercurrent and spin-
polarization, as expected from Eq. (19). Such a relation
was studied in the case of an s-wave pairing previously.12

We note, however, that because our model is inversion
symmetric, there can be no total spin polarization in the
system, sx = 0. However, the layer-staggered analogs of
Eqs. (19) and (22), corresponding to the response of the
layer-staggered spin s̃x ≡ sxτz , behave in much the same
manner.
This response s̃x = αEEj

S
y can obtained be via the

analog of (19), replacing the normal spin with layer-
staggered spin. Some calculation allows us to find the
general formulae

χ(ω → 0) = 8e
∑

k

′

A(k)
∂ny(k)

∂ky

×
(

l(k)2πN (k) + p(k)2πS(k)
)

(23)

and

Π(ω → 0) = 2e2
∑

k

′

×



2A(k)2

∣
∣
∣
∣
∣

∂n(k)

∂ky

∣
∣
∣
∣
∣

2
(

l(k)2πN (k) + p(k)2πS(k)
)

+
∑

b




∂2ǫb(k)

∂k2y
− bA(k)

∣
∣
∣
∣
∣

∂n(k)

∂ky

∣
∣
∣
∣
∣

2



ǫb(k)

2Eb(k)
tanh

Eb(k)

2T




 ,

(24)

where we have defined the coherence functions

l(k)2, p(k)2 = 1± ǫ+(k)ǫ−(k) + ∆+∆−f
2
k

E+(k)E−(k)
, (25)

n is again the unit vector introduced in Eq. (9), and
πN/S are the quantities defined in Eq. (17). The cor-
responding expressions for the normal state are found
as the ∆ → 0 limit of these. The quantity αEE, ob-
tained as limω→0 χ(ω)/Π(ω), is plotted in Fig. 5 as a
function of temperature across the superconducting tran-
sition. Whereas the effect is only weakly dependent on
temperature above Tc, in the superconducting phase the
magnitude of the effect can change dramatically with
temperature, especially for weaker spin-orbit coupling.
The result becomes more complicated in the case where

the current is non-uniform or if the two gaps have dif-
ferent phase structures. To obtain insight into this
case, as well as the above linear response calculation,
we now derive a Ginzburg-Landau-like generating func-
tional for the layer-staggered spin-density. We start with
the Bogoliubov-de Gennes (BdG) action SBdG along with
the associated Hubbard-Stratonovich terms. The first
modification is to give the order parameter a spatially
varying phase in order to describe a supercurrent carry-
ing state. The ∆ terms now connect states of momentum
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FIG. 5. (Color online) The Edelstein susceptibility αEE relat-
ing the layer-staggered polarization to the transverse current
via s̃x = αEEjy as depicted schematically in Fig. 4. The coef-
ficient α is plotted for a range of spin-orbit coupling strengths
λ with each line normalized by the (roughly) constant normal
state Edelstein response. There is a marked change in the
magnitude of the effect coinciding with the onset of super-
conductivity.

k + Q/2 and k − Q/2 where Q is the Cooper pair mo-
mentum. Secondly we will add a source field for layer
staggered spin-density, which takes the form Bψ̄s̃xψ. In-
tegrating out the Fermions we obtain a generating func-
tional for the staggered spin density Z[∆,Q, B] such that
〈s̃x〉 = −T d

dB lnZ|B=0.
Our next step is to approximate the generating func-

tional within a Ginzburg-Landau approximation

Z = e−βF ≈ e−βFGL (26)

where

FGL =

∫

dr
(

αb|∆b|2 +Kbb′D∆∗
bD∆b′

+βb|∆b|4 +BKxy
bb′∆

∗
b(−iD)∆b′

)

(27)

and D = ∇−2ieA is the covariant derivative, with sums
over repeated indices. To do so we start with the stan-
dard Hubbard-Stratonovich decoupled form of the mean-
field problem, including now the layer-staggered source
term

S =
∑

b

1

gb
|∆b|2 + SBdG[∆b] +

∑

k

′

Bψ̄s̃xψ. (28)

We then integrate out the gaussian fermionic theory to
obtain

S =
∑

b

1

gb
|∆b|2 − Tr ln

[

Ĝ−1
0 −∆bV̂∆;b −BV̂B

]

. (29)

Performing a 4th order gradient expansion in ∆ and keep-
ing only to lowest order in B we obtain the explicit form

of the Ginzburg-Landau coefficients44

αb =
1

gb
−
∑

k

′ f(k)2 tanh
(

ǫb
2T

)

ǫb

βb =
∑

k

′ f(k)4

2ǫ2b
c(ǫb)

Kxy
bb = b

∑

k

′ f(k)2

ǫb

[

ny
∂ǫb
∂ky

(

n′′(ǫb) +
c(ǫb)

ǫb

)

+
∂ny

∂ky

(
c(ǫb) + ǫ+ǫ−S(ǫ+, ǫ−)

)

]

Kxy
b,−b = −2

∑

k

′

f(k)2A
∂ny

∂ky
S(ǫ+, ǫ−)

Kbb =
∑

k

′ f(k)2

4ǫb

[

∂2ǫb
∂k2x

c(ǫb) +

(
∂ǫb
∂kx

)2

n′′(ǫb)

+2A2

∣
∣
∣
∣
∣

∂n

∂ky

∣
∣
∣
∣
∣

2
ǫ+ǫ−
ǫb − ǫ−b

S(ǫ+ǫ−)





Kb,−b = −1

4

∑

k

′

f(k)2A2

∣
∣
∣
∣
∣

∂n

∂ky

∣
∣
∣
∣
∣

2

S(ǫ+, ǫ−)

(30)

where

c(x) =
tanh

(
x
2T

)

2x
+ n′(x),

S(x, y) =

1
x tanh x

2T − 1
y tanh

y
2T

x2 − y2
,

(31)

n is the Fermi function, and we recall that
∑′ indicates

summation over half the Brillouin zone. The interest-
ing magneto-electro effects are due to the the presence of
the Kxy terms, sometimes called Lifshitz invariants, al-
lowed by the breaking of inversion symmetry within each

layer45, which arise from the Tr
[

(ĜV̂∆)3ĜV̂B

]

term of

the above expansion. In our case, instead of coupling to
the magnetic field, these terms couple to the generating
field of layer-staggered spin.
With this we can now see how the Edelstein effect

arises from Ginzburg-Landau theory. Suppose we have
a uniform supercurrent in the y direction. From the
Ginzburg-Landau theory, we have that

jy = 2e
∑

bb′

Kbb′∆
∗
b∆b′Qy. (32)

Recall that since F is a generating functional, we also
have

〈s̃x〉 =
∑

bb′

Kxy
bb′∆

∗
b∆b′Qy, (33)

and we can then write

〈s̃x〉 =
∑

bb′ K
xy
bb′∆

∗
b∆b′

2e
∑

bb′ Kbb′∆∗
b∆b′

jy , (34)
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giving the Ginzburg-Landau theory equivalent of the
quantity αEE calculated above from linear response. In
the more general case, the expression becomes

〈s̃x〉 =
∑

bb′ K
xy
bb′∆

∗
b∂y∆b′

2e
∑

bb′ Kbb′∆∗
b∂y∆b′

jy, (35)

Similar effects have been derived from the Ginzburg-
Landau free energies of inversion-symmetry breaking
superconductors12,46, but the layer-staggered polariza-
tion predicted here is novel in the cuprates.
One might expect from the above that since an ana-

log of the ISGE exists in bilayer cuprates, so might an
analog of the spin Galvanic effect, which would allow a
supercurrent to be driven by application of a static mag-
netic field. In inversion asymmetric systems such behav-
ior is generally preempted by the transition to a helical
superconducting phase with zero net supercurrent.47–50

It remains to be investigated whether similar reasoning
rules out the spin Galvanic effect in this system.

VI. DISCUSSION AND CONCLUSIONS

In this work we have considered a model of spin-orbit
coupling the superconducting state of a bilayer cuprate
superconductor. We have shown that the inversion-
symmetry-preserving spin-orbit coupling posited to be
present in Bi221215 should lead to non-trivial layer po-
larized spin-orbit effects.
In particular, we calculate the layer polarized spin-Hall

conductivity, which was found to be non-trivial. While
this quantity cannot be directly related to a measurable
quantity, such as the accumulation of spin at sample
boundaries, we nonetheless expect that a layer-staggered
spin-Hall effect should be present.
More interestingly, the presence of the new coupling

term leads to a layer-staggered analog of the Edelstein
(or inverse spin-galvanic) effect, an in-plane spin polar-
ization in the presence of an applied supercurrent. This
should be visible through optical methods such as Fara-
day rotation22,51 or by measuring the degree of circular
polarization in photoluminescence.43 Furthermore, one
could attempt ARPES measurements in a supercurrent-
carrying state to directly see that canting of the in-plane
spins due to this effect.52

There are still interesting effects to consider beyond
what we have looked at in this work. In particular, spin-
resolved ARPES observes a non-trivial variation of spin
texture within the Brillouin zone, most notably including
a reversal of the spin texture as a function from the zone
center.15 This suggests a more complicated form of the
spin orbit coupling which could lead to further effects.
Additionally, for dx2−y2 superconductivity a gradient in
the d-wave order parameter can admix an s-wave pair-
ing term through a coupling of the gradients.53–55 Re-
gardless, the presence of spin-orbit coupling in BSCCO
should lead to the presence of a multitude of fascinating

spin-orbit driven effects, including the spin-Hall effect,
Edelstein effect, and more.
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Appendix A: Parametrization of the BdG

Hamiltonian

For purposes of calculation, it is convenient to
parametrize the BdG Hamiltonian, and associated
Nambu Green’s function in terms of the vector d and
Σ̌ matrices introduced in Eq. (9). To do so we note that

the matrices P̌± ≡
(

Σ̌0 ± n · Σ̌
)

/2 satisfy the the rela-

tion

P̌bn · Σ̌P̌b′ = bδbb′P̌b, (A1)

meaning that they act as projectors on the degenerate
eigenspaces of the normal state Hamiltonian, with the
somewhat non-standard properties

P̌bP̌b′ = Σ̌0P̌bδbb′ ,

n · Σ̌P̌b = bΣ̌0P̌b.
(A2)

Using these matrices we can compactly express the BdG
Hamiltonian

HBdG =
∑

k

′

Ψ̄k

∑

b

[
ǫb(k)ρ3 +∆bf(k)ρ1

]
P̌bΨk (A3)

where we have introduced the adjoint Nambu spinor
Ψ̄ = Ψ†Σ̌0 and the ρi are Pauli matrices in Nambu
space. The corresponding Nambu Green’s function is
found, completely analogous to the usual expresion, to
be

Ǧ(iǫn,k) =
∑

b

P̌b
iǫnρ0 + ǫb(k)ρ3 +∆bf(k)ρ1

(iǫn)2 − E2
b

(A4)

with the energies Eb as defined in Eq. (11).

Appendix B: Spin Susceptibility and Knight Shift

As the presence of spin-orbit coupling induces a triplet
component to the Gor’kov anomalous Green’s function
one might wonder why this is not in general seen in ex-
perimental signatures such as the Knight shift, where
the observed behavior is seen to be consistent with sin-
glet pairing.56,57 In general, the telltale sign of triplet
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FIG. 6. (Color online) The components of the static spin sus-
ceptiblity χij(0, 0) as a function of temperature for the layer
spin-orbit coupled model. The diagonal in-plane components
have a noticeable decrease below Tc but do not go exactly to 0
at zero temperature. This behavior is consistent with the de-
crease normally attributed to spin-singlet superconductivity
in the cuprates.

pairing in the Knight shift is that the spin-susceptibility
remains constant across the superconducting transition.
On the other hand, for the case of singlet pairing there
is a noticeable decrease.58,59 This is, however, consistent
with this model as the singlet component of the order pa-
rameter still leads to qualitative behavior similar to the
typical singlet case i.e. the Knight shift should rapidly
decrease below Tc. However, unlike the pure singlet case
as can be seen in Fig. 6, the spin-susceptibility does not
go exactly to zero at T = 0, a fact which was already
appreciated by Gor’kov and Rashba in 2001.60
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