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FeGe in the B20 phase is an experimentally well-studied prototypical chiral magnet exhibiting
helical spirals, skyrmion lattices and individual skyrmions with a robust length of 70 nm. While the
helical spiral ground state can be verified by first-principles calculations based on density functional
theory, this feature size could not be reproduced even approximately. To develop a coherent picture
of the discrepancy between experiment and theory, we investigate in this work the magnetic proper-
ties of FeGe from first-principles using different electronic-structure methods. We study atomistic as
well as micromagnetic parameters describing exchange and Dzyaloshinskii-Moriya interactions, and
discuss their subtle dependence on computational, structural, and correlation parameters. In par-
ticular, we quantify how these magnetic properties are affected by changes of the lattice parameter,
different atomic arrangements, exchange and correlation effects, finite Fermi-function broadening,
and momentum-space sampling. In addition, we use the obtained atomistic parameters to determine
the corresponding Curie temperature, which agrees well with experiments. Our results indicate that
the well-known and well-accepted relation between the micromagnetic parameters and the period
of the helical structure, is not valid for FeGe. This calls for new experiments exploring the relation
by measuring independently the spin stiffness, the spiralization and the period of the helical spin
spiral.

I. INTRODUCTION

Magnetic noncentrosymmetric cubic crystals of B20-
type, such as transition-metal germanides and silicides,
are the class of materials for which the direct observation
of chiral magnetic skyrmions has been reported first [1–
4]. Over the past decade, the study of these materials
in bulk form [5–18] or grown as films [4, 19–24] devel-
oped into an exciting research subject since they provide
a perfect test ground for resolving fundamental proper-
ties of skyrmions, rendering them candidate materials
for potential applications in skyrmion-based computa-
tion. An important feature of these materials is the
competition between the antisymmetric Dzyaloshinskii-
Moriya [25, 26] (DM) and the symmetric Heisenberg-type
exchange interactions, resulting in a variety of striking
magnetic phases with respect to temperature, magnetic
field, material composition and geometry. At zero ex-
ternal magnetic field and below a critical temperature
they are helimagnets. Most importantly, they exhibit
typically a small pocket in the magnetic field versus tem-
perature (H,T ) phase diagram, referred to as anomalous
phase or the so-called A-phase [13, 27, 28], which has
been identified with the skyrmion-lattice phase [1–5, 29].
In addition to skyrmion lattices and single skyrmions,
a more complex three-dimensional magnetic texture was
observed for MnGe [11], and different types of topolog-
ical excitations such as chiral bobbers may coexist with
magnetic skyrmions in thin films of B20 compounds over
a wide range of material parameters [19, 30, 31].
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FeGe is the prototypical representative of the B20 com-
pounds in which the A-phase [13] and the bobber [19]
were first observed. The Curie temperature is close to
room temperature and the helical period of about 70 nm
is in a regime comfortable to resolve by experimental
techniques. These are rather robust values confirmed
by several experiments [6, 13, 22, 32–34]. It is widely
accepted that the observed chiral magnetic structures
in this compound are stabilized by DM interaction [35]
rather than by non-relativistic exchange as it is observed
in several frustrated magnets. The most important mi-
cromagnetic parameters characterizing the magnetic or-
der of B20 compounds are the spin stiffness A and the
spiralization D [36], which define the helical period ac-
cording to λ = 4π |A/D|. However, while the spin stiff-
ness can be obtained from small-angle neutron scatter-
ing [37] or magnetization behavior [38, 39], which yields
values between A = 90 meVÅ2 and A = 190 meVÅ2 in
FeGe [6, 22], to our knowledge there are no direct inde-
pendent experimental measurements of the spiralization
constant D in this compound.

In addition to these experimental studies, several the-
oretical efforts were undertaken to realistically model
the magnetic properties of FeGe. Specifically, this in-
cludes micromagnetic and atomistic spin models based on
Heisenberg-type exchange and DM interaction, where the
underlying parameters are derived from first-principles
calculations using density functional theory (DFT). How-
ever, in contrast to the robustness of the experimentally
measured period of the magnetic modulations in FeGe,
the theoretical micromagnetic parameters obtained by
different techniques vary substantially. For instance, the-
oretical predictions for the spiralization in FeGe yield
D = −4.5 meVÅ [40] and D = −6.5 meVÅ [34] based
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on the dispersion of spin spirals, whereas a relativistic
multiple-scattering framework provides a value of D =
−9.0 meVÅ [41]. Moreover, representing the spiralization
by intrinsic spin currents leads to D = −7.0 meVÅ [42],
and theoretical studies focusing on the spin susceptibility
report the two distinct values D = −10.1 meVÅ [43] and
D = −1.0 meVÅ [44]. This large variation of the spiral-
ization in FeGe is complemented by electronic-structure
works that provide the values A = 700 meVÅ2 [44] and
A = 855 meVÅ2 [45] for the spin stiffness, using the en-
ergy relation of non-collinear magnetic states or an ap-
proach based on Green’s functions.

So far, the above mentioned DFT methods were not
able to reproduce the experimentally observed period of
the spin-spiral modulations in many B20 compounds.
Therefore, it is important to identify possible factors
which might be very critical in computing the micromag-
netic parameters by DFT. In this work we focus on FeGe
since spin fluctuations, which are difficult to catch with
DFT, are much less relevant for this compound than for
example in MnSi [46, 47]. We explore by first-principles
calculations based on different DFT methods how sensi-
tive the micromagnetic parameters are to different fac-
tors, such as exchange-correlation potential, Hubbard-U
correction, broadening of the Fermi distribution, atomic
position, and lattice parameter. In addition, we gain
microscopic insights by evaluating the atomistic param-
eters of Heisenberg and DM interactions, as well as the
corresponding Curie temperature. We discuss the orien-
tations of the DM interaction vectors with respect to the
corresponding bonds and their contribution to the micro-
magnetic DM interaction following the symmetry of B20
materials.

The article is organized as follows. In Sec. II we in-
troduce the theoretical spin model and provide the ex-
plicit relation between the atomistic and micromagnetic
parameters of the exchange and DM interactions, focus-
ing on the cubic B20 germanides. In Sec. III we briefly
describe three different computational approaches and
two electronic-structure frameworks which we employ in
this work. The computational details are summarized in
Sec. IV. Section V presents our comprehensive analysis of
the atomistic and micromagnetic interaction parameters
in FeGe, where we discuss their dependence on structural
details, computational parameters, and the choice of the
electronic-structure method. We conclude our work in
Sec. VI.

II. MAGNETIC MODELS

The magnetic interactions in B20 materials are typi-
cally modeled by a spin Hamiltonian

E = −1

2

∑
i 6=j

JijSi ·Sj −
1

2

∑
i 6=j

Dij ·[Si×Sj ] , (1)

where the microscopic parameters Jij and vectors Dij

describe the Heisenberg exchange and DM interactions,

respectively, between classical spins Si and Sj (treated
as vectors with the length |Si| = 1) of the magnetic
atoms at different lattice sites i and j. Here, we neglect
the tiny magneto-crystalline anisotropy in the cubic B20
compounds [48]. The B20 crystal belongs to the class of
chiral crystal structures for which the orientation of the
microscopic vectors Dij can be arbitrary as they are not
restricted with respect to the Fe-Fe bonds by the Moriya
rules [26].

If the magnetic structure varies slowly across the crys-
tal, i.e., |Sj−Si|/|Si| � |Rj−Ri|/a, where a is the lattice
parameter and |Ri −Rj | is the distance between atoms
at sites i and j (Ri 6= Rj), then a continuous magnetiza-
tion vector field m(r) (with |m(r)| = 1) can be used to
simplify the description of the magnetic properties. As
a consequence, the entire effect of the exchange and DM
interactions on magnetic structures can be summarized
by introducing the spin-stiffness tensor A and the spi-
ralization tensor D [49, 50] as micromagnetic parameters
entering the generalized functional of the micromagnetic
energy (defined per chemical unit cell)

E[m] =
1

V

∫ V

dr

(
∇mA ∇m +D : L(m)

)
, (2)

where

A =
1

4

∑
i6=j

JijRij ⊗Rij , (3)

D =
1

2

∑
i6=j

Dij ⊗Rij , (4)

are contractions of the microscopic interaction parame-
ters with the separation vector Rij = Rj − Ri. Here,
D : L(m) =

∑
µν DµνLµν(m) denotes the contraction

with the chirality tensor L(m) = ∇m ×m, the compo-
nents of which are the Lifshitz invariants of m. For more
details, see Ref. [50]. The micromagnetic parameters, A
and D, defined by Eqs. (3) and (4), are in units per chem-
ical unit cell [51], the index i runs over all sites within
the unit cell and j runs over the whole lattice excluding
pairs with i = j. In general, A and D are 3× 3 tensors.
In practical calculations the sums in Eqs. (3) and (4) are
truncated above a maximum interaction radius Rmax.

The above tensors reduce to scalar matrices due to
symmetry arguments as the cubic B20 materials are char-
acterized by the point group T . To make this point clear,
we first group all symmetry-related pairs of atoms i and
j into different shells with specific distances Rs = |Rij |.
Then, summing up the outer products in Eqs. (3) and (4)
over these symmetry-related pairs results in the expres-
sions

A =
1

4

N∑
s

Js

4Rs ·Rs 0 0
0 4Rs ·Rs 0
0 0 4Rs ·Rs


= I3

N∑
s

Js|Rs|2 = I3
N∑
s

As = A I3 ,

(5)
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and

D =
1

2

N∑
s

4Rs ·Ds 0 0
0 4Rs ·Ds 0
0 0 4Rs ·Ds


= 2I3

N∑
s

(Ds ·Rs) = I3
N∑
s

Ds = D I3 ,

(6)

where Rs, Ds, and Js are representatives of the local
bond properties Rij , Dij , and Jij , respectively, within a
given shell s. N is the total number of considered shells
and I3 is the identity matrix. The quantities As and Ds

denote the contributions from shell s to the spin stiffness
and spiralization constants, respectively, which we define
per chemical unit cell [51]. As follows from Eq. (6), each
shell has the largest contribution to the DM interaction
if Ds

ij ‖ R
s
ij , and it is zero if Ds

ij ⊥ Rs
ij .

III. COMPUTATIONAL METHODOLOGY

In this work we employ three different computa-
tional approaches, briefly described in the following sub-
sections, to extract the atomistic and micromagnetic in-
teraction parameters from the electronic structure as de-
termined by density functional theory. The approaches
are distinct in the details, e.g., from which self-consistent
state the parameters are extracted, which magnetic
states are treated perturbatively, and at which stage of
the calculation the spin-orbit coupling (SOC) is included.
These computational frameworks are realized in two dif-
ferent electronic-structure methods that we present as
well.

A. Spin-spiral approach

We assume a conical spin spiral characterized by the
propagation vector q and the rotation axis êrot. In
general, the spin spiral of each magnetic atom type
α = 1, . . . , 4 in the unit cell of FeGe can have an in-
dividual initial phase φα and form a cone angle θα with
the rotation axis êrot. The orientation of any classical
spin Si = Snα at position Ri = Rnα = Rn + τα with
n labeling the unit cell at Rn and τα denoting the four
magnetic sublattices within the unit cell, is described by

Snα(q, êrot) = R(êrot)

sin(θα) cos(q ·Rnα + φα)
sin(θα) sin(q ·Rnα + φα)

cos(θα)

 .

(7)
Here, |Snα| = 1 and R(êrot) is a unitary matrix mapping
ê3 to the rotation axis êrot via the relation R(êrot) ê3 =
êrot.

Experimental data [13] and theoretical analysis [35]
suggest that the magnetic ground state of cubic FeGe is

a flat helical spin spiral. In this case θα = 90◦, φα = 0◦,
and êrot ‖ q, which simplifies Eq. (7) to

Snα(q,Rnα) = [n̂1 cos(q ·Rnα) + n̂2 sin(q ·Rnα)] ,
(8)

where n̂1 and n̂2 are mutually orthogonal unit vectors
with êrot = n̂1 × n̂2. Considering spin spirals with slow
rotation (corresponding to small wave vectors q), i.e.,
if Snα(q,Rnα) can be approximated by the continuous
vector field m(q, r), the total energy (2) has the form

E(q, êrot) = Eex(q) + EDM(q, êrot)

≈ qTAq− [êrot · D]Tq . (9)

Using the symmetry-dictated shapes of the tensors A and
D, Eqs. (5) and (6), we can simplify the energy dispersion
for the helical spin spiral in B20 compounds:

Eex(q) ≈ qTAq = AqTI3q = Aq2 , (10)

EDM(q, êrot)≈ −[êrot · D]Tq

= −D[êrot · I3]Tq = −D q . (11)

where for helical spin spirals êrot · q = q. Therefore the
total energy of the magnetic interactions in B20 materials
has the form

E(q) ≈ Aq2 −Dq . (12)

The wave number qmin = D/2A that minimizes E(q)
defines the wavelength

λ =
2π

|qmin|
= 4π

∣∣∣∣AD
∣∣∣∣ (13)

of the spin spiral and its rotational sense as encoded in
the sign of D.

According to Eq. (12), the parameters A and D are
related to derivatives of the total energy with respect to
the wave number q in the long-wave length limit:

A =
1

2

d2E(q)

dq2

∣∣∣∣
q→0

and D = − dE(q)

dq

∣∣∣∣
q→0

. (14)

B. Infinitesimal rotation approach

An alternative route towards the parameters A
and D is to determine first their microscopic ori-
gins via multiple-scattering theory as implemented in
the Korringa-Kohn-Rostoker (KKR) Green’s function
method [52–54]. In this framework, the microscopic pa-
rameters of Heisenberg and DM interaction are obtained
from the collinear state by applying infinitesimal rota-
tions of the magnetic moments, which provides access to
the atomistic parameters Jij and Dij [55, 56]. Based on
this information, the micromagnetic analogs are found
from Eqs. (3) and (4). Since this formalism requires an
integration over all occupied electronic states, varying
the position of the Fermi level provides insights into the
response of the magnetic interactions to doping and al-
loying [57].
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C. Berry phase approach

The recently developed Berry phase theory of DM in-
teraction [36] constitutes a further conceptual and com-
putational framework that allows us to evaluate directly
the spiralization tensor D as linear response of the spin-
orbit dependent free-energy density with respect to small
chiral perturbations, based on the ferromagnetic state.
Bypassing non-collinear calculations, this approach facil-
itates the self-consistent treatment of the full spin-orbit
interaction, in contrast to the outlined method based on
spin spirals. The formalism correlates the DM interaction
with the global properties of a mixed parameter space of
the crystal momentum k and the magnetization direction
m̂ according to the Berry phase expression [36]

D =
1

NVuc

∑
µν

êµ ⊗ Im

occ∑
kn

[
m̂×

〈
∂ukn
∂m̂

∣∣∣∣hkn∣∣∣∣∂ukn∂kν

〉]
.

(15)
Here, |ukn〉 denotes an eigenstate of the lattice-periodic
Hamiltonian Hk = e−ik·rHeik·r with the band energy
Ekn, hkn = Hk + Ekn − 2EF where EF is the Fermi level,
N is the number of k-points, and the sum is restricted to
all occupied states. By varying the number of occupied
states, we can again access the response of the spiraliza-
tion tensor due to doping or alloying.

D. Electronic-structure methods

The different approaches to extract first-principles
interaction parameters from density functional theory
are realized most efficiently in two different electronic-
structure methods. The first one is the full-potential
linearized augmented-plane-wave (FLAPW) method as
implemented in the FLEUR code [58]. The total energy
of the spin spiral is calculated directly by applying the
generalized Bloch theorem. We utilize this code to self-
consistently compute the total energy in the absence of
SOC for different values of the q-vector. Thus, the vari-
ation of the electron density with the latter wave vector
is included in the initial states from which we determine
subsequently the energy of the DM interaction by treat-
ing SOC as a small perturbation [59]. Curvature and
slope of the resulting two energy dispersions provide ac-
cess to the micromagnetic parameters A and D, respec-
tively, see Eq. (14).

The atomistic parameters of the magnetic interac-
tions were computed using the full-potential relativis-
tic Korringa-Kohn-Rostoker (KKR) Green’s function
method [52–54] in which the all-electron charge density is
obtained from the Green’s function that is the solution of
a Dyson-equation. In contrast to the FLAPW method,
the KKR method allows to compute the atomistic pa-
rameters Jij and Dij with SOC included self-consistently,
however, deviations of the electronic structure from the
ferromagnetic state are not included.

In addition, to evaluate the spiralization tensor D ac-
cording to its Berry phase theory, we compute the elec-
tronic structure of ferromagnetic states with various ori-
entations m̂ using the FLEUR code [58]. Based on this in-
formation, we generate systematically a single set of so-
called higher-dimensional Wannier functions [60]. This
computational scheme facilitates an efficient but accu-
rate advanced Wannier interpolation [60–62] of the com-
plex parameter space that underlies the calculation of
Eq. (15).

IV. COMPUTATIONAL DETAILS

Our calculations employ two different approximations
to the a priori unknown exchange-correlation functional
of DFT. While the generalized gradient approximation
(GGA) [63] provides structural data in very good agree-
ment with the experiment, which we thus use in all calcu-
lations, we also consider the local density approximation
(LDA) [64] to reveal the role of exchange and correlation
effects for the magnetic properties of FeGe. Specifically,
this concerns the evaluation of the microscopic interac-
tion parameters within the KKR method. Analogously,
by using the LDA+U methodology, we assess how cor-
relations in the Fe-3d and Ge-4p orbitals affect the un-
derlying magnetic properties. Using the structural GGA
data, we use the values 1.5, 2.5, and 3.5 eV (1.5 eV)
for the Coloumb U for Ge-4p (Fe-3d) orbitals as well as
J = 0.5 eV.

The FLAPW calculations are converged with a plane
wave cut-off of 4.2 a.u.−1 and 24×24×24 k-points in the
full Brillouin zone (BZ). The muffin-tin radii were chosen
as 2.2 a.u. for both Fe and Ge. Using GGA, we perform
the structural optimizations within the FLEUR code and
use the resulting parameters among all computational
approaches. To accurately evaluate A and D from the
dispersion of spin spirals, the q-sampling of the energy
curve has to match with the grid of points in the electron
crystal-momentum BZ. Since the ground state of FeGe is
a long range helical spin spiral with qm = 0.009 Å−1,
the explicit energy calculation requires VBZ/q

3
m ≈ 1503

k-points in the full BZ of volume VBZ, resulting in an
increased computational burden. Therefore, we compute
the micromagnetic parameters from the corresponding
dispersion curves obtained for larger q-values, and test
the convergence. All KKR calculations are performed
using 48 × 48 × 48 k-points in the full BZ. The ener-
gies of the spin spiral and the micromagnetic parameters
are computed using Eqs. (1), (3), and (4), respectively,
for which the summation is truncated above a maximal
interaction radius of Rmax = 5a, where a is the lattice pa-
rameter. We applied the infinitesimal rotation approach
in LDA.

Aiming at the spiralization tensor within the Berry
phase theory, we calculate self-consistently the FLAPW
electronic structure of the ferromagnetic state with m̂
along the z direction and all other parameters as stated
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before. Based on the converged charge density, we in-
voke the magnetic force theorem [65] to compute wave
functions and band energies on a coarse 8×8×8 k-mesh
for 8 different magnetization directions. This informa-
tion is used to generate systematically a single set of
114 higher-dimensional Wannier functions [60] out of 202
Bloch states, with the frozen window extending to 5 eV
above the Fermi level. In a final step, we employ an
advanced Wannier interpolation [60–62] to evaluate the
Berry phase expression (15) by integrating over a dense
mesh of 128×128×128 k-points.

V. RESULTS AND DISCUSSION

A. Crystal structure and magnetic properties

The B20 structural type with the space group P213
of cubic FeGe does not contain symmetry operations of
second kind and therefore corresponds to a chiral crystal
structure. There are two sets of coordinates characteris-
tic for two enantiomeric structures, one of which is shown
in Fig. 1, that could be transformed one into another by
inversion. In this work, we focus on the structure with
right-handed crystalline chirality [66], which is defined by
the 4a Wyckoff positions (u, u, u), (0.5−u, 1−u, 0.5+u),
(1−u, 0.5+u, 0.5−u), and (0.5+u, 0.5−u, 1−u) for the
magnetic and non-magnetic atoms. The structural pa-
rameters obtained by DFT are in agreement with the
experimental results in the temperature regime below
80 K, see Table I. The experimental saturation magnetic
moment extrapolated to zero Kelvin at each Fe site is
∼ 1.0 µB [32, 48]. A more recent experiment shows a
magnetization of (360 ± 10) kA/m at 5 K, which corre-
sponds to a moment of (0.982 ± 0.007) µB [34] per Fe
atom. The calculated values obtained in DFT are slightly
larger, 1.16 µB with GGA or 1.11 µB with LDA [67].

The experimentally determined magnetic order of bulk
FeGe in zero magnetic field is a long-period helical spin
spiral with a period of about 70 nm, propagating along
the crystallographic [111] and [100] directions at temper-
atures below 211 K and above 245 K, respectively [13, 68–
70]. The period of the helimagnetic order is very ro-
bust and remains unchanged also in thin films, although
the propagation direction does not depend anymore on
temperature and magnetic-field direction but it is nor-
mal to the film plane due to the change of the magnetic
anisotropy [24, 34]. Most of the theoretical studies on
B20 compounds use a model of classical Heisenberg fer-
romagnetism with DM interaction [35], which we discuss
in detail and compute using different models and DFT
techniques, concentrating on different computational and
structural factors that might have strong impact.

FIG. 1. (Color online) Visualization of the B20 structure.
Shown is one of the enantiomers which can be transformed
into the other by a mirror operation as illustrated. The dark
red (blue) spheres indicate the lattice positions of the mag-
netic (non-magnetic) ions located at the 4a Wyckoff positions
(u, u, u), (0.5− u, 1− u, 0.5 + u), (1− u, 0.5 + u, 0.5− u), and
(0.5+u, 0.5−u, 1−u). The corresponding quantities uFe and
uGe for FeGe are given in Table I. To illustrate the structural
chirality, the first-nearest non-magnetic neighbors of each of
the four magnetic ions, positioned in the adjacent unit cells,
are shown (light blue spheres) additionally. They are located
along the local three-fold rotation axes (green arrows).

B. Micromagnetic interaction parameters

Figure 2 displays the energy differences of the magnetic
interactions (exchange and DM interaction) of a helical
spin spiral with the wave vector q and the ferromagnetic
state. Both dispersion curves were computed per unit cell
either using the FLEUR code (open markers) or from the
microscopic KKR parameters Jij and Dij (filled markers)
entering Eq. (1), as it is discussed in Sec. III D. The full
lines represent the analytical expressions for Eex(q) =
Aq2 and EDM(q) = Dq, where the parameters A and D
are obtained through fits to the calculated energy points.
The sum of both energies, Eex+EDM is shown in the inset
in the vicinity of the energy minimum for wave number
0 ≤ q ≤ 0.01 Å−1.

From Fig. 2 it is clear that the energies of exchange
and DM interactions agree rather well among spin-spiral

TABLE I. Lattice parameter a (in Å), atomic positions uFe

and uGe, Fe-Ge and Fe-Fe distances (in Å), and magnetic
moment SFe of the Fe atoms (in µB) [67]. Experimental values
as well as our DFT results obtained within GGA and LDA
are provided.

a uFe uGe RFe-Fe RFe-Ge SFe

Exp. 4.691,2 0.1351 0.8421 2.8812 2.3912 ∼1.03

GGA 4.670 0.134 0.842 2.862 2.366 1.16

LDA 4.558 0.136 0.841 2.795 2.321 1.11

1 Lebech [13] 2 Wappling [32] 3 Spencer [34]
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TABLE II. Magnetic moment S of the Fe atoms [67], the spin stiffness A [51], the spiralization D, the period λ of the spin-
spiral modulations, and TC for the B20 magnet FeGe, as obtained by experiment or by DFT calculations. The theoretical
micromagnetic parameters are evaluated within different computational approaches. In addition to the values obtained in this
work from spin spirals, Green’s functions, and Berry phase theory, we list results from formalisms based on spin currents and
spin susceptibility (Ref. [44]). For the spin-spiral approach, exchange and correlation effects are also treated within the ad hoc
scaling GGA+α (with α = 0.834) or within LDA+U , where a Hubbard-U of 1.5 eV is used either only on the Ge p-orbitals or
only on the Fe d-orbitals, and J = 0.5 eV.

Method Approx. S (µB) A (meVÅ2) D (meVÅ) λ (Å) TC (K)

Spin spirals

LDA 1.11 563 −4.5, −4.71 1557
GGA 1.16 654, 6502 −5.9, −5.52, −6.53 1390, 14852

LDA+UGe/UFe 1.16/1.56 657/649 −5.7/−4.8 1447/1716

GGA+α 1.0 961 −6.2 1955

Inf. rotation LDA 1.11, 1.124 529, 8555 −4.5, −94 1477 310±10 (MC), 2325(MF)

Berry phase GGA/LDA −6.5/−5.3

Spin curr./susc. GGA −76/−16

Experiments 0.98 ± 0.013 89±87, 1948 −1.67 6977, 7009 280±2 3, 10, 11, 12

1 Gayles [40] 2 Kikuchi [42] 3 Spencer [34] 4 Mankovsky [41] 5 Kashin [45] 6 Koretsune [44] MC - Monte Carlo
7 Turgut [22] 8 Siegfried [6] 9 Lebech [13] 10 Lundgren [33] 11 Xu [75] 12 Wilhelm [76] MF - Mean Field

and infinitesimal rotation approaches for small q-values
and if the same exchange-correlation potential is used.
Both LDA and GGA predict complex magnetic ground
states characterized by similar wave vectors, i.e., qLDA

min =
0.0042 Å−1 and qGGA

min = 0.0047 Å−1. The energy dif-
ference of about 0.01 meV between the helical ground
state and the FM state as obtained within LDA or GGA
is tiny, corresponding to a saturation magnetic field of
B = 0.06 T [71], which is twice as small as the experi-
mental value obtained for FeGe [72].

The micromagnetic parameters obtained by the dif-
ferent computational approaches followed in this work,
including spin-spiral dispersion, Lichtenstein formalism,
and Berry phase theory, are summarized in Table. II. The
agreement between different electronic-structure meth-
ods improves if the same exchange-correlation functional
is used. In particular, the GGA results for the magnetic
moment, the spin stiffness and spiralization amount to
S = 1.16 µB, A = 654 meVÅ2, and D = −5.9 meVÅ,
respectively, which is overall slightly larger than the
values obtained within LDA leading to S = 1.11 µB,
A = 563 meVÅ2, and D = −4.5 meVÅ, respectively.
The corresponding period λ of the helical spiral amounts
to 1560 Å and 1390 Å, respectively, which is consistently
reproduced if we evaluate directly Eq. (13). While the
obtained λ is similar to available theoretical data [42], the
value deviates by a factor of two from the experimentally
measured pitch of 700 Å that corresponds to the wave
vector qexpmin = 0.009 Å−1.

This prominent discrepancy between experimental
and theoretical wave vectors of the predicted magnetic
ground state is unsatisfying. Therefore, we aim at ana-
lyzing the nature of this difference and trace it back to po-
tential error sources, one of which could be the treatment
of exchange and correlation effects in FeGe. To address
this point, we follow an ad hoc approach by scaling the
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FIG. 2. (Color online) Energies per unit cell of the exchange
and DM interaction, computed for flat spin spirals as func-
tion of q = |q| (with q pointing along the [111] direction).
Please note the energy of DM interaction is multiplied by 20
for visualization purposes. The inset shows the total energy
around the minimum. Open markers show the energies com-
puted by the FLEUR code (with LDA and GGA) and solid lines
are fits to the corresponding energies Aq2, Dq, and Aq2 +Dq,
respectively. Filled circles are the energies obtained in accor-
dance to Eqs. (10) and (11), where the pairwise parameters,
Jij and Dij , were computed using the KKR method (with
LDA). The vertical green line represents the experimental
pitch (qexp ≈ 0.009 Å−1).

vector part Bxc of the GGA exchange-correlation poten-
tial by a factor α. For α = 0.834, this procedure reduces
the magnetic moment to the experimentally determined
value of about 1.0 µB, see Fig. 3(d). However, such a
scaling enhances the spin stiffness (A = 961 meVÅ2) and
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the spiralization (D = −6.2 meVÅ), which manifests in
an overall increase of the pitch to λ = 1955 Å that devi-
ates even more from the experimental value.

To establish a clear picture of the role of correlations
in FeGe, we apply a phenomenological Hubbard-U cor-
rection either on the Fe-d or on the Ge-p states, on
top of the GGA electronic structure [73, 74]. While in-
troducing U on the magnetic atoms has been reported
to improve the agreement between theory and experi-
ment on the magnetic moment in the B20 compound
MnSi [47], we demonstrate the opposite trend in FeGe.
Using U = 1.5 eV on the Fe-d orbitals, the spin magnetic
moment is strongly enhanced to S = 1.56 µB as shown
in Table II, which is far from the measured value. In
addition, due to such a correction the period of the spin
spiral becomes longer by 23%, reaching a value of 1716 Å.
On the other hand, using a Hubbard-U to treat the cor-
relations on Ge-p orbitals might influence the hybridiza-
tion of those states with Fe-d orbitals and therefore could
modify the strength of the magnetic interactions as well.
As shown in Fig. 3, indeed, such an effect slightly re-
duces the moment, decreases spiralization, but enhances
the spin stiffness such that the spin-spiral period becomes
longer.

From the above results we can conclude that exchange-
correlation effects alone are not able to describe the dis-
crepancy between the theoretically predicted and the ex-
perimentally measured length of the spin spiral in FeGe.
In addition, as shown in Table II, there is a substantial
variance in the micromagnetic parameters computed pre-
viously within different frameworks including infinitesi-
mal rotation, spin current, and spin susceptibility. Such
discrepancy might be traced back to subtle computa-
tional details, the role of which we investigate in the
following.

C. Accuracy of the methods

In this section, we study the accuracy of our first-
principles calculations of the micromagnetic parameters,
focusing on the influence of fitting details and computa-
tional parameters such as sampling of the Brillouin zone
(BZ) and broadening of the Fermi distribution. First of
all, since the micromagnetic parameters A and D within
the spin-spiral approach are obtained by fitting the model
expressions, Eqs. (10) and (11), to the computed spin-
spiral dispersions, we test the fit quality with respect to
the size of the fitting interval [0, qmax]. From Fig. 4(a–
c) it becomes clear that the absolute values of both A
and D become larger if the fitting is performed for q-
values closer to the Γ-point. Overall, the spin-spiral pe-
riod hardly reduces below 1460 Å within LDA and 1370 Å
within GGA at q = 0. Figure 4(d) shows the magnetic
moments of the different Fe atoms as obtained from self-
consistent calculations without SOC, either of spin-spiral
states in the FLEUR code or of the ferromagnetic state in
the KKR method. Note, different dependence of Fe mag-
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netic moments on wave number q, as it is obtained within
the FLEUR code, is a result of broken symmetry by such
magnetic structure. Minor differences of the magnetic
moments at q = 0 might be due to different integration
range of the magnetization density within two methods.
This might be the reason as well why the micromagnetic
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parameters A and D obtained within the two computa-
tional schemes are slightly different.

Next we assess how the sampling of the BZ as well as
the broadening of the Fermi distribution affect the con-
vergence of the micromagnetic parameters. According to
Fig. 5(a), the parameters A, D, and λ are essentially con-
verged to a robust value if we use more than 24×24×24
k-points. However, below this critical density for sam-
pling momentum space, we recognize drastic changes in
the micromagnetic parameters. For instance, if we use
12× 12× 12 k-points in the full BZ, spin stiffness and
spiralization are four and two times smaller, respectively,
resulting in a two times shorter period of the magnetic
modulations λ.

For metallic systems the redistribution of the electronic
states around the Fermi energy can play a key role for
the magnetic properties [40, 44]. Therefore, it is impor-
tant to investigate the effect of the Fermi broadening as
mediated by the temperature T on micromagnetic pa-
rameters. As shown in Fig. 5(b), lowering the temper-
ature below 100 K does not change the micromagnetic
parameters significantly. Thus, it becomes obvious that
the computed wavelength of the helical state is closest
to experiment if the Fermi broadening is small. A larger
value of the Fermi broadening results in larger spin stiff-
ness and smaller spiralization, manifesting therefore in a
larger period of the spin spiral.

D. Magneto-structural dependence

In this section, we study the dependence of the spin
magnetic moment, the magnetic interaction parameters,
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FIG. 6. Spin stiffness, DM interaction, magnetic mo-
ment of Fe atoms, and period of the spin spirals as func-
tion of (a) the lattice parameter a and (b) the distance be-
tween the first-nearest Fe and Ge atoms RFe-Ge(uFe, uGe) =√

3(1 + uFe − uGe). Filled markers in (a) stand for the struc-
tures with relaxed atomic positions for different lattice pa-
rameters while the open marker corresponds to a simulation
with the experimentally obtained values. In (b) the distance
between neighboring Fe and Ge atoms is shown either as func-
tion of the Ge atomic position uGe for uFe = 0.134, or as a
function of the Fe atomic position uFe for uGe = 0.842. The
solid (dashed) vertical line stands for the relaxed (experimen-
tal) lattice parameter and atomic positions, see Table 1.

and ultimately the wavelength of the helical state on the
structural details such as lattice parameter a and atomic
positions (uGe and uFe), considering two scenarios. In the
first case, the atomic positions were optimized for various
lattice parameters while in the second case, uGe and uFe
were tuned for the fixed lattice parameter of a = 4.67Å.
The interaction parameters A and D that we present here
were obtained from spin-spiral calculations based on the
GGA ground state, the structural properties of which are
in very good agreement with experiment. For example, as
summarized in Table I, the optimized lattice parameter
of a = 4.67 Å is only 0.6% smaller than the experimental
value, and also the relaxed atomic positions of Fe and Ge
atoms hardly deviate from the measured values.

The micromagnetic parameters of FeGe as a function
of the lattice parameter are illustrated in Fig. 6(a). First
of all, we note that upon increasing the lattice parameter,
the distances between the first-nearest Fe-Ge and Fe-Fe
neighbors grow linearly, manifesting in a larger magnetic
moment of the Fe atoms. In addition, while increasing
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a leads to a stronger DM interaction, the spin stiffness
is reduced, as a consequence of which the period λ de-
creases.

Keeping the lattice parameter fixed to the equilib-
rium value a = 4.67 Å, next, we study how structural
changes in terms of modified Fe and Ge positions af-
fect the interaction parameters A and D. During this
analysis, we make use of the distance between neigh-
boring Fe and Ge atoms, which amounts to RFe-Ge =√

3a0(1 +uFe−uGe) [77]. Remarkably, our results shown
in Fig. 6(b) demonstrate that the micromagnetic quanti-
ties A and D depend differently on uGe and uFe although
RFe-Ge is the same. The spin stiffness A is less sensitive
to the positions of Ge and Fe atoms, whereas D changes
prominently with the Fe positions. For example, reducing
the Fe-Ge distance by 1% by moving the Fe (Ge) atoms
changes the spin stiffness only by +1% (−0.5%), while
the DM interaction is enhanced by 6.5% (2.8%). For the
spin stiffness, this behavior directly correlates with the
trends for the spin magnetic moment shown in Fig. 6(b).
Moreover, the increasing magnitude of the DM interac-
tion can be attributed to the change in the hybridization
between the orbitals of two atoms (Fe and Ge), as well as
to an enhancement of the gradient of the electrostatic po-
tential as Fe and Ge approach each other. Owing to these
characteristics of the interaction parameters, the period
λ of the magnetic modulations reduces with decreasing
distance RFe-Ge.

E. Atomistic interaction parameters

In the following, we elucidate the microscopic nature
of the magnetic interactions in FeGe by discussing the
atomistic exchange parameters obtained within the KKR
formalism. Specifically, we analyze their contributions to
the micromagnetic quantities describing Heisenberg and
DM interactions.

Figure 7(a) depicts the exchange constants Jij as a
function of the distance |Rij | between two interacting
magnetic moments. We included interaction pairs that
are separated up to 5 lattice parameters, i.e., Rmax = 5a.
We observe that the Jij ’s decay rapidly with distance,
and take the largest positive values for the first-nearest
Fe-Fe neighbors. The interactions between second- and
third-nearest neighbors exhibit Jij ’s of opposite, smaller
value. Using this microscopic information, we evaluate
the micromagnetic spin stiffness A based on Eq. (5), the
result of which is presented in Fig. 7(c) for an increasing
number of considered interacting Fe pairs. As the indi-
vidual contributions to A follow the form JijR

2
ij , distant

interaction partners constitute an important part of the
micromagnetic spin stiffness. The decay of the Jij for
larger distances competes with the quadratic increase of
the separation |Rij | between the moments, resulting in
a diminishing oscillatory behavior of A with respect to
Rmax.

To validate the computed Jij parameters, we use them
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FIG. 7. (a) Exchange interaction parameters Jij and (b)
absolute values of DM interaction vectors |Dij | between Fe
atoms as functions of the interatomic distance (between Fe
atoms) |Rij | (in units of the lattice parameter a). (c) Micro-
magnetic spin stiffness A and (d) spiralization D (obtained
via summation over all contributions up to |Rij |), (e) Curie
temperature, TC, and (f) period of the spin spirals, λ, as
functions of Rmax (in units of the lattice parameter a), up to
which contributions from the atomistic parameters (Jij and
Dij corresponding to all |Rij | < Rmax) are included. Note
that the parameters Jij and |Dij | in (a) and (b) are multiplied
by S2 = |Si||Sj |. The Curie temperature, TC, shown in (e) is
computed from Jij parameters using Monte Carlo simulations
(MC) and the random phase approximation (RPA). The inset
in (b) presents cos(θij) for the first five shells, where θij is the
angle between Rij and Dij .

to calculate the Curie temperature TC. It is well known
that the mean-field theory overestimates the Curie tem-
perature, see for instance Refs. [78, 79]. Therefore, we
evaluate TC of the classical Heisenberg model considered
in this work using either the random phase approxima-
tion (RPA) within a multi-sublattice approach [80, 81] or
Monte Carlo simulations [82], which are both rather ac-
curate but numerically more expensive methods. In the
Monte Carlo simulations we determine the Curie temper-
ature from the peak of the temperature-dependent static
susceptibility. In both methods we evaluate the Curie
temperature of the feromagnetic state from different sets
of calculations with an increasing number of pairs of mag-
netic moments that mutually interact.

The results summarized in Fig. 7(e) indicate that con-
vergence of TC is achieved once we include interacting
atoms that are further than 2.5 times the lattice param-
eter apart from each other. Within RPA the computed
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TC for FeGe amounts to 187 K, which is 33% lower than
the experimental value of (280±2) K [34]. In addition, we
verified that accounting for the effect of DM interaction
within RPA hardly affects this value of TC. Using Monte
Carlo simulations, we obtain a more accurate value for
the Curie temperature TC of (310± 10) K, which is only
12% higher than the experimental value. Considering the
electronic and magnetic complexity of the B20 FeGe, this
is a very reasonable agreement, from which we conclude
that the magnitude of the Heisenberg exchange constant
and ultimately the spin stiffness are about 12% too high.

Now, we turn to the detailed microscopic analysis of
the tendency towards chiral magnetism in FeGe as me-
diated by the DM interaction. Figure 7(b) displays the
absolute value of the atomistic DM vectors Dij as func-
tion of the interaction radius Rij between two Fe atoms.
Most prominently, we note that the magnitude of Dij de-
cays rapidly with distance, just like in the case of the Jij ,
with the largest contribution originating from nearest-
neighbor interactions. Considering the factors Rij ·Dij as
integral contributions to the micromagnetic spiralization
according to Eq. (6), we arrive at the slowly converg-
ing behavior of D shown in Fig. 7(d). To understand
this property, we introduce the angle θ between the ori-
entation of Dij and the associated bond connecting the
interacting moments. Consequently, although the near-
est neighbors provide large microscopic contributions to
Dij , the associated angle θ amounts to nearly 90◦, see
inset of Fig. 7(b), rendering the overall effect on the mi-
cromagnetic spiralization negligible. As the direction be-
tween bond vectors and microscopic DM vectors changes
rapidly with distance, we find an oscillatory but slowly
converging behavior of the micromagnetic DM parame-
ter. The oscillatory behaviour of A and D with respect to
Rmax has a strong effect on the period of the spin spiral
λ, see Fig. 7(f).

F. The Fermi-level dependence of the
micromagnetic parameters

Any real sample is subject to imperfections including
impurities, anti-site defects, and off-stoichiometry, all of
which can affect the filling of the electronic bands as
well as the Fermi-surface topology. Likewise, correlation
effects beyond those treated within LDA or GGA can
modify the Fermi surface. As the magnetic properties
reflect immediately the spin and orbital nature of elec-
trons near the Fermi level, variations of the latter can
play a crucial role in correlating experiment and theory.
Therefore, in this section we study how susceptible the
magnetic properties of FeGe are with respect to varia-
tions of the band filling. Since the position of the Fermi
level in the B20 magnet FeGe affects mainly band fill-
ing of the 3d-electrons, it can be associated with the
replacement of Fe by Mn or Co atoms. Therefore, in
addition to a simple shift of the Fermi level, we consider
alloyed systems within the virtual crystal approximation
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spiralization are computed in accordance to equations (5) and
(6), respectively. Jij and Dij were obtained by using the KKR
method within LDA. The solid black line in figure (b) is the
spiralization computed by utilizing a Berry phase approach
(FLEUR, LDA).

(VCA) for a better comparison to experiment. Within
the method of infinitesimal rotations [55, 56], this merely
amounts to shifting the upper integration limit of the
convoluted Green’s functions to values higher or lower
than the Fermi level, obtaining band-filling-dependent in-
teractions [83, 84].

Fig. 8 summarizes our results of the magnetic proper-
ties computed for different positions of the Fermi level
(open markers) and chemical composition of FeGe alloys
in VCA (filled markers). Here, the micromagnetic pa-
rameters A and D were obtained as described in sec-
tion III B by means of the KKR method, using the GGA
lattice parameters and LDA characterising the magnetic
interactions. As can be seen from Fig. 8(a–d), for small
changes of the Fermi level, the change of the parame-
ters A, D, S, and λ follows directly the change of the
d-band filling of the alloys in the VCA, in agreement
with the validity of the rigid-band approximation in this
regime. We find that a small change of the Fermi level
by −0.05 eV (+0.05 eV) modifies the spin stiffness A
by +2.7% (−8.9%) and the spiralization D by −28.9%
(+33.3%). As a result, the period of the spin spiral
changes drastically by +44.5% (−31.7%). The spin mo-
ment in Fig. 8(c) exhibits a linear change of the magnetic
moments with band filling as expected from the Slater-
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Pauling curve.
We evaluate the Fermi-level dependence of the micro-

magnetic DM parameter also based on the Berry phase
approach (see solid line in Fig. 8(b)), which agrees well
with our KKR results. The obtained variation of the
spiralization, mimicking the effect of doping, follows ex-
cellently recent theoretical and experimental reports for
Fe1−xMnxGe [15–17, 40] and Fe1−xCoxGe [34] alloys, for
which the DM interaction changes sign at x ≈ 0.2 and
x ≈ 0.4, respectively, leading to a divergence of the spin-
spiral pitch, as shown in Fig. 8(d). While the techniques
and computer codes used in this work are substantially
different, we find a good agreement between the results.

VI. CONCLUSIONS

In conclusion, we carried out a comprehensive state-
of-the-art DFT study of the magnetic properties of the
prototypical B20 chiral magnet FeGe. Using different
electronic-structure methods we determined and investi-
gated both atomistic and micromagnetic parameters de-
scribing the exchange and DM interactions. They pro-
vide a consistent picture: In the absence of an external
magnetic field and the neglect of the magnetic anisotropy
conceived to be tiny due to cubic symmetry of the lat-
tice, the ground state is found to be a helical spin texture
following the same handedness as the crystal structure
with a period of λ = (1450 ± 100) Å obtained from the
ratio of exchange spin stiffness and spiralization. While
the handedness of the calculated spin spiral is consistent
with experiment [15–17, 34, 40], the pitch is about twice
as large as for all reported measurements. In retrospect,
this finding is consistent with previous theoretical studies
on the magnetic properties of cubic FeGe, although the
discrepancy of a factor two between theory and experi-
ment was not further addressed in earlier work.

While we consider the experimentally determined pe-
riod of FeGe as a hard experimental fact, confirmed by
different experimental groups having taken different sam-
ples and having measured over a wide temperature range,
the large discrepancy to the DFT results comes to a sur-
prise considering (i) the predictive power of DFT on the
pitch of DMI stabilized spin-spiral states proven for pre-
vious systems, like for a Mn monolayer on W(110) [85]
to name one, and (ii) that the structural parameters
obtained by total energy minimization, the local mag-
netic moment of Fe as well as the Curie temperature
TC = (310± 10) K agree well with experiments irrespec-
tive of the computational approach applied.

To deeper understand the origin of this discrepancy we
explored the response of the period with respect to com-
putational parameters like the sampling of the BZ and
the broadening of the Fermi distribution, structural de-
tails like lattice parameter and atomic positions, and the
approximation of the exact exchange correlation func-
tional employing LDA, GGA and LDA+U . We demon-
strated that increasing the lattice parameter by 1%, by

simultaneously reducing the distance between the near-
est Fe and Ge atoms by the same percentage results in
a ∼8% reduction of the spin spiral length. By reducing
the strength of the vector portion of the exchange corre-
lation (by the factor α) or by applying the Hubbard-U
correction to Ge p-orbitals, we were able to show that
computed magnetic moment of Fe atoms (of 1.16 µB in
GGA) can be tuned towards better agreement with the
experimental value (of ∼ 1 µB). However, such a treat-
ment of the exchange correlation functional increases the
length of the spin spiral (by ∼ 5% if U = 1.5 eV and
J = 0.5 eV or if α = 0.95%). In addition, we found that
a small change of the electronic band filling around the
Fermi level has a relatively strong influence on period of
the spin spiral, which for instance, becomes 32% shorter
(74% longer) when 3% of Fe are substituted by Co (Mn).
Although the computational, structural, and correlation
parameters and methods have a definite influence on the
spin stiffness and spiralization of the B20 magnet FeGe,
their effects are not sufficient to restore the experimental
period of magnetic modulations in this compound, finally
concluding that none of these parameters provide a con-
vincing source for the failure of the DFT calculations.
Since Fe in FeGe has a large magnetic moment of about
1 µB, longitudinal fluctuations neglected in the present
work can be excluded as possible source of error.

We suspect that the failure of DFT as a predictive
tool has a more fundamental reason. We conjecture that
the well-known and well-accepted micromagnetic rela-
tion between the spin stiffness A, the spiralization D,
and the period λ of the helical structure, λ = 4π|A/D|,
is not valid for FeGe. We speculate that it is not
valid for any of the chiral B20 magnets. We consider
the presence of higher-order magnetic interactions, such
as the biquadratic, four-spin–three-site, four-spin–four-
site exchange [86], or the recently proposed topological-
chiral interactions [87] as potentially relevant contribu-
tions that might violate the simple relation between the
period and the micromagnetic parameters. A second pos-
sible reason for the remaining discrepancy roots in the
fact that the ground state of FeGe could be a superposi-
tion of several helical spin-density waves propagating in
the same direction but having different phases and dif-
ferent directions of the rotation axes [14, 88].

Finally we would like to encourage new experiments
where all three quantities, the period λ, the spin stiffness
A and the spiralization D, are measured independently
under the same experimental conditions in order to verify
or falsify the commonly accepted micromagnetic relation,
λ = 4π|A/D|.
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m

1.602·10−10pJ
meV

A
[
meVÅ
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[52] See https://jukkr.fz-juelich.de.
[53] D. S. G. Bauer, Ph.D. thesis, RWTH Aachen (2013).
[54] N. Papanikolaou, R. Zeller, and P. H. Dederichs, J. Phys.

Condens. Matter 14, 2799 (2002).
[55] A. I. Liechtenstein, M. I. Katsnelson, V. P. Antropov, and

V. A. Gubanov, J. Magn. Magn. Mater. 67, 65 (1987).
[56] H. Ebert and S. Mankovsky, Phys. Rev. B 79, 045209

(2009).
[57] B. Zimmermann, W. Legrand, D. Maccariello, N. Reyren,
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