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The Planckian relaxation rate ~/tP = 2πkBT sets a characteristic time scale for both equilibration
of quantum critical systems and maximal quantum chaos. In this note, we show that at the critical
coupling between a superconducting dot and the complex Sachdev-Ye-Kitaev model, known to be
maximally chaotic, the pairing gap ∆ behaves as η ~/tP at low temperatures, where η is an order one
constant. The lower critical temperature emerges with a further increase of the coupling strength
so that the finite ∆ domain is settled between the two critical temperatures.

The Bardeen-Cooper-Schrieffer mechanism of con-
ventional superconductivity [1] requires two species of
fermions coupled by an attractive two-body interaction
[2]. The mean-field analysis of such a model results in
the gapped quasiparticle excitation spectrum below the
critical temperature. Meanwhile, the absence of long-
living quasiparticles in high-temperature superconduct-
ing materials above the critical temperature is an im-
mutable characteristic of the so-called strange metal state
[3, 4]. In contrast to the quasiparticle nature of super-
conductors, strange metals exhibit a power-law behavior
in the spectral function [5], similarly to quantum crit-
ical systems [6]. Lack of quasiparticles manifests itself
in fast equilibration at low temperature on a time scale
set by the Planckian relaxation time tP = ~/ (2πkBT )
[6, 7]. The same time scale appears as an upper bound on
quantum chaos setting the maximal rate of information
scrambling [8]. It is usually formulated [8–10] in terms of
the out-of-time ordered correlator [11] (OTOC): In quan-
tum many-body systems the OTOC grows no faster than
exponentially et/tL with the Lyapunov time tL bounded
from below as tL ≥ tP [8].

The widely-known Sachdev-Ye-Kitaev (SYK) model
[12, 13], describing strongly interacting Majorana zero
modes in 0 + 1 dimensions, saturates the chaos bound
tL = tP [13, 14]. It does not possess an underlying quasi-
particle description while being solvable in the infrared,
with a spectral function that scales as a power-law of
frequency. These properties do not change upon replac-
ing Majoranas with conventional fermions (complex SYK
model) [15, 16]. The extensions of this model to the
cSYK coupled clusters predict thermal diffusivity [17]
∝ tP and reproduce the linear in temperature resistiv-
ity [18], observed in strange metals [19, 20]. Recently a
proposed theory of a Planckian metal [21], based on the
destruction of a Fermi surface by the cSYK-like inter-
actions, shows that the universal scattering time equals
to the Planckian time tP. The latter one characterizes

the linear in temperature resistivity property [22] and
was detected in cuprates [23], pnictides [24], and twisted
bilayer graphene [25], regardless of their different micro-
scopic nature.

The successes in applying the SYK model to the qual-
itative studies of strange metals and the minimalistic
structure of the model itself fostered the effort to find a
mechanism by which the superconducting state is formed
out of an incoherent SYK metal [26–29]. Driven by the
same curiosity, we consider a 0+1 dimensional toy model
which consists of a superconducting quantum dot [30]
coupled to the complex-valued SYK model [15]. At the
critical coupling the pairing gap turns out to be propor-
tional to the Planckian relaxation rate at low tempera-
tures:

∆ ≈ η ~
tP
, (1)

where η is a number close to one. This theoretical finding
that we refer to as Planckian superconductor draws par-
allels to the phenomenon of reentrant superconductivity
[31, 32] in Kondo superconductors [33–35] and physics of
the Andreev billiards [36–40].

We start with a superconducting Hamiltonian HSC

that contains 2M modes described by the Richardson
Hamiltonian [41–43] without single-particle energies cou-
pled to the SYK model HSYK with N fermions through
a random tunneling term Htun:

H=HSC +HSYK +Htun , (2)

HSC =− U

M

M∑
i,j=1

ψ†↑iψ
†
↓iψ↓jψ↑j − µ

M∑
i=1

∑
σ=↑,↓

ψ†σiψσi, (3)

HSYK =
1

(2N)3/2

N∑
i,j,k,l=1

Jij;klc
†
i c
†
jckcl, (4)

Htun=
1

(MN)1/4

N∑
i=1

M∑
j=1

∑
σ=↑,↓

(
tσijc
†
iψσj + h.c.

)
. (5)
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The couplings tσij and Jij;kl are assumed to be inde-
pendent Gaussian random variables with the finite vari-

ances tσ∗ijt
σ′
ij = t2δσσ′ , |Jij;kl|2 = J2 (Jij;kl = −Jji;kl =

−Jij;lk = J∗kl;ij) and zero means.
The interaction terms in the Hamiltonian (2) are de-

coupled within the Hubbard-Stratonovich transforma-
tions [2, 15], so that in the large M,N limit the self-
consistent saddle-point equations are [44]:

Σc(τ) = J2Gc(τ)3 + 2
√
p t2G+(τ) , (6)

Gc(iωn)−1 = iωn − Σc(iωn), (7)

G+(iωn) =
iωn − t2√

pGc(iωn)(
iωn − t2√

pGc(iωn)
)2
− |∆|2

, (8)

1

U
= T

+∞∑
n=−∞

1(
ωn + it2√

pGc(iωn)
)2

+ |∆|2
, (9)

where ωn = πT (2n + 1) are Matsubara frequencies
and p = M/N controls the ratio between the “sites”
[45–47] in the superconductor/SYK sector. The self-
energy of the SYK fermions appears in the equations
(6,7) as Σc(τ), while Gc(τ) denotes the correspond-

ing Green’s function −N−1∑N
i=1 〈Tτ ci(τ)c̄i(0)〉. The

Green’s functions of the ↑,↓–fermions in the supercon-
ductor Gσ(τ) = −M−1∑M

i=1

〈
Tτψiσ(τ)ψ̄iσ(0)

〉
enter the

equation (8) as a half trace of the Gor’kov’s function [48]
G+(τ) = 1

2 (G↑ + G↓)(τ). Finally, relation (9) is a mod-
ified gap equation [2], which accounts for the amount of
the SYK impurity in the superconductor through Gc(τ)
under the assumption of frequency independent pairing
∆. The chemical potential µ can be accounted in the
equations (6-9) by the shift |∆|2 → |∆|2 +µ2. Below, we
set µ = 0.

In the normal phase (∆ = 0) the equations (6-8) can
be written as

Σ(τ) = J2Gc(τ)3, (10)

(iωn − Σ(iωn))Gc(iωn) =
iωn − t2(1−2p)√

p Gc(iωn)

iωn − t2√
pGc(iωn)

, (11)

mind a convenient self-energy translation Σ ≡ Σc −
2
√
p t2G+. If p � 1/2 (2M � N), the bare SYK

Green’s function GSYK(iωn) = −iπ1/4sgn (ωn) /
√
|Jωn|

solves the equations (10,11) in the infrared ωn � J .
In this regime, the Green’s function of the ψ-fermions
G+(iωn) ∝ √ωn for ωn/J � p−1/3(t/J)4/3. In the
equal sites case 2M = N , which corresponds to p = 1/2,

the bare SYK Green’s function survives for (t/J)
4/3 �

ωn/J � 1. Another solution appears at p = 1/2 if one
supposes ωn �

{
t2 |Gc| , |Σ|

}
. Then the equation (11)

shortens to

Σ(iωn) =
iωn√
2t2

Gc(iωn)−2. (12)
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FIG. 1. Scaling of the Green’s function Gc in the normal
phase. We plot ν = ∂ lnGc/∂ lnωn as a function of p at given
frequencies and finite coupling t = 0.475J . At low frequencies,
ν close to −1/2 is robust against p increase for p < 1/2. The
frequency rise moves ν towards −1 (free fermion limit), while
ν crosses over to 1 for large p. The temperature is T = 10−4J .

The Green’s function that satisfies the equations (10,12)

is Gc(iω) ∝ −i sgn(ω)/
(
J2t2|ωn|

)−1/5
for the frequencies

(t/J)
3 � ωn/J � (t/J)

4/3
, that are achievable in the

weak tunneling limit t � J . Note that the frequency
window strictly depends on the coupling t. For p �
1/2 the Green’s function of the c–fermions in the low-
frequency limit is Gc(iωn) ∝ −iωn [47], that leads to the
density of states −π−1ImGc(iωn → ω + i0+) ' 0 in the
SYK sector vanished. Therefore, at large p, the normal
phase is given by the free fermions in the ψ–dot, whose
Green’s function is G+(iωn) = −i/ωn. To follow the
frequency scaling of the Green’s function Gc(iωn) while
changing p, we introduce the logarithmic derivative ν =
∂ lnGc/∂ lnωn plotted in Figure 1 at low temperatures.
Summarizing, the normal phase in the infrared limit is
described by the inverse Green’s function of the SYK
model at small p, whereas it crosses over to free fermions
for large p values.

The gap equation (9) at ∆ = 0 makes a boundary in
between the normal phase and the superconducting one
by setting the critical temperature Tc as a function of the
coupling rate t. Let’s notice that the SYK model (4) does
not have a spin degree of freedom after disorder averag-
ing [44]. Thus, it may be thought of as spin polarised.
It suppresses superconductivity similar to magnetic im-
purities: Increase of the coupling to the SYK subsystem
decreases the critical temperature [49]. There exists a
critical coupling tc:

1

U
=

∫ +∞

−∞

dω

2π

(
ω +

it2c√
p
Gc(ω)

)−2
, (13)

such to abolish superconductivity at zero temperature.
The constraint (13) follows from gap equation (9) when
∆, T = 0.
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FIG. 2. Left panel: Critical temperature as a function of the coupling strength to the SYK dot. The curves for p < 0.5
are bent at low temperatures. This illustrates the presence of two critical temperatures. At p = 0.5 the bend disappears
whereas for the values of p > 0.5 a single critical temperature decays to zero asymptotically. Right panel: The pairing gap
as a function of temperature at p = 0.02. The critical coupling value is tc ≈ 0.127J . U is set equal to J in both panels.

There are three competing phases contributing to the
denominator of the self-consistency relation (9): SYK
non-Fermi liquid, free fermions, and superconducting
condensate ∆. If there are enough of the SYK fermions
(N > 2M), ∆ interplays with the non-Fermi liquid at
zero temperature. The latter one falls off with the tem-
perature rise making a room for the superconducting
phase beyond the critical coupling, which results in the
growth of the critical temperature. Indeed, Figure 2 (left)
shows the bend of the critical temperature in the vicin-
ity of the critical coupling [50]. This phenomenon resem-
bles the reentrant superconductivity [31, 32] in super-
conductors with Kondo impurities [33–35]. The pairing
gap goes down at low temperatures with the coupling
increase as in Figure 2 (right). Achieving the critical
coupling when ∆ vanishes at zero temperature leads to
the appearance of the lower critical temperature. In con-
trast, the reentrant superconducting regime is absent for
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FIG. 3. Critical temperature as a function of the coupling
strength to the random free fermions model.

N < 2M , since the normal phase behaves as the con-
ventional Fermi liquid at low temperatures and large p,
as was noticed earlier. In Figure 2 (left), we show [50]
that p = 1/2 (N = 2M) separates the regions with
one or two critical temperatures. Similarly, considera-
tion of the random free fermions model

∑
ij Jijc

†
i cj in-

stead of the SYK model does not give the reentrance
effect. In this case, the self-energy equation (6) changes
to Σc(iωn) = J2Gc(iωn) + 2

√
p t2G+(iωn). The results

for the critical temperature are presented in Figure 3. It
is still possible to suppress the superconductivity at zero
temperature providing sufficient impurities, but there is
only a single critical temperature as the normal phase is
always set by the free fermions [51].

From Figure 2 (right), one notices the pairing gap at
the critical coupling is ∝ T at low temperatures. We
numerically examine [50] ∆ in the reentrant phase p <
1/2 for several values of p and U (see Figure 4). The
gap saturates 2πT almost irrespective of parameters of
the problem. Units recovery brings us to the relation (1)
announced above so that the gap is set by the inverse
Planckian time 1/tP multiplied by ~.

This observation seems as reminiscent of quite a pecu-
liar feature of an Andreev billiard [53]: In a clean chaotic
cavity proximate to a superconductor, the induced gap

equals to ~/tE = ~/
(
tL ln pFl

~

)
[38–40], where tE is the

Ehrenfest time (the typical time scale of quantum dy-
namics), tL is the Lyapunov time, pF is the Fermi mo-
mentum, and l is the characteristic cavity length. The
effect is predicted in the regime of the Ehrenfest time
far exceeds τ – the typical lifetime of an electron/hole
excitation in the cavity. Oppositely, if tE � τ the
gap behaves as ~/τ , where τ does not depend on the
Planck constant [36, 37]. In the SYK model the Lya-
punov time coincides with the Planckian relaxation time
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FIG. 4. The gap to temperature ratio as a function of inverse temperature at the critical coupling depends on neither the
mode ratio p (fixed U = J , left panel) or the Richardson interaction strength U (fixed p = 0.02, right panel). In both cases,
∆ saturates 2πT at low temperatures [52]. In the right panel, we notice that decrease of the interaction in the superconducting
dot reduces the critical temperature as in the bare Richardson model (3).

tL = ~/ (2πkBT ) = tP [13, 14], although those are differ-
ent physical quantities [54]. However, the Ehrenfest time
is tL lnN � ~/(2πkBT ), which differs from tP predicted

in the pairing gap (1) by lnN .
To estimate the gap behaviour at the critical coupling

we consider the equations (6-8) at finite ∆:

(
iωn − Σ(iωn)

)
Gc(iωn) =

(
iωn− t2√

pGc(iωn)
)(

iωn− t2(1−2p)√
p Gc(iωn)

)
−|∆|2(

iωn− t2√
pGc(iωn)

)2
−|∆|2

, (14)

whereas the self-energy equation (10) stays unchanged.
The right-hand side of the equation (14) tends to unity
for p � 1/2. Thus it is sufficient to substitute the SYK
Green’s function in the gap equation (9) in this regime.

As we look for a low-temperature correction to zero ∆
at the critical coupling, we expand the gap equation (9)
in powers of ∆ up to the second order:

1

U
' 2T

+∞∑
n=0

1(
ωn+

it2c√
pGc(ωn)

)2
1− |∆|2(

ωn+
it2c√
pGc(ωn)

)2
.
(15)

The SYK Green’s function diverges at low frequencies
as 1/

√
ωn and decays as 1/ωn in the ultraviolet. Hence

the principal contribution to the sum (15) from the high
frequencies is given by the bare ωn in the denominator.
On the other hand, divergent Green’s function is crucial
at low frequencies. Assuming Gc decays fast enough in
comparison to ωn, we replace Gc with the infrared SYK
Green’s function GSYK(iωn) = −iπ1/4sgn (ωn) /

√
|Jωn|

in the expression (15).

The low-temperature version of the relation (15) can

be written by means of the Euler-Maclaurin formula [55]:

1

U
'
∫ +∞

0

dω

π

1(
ω+

it2c√
pGSYK(ω)

)2
1− |∆|2(

ω+
it2c√
pGSYK(ω)

)2


− pT

t4c GSYK(πT )2

(
1 +

2πT

3

∂GSYK(πT )/∂ω

GSYK(πT )

)
, (16)

where we expand up to T 2 keeping in mind that ∆ ∝ T
[56] at the critical coupling. Finally, one notices two
terms in the top row of the equation (16) match the crit-
ical coupling condition (13). Therefore, we obtain [57]:

∆(T ) '
√

6πT. (17)

Although, this estimate gives η ≈ 1.22 that exceeds
the found numerical value η ≈ 0.96 for the pairing gap
∆ ≈ η ~/tP, derived low-temperature gap behavior (17)
is independent of the problem parameters as in Figure 4.
Conclusion.— In this manuscript, we considered the

superconducting proximity effect for the Sachdev-Ye-
Kitaev model. We have shown, that the supercon-
ducting dot coupled to the complex SYK model pos-
sesses reentrant superconductivity. At the critical cou-
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pling, that gives rise to the occurrence of the lower crit-
ical temperature, the pairing gap disappears at T = 0
and grows linearly with the temperature increase. The
linear–T growth of the gap is given by ~/tP, where
tP = ~/ (2πkBT ) is the Planckian relaxation time. The
same time scale serves as an ultimate bound on many-
body quantum chaos [8], saturated in strongly coupled
systems without quasiparticle excitations. Thereby a
natural question arises whether the pairing gap is an ap-
propriate physical observable for the Lyapunov spectrum
[58] of the SYK model. Accurate studies of the OTOC in
the proposed system (2) might shed light on that. On its
own, ∆ ≈ η ~/tP may be used to characterize the cSYK
quantum dots [59, 60]. However, this requires considera-
tion of a more realistic setup such as a superconducting
lead attached to the particular realization of the complex
SYK model.
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