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We introduce quantum circuits in two and three spatial dimensions which are classically simulable,
despite producing a high degree of operator entanglement. We provide a partial characterization of
these “automaton” quantum circuits, and use them to study operator growth, information spreading,
and local charge relaxation in quantum dynamics with subsystem symmetries, which we define
as overlapping symmetries that act on lower-dimensional submanifolds. With these symmetries,
we discover the anomalous subdiffusion of conserved charges; that is, the charges spread slower
than diffusion in the dimension of the subsystem symmetry. By studying an effective operator
hydrodynamics in the presence of these symmetries, we predict the charge autocorrelator to decay
(i) as log(t)/+/t in two dimensions with a conserved U(1) charge along intersecting lines, and (i) as
1 /t3/ 4 in three spatial dimensions with intersecting planar U (1) symmetries. Through large-scale
studies of automaton dynamics with these symmetries, we numerically observe charge relaxation that
is consistent with these predictions. In both cases, the spatial charge distribution is distinctly non-
Gaussian, and reminiscent of the diffusion of charges along a fractal surface. We numerically study
the onset of quantum chaos in the spreading of local operators under these automaton dynamics, and
observe power-law broadening of the ballistically-propagating fronts of evolving operators in two and
three dimensions, and the saturation of out-of-time-ordered correlations to values consistent with

quantum chaotic behavior.

The dynamics of interacting, quantum many-body
systems provide a rich source of open problems in theo-
retical physics. Recent developments include advances in
our understanding of quantum thermalization [1-3] and
many-body localization [4-7], which have provided new
paradigms for non-equilibrium quantum matter. The
study of quantum dynamics has recently been revolu-
tionized by the study of random quantum circuits [8-14],
which have been a source of theoretically tractable prob-
lems that shed light on the dynamics of more general
quantum systems.

A richer set of quantum dynamical phenomena arise in
the presence of conservation laws. A global U(1) sym-
metry leads to the diffusion of the conserved charges
[11, 12]. Overlapping conservation laws lead to more
striking features in quantum dynamics. For example,
the conservation of both the total U(1) charge and dipole
moment in one spatial dimension can lead to the break-
ing of ergodicity and localization, and a “shattering” of
the Hilbert space into exponentially many dynamically
disconnected sectors [15-17]. Most studies of quantum
dynamics with or without conservation laws have thus
far been limited to systems in one spatial dimension.

In this work, we extend the study of quantum dynam-
ics in two and three spatial dimensions, by introducing a
class of quantum dynamics — termed automaton dynam-
ics — for which the evolution of various correlation func-
tions of local operators is classically simulable, and which
retain certain key features of the dynamics of a chaotic
quantum system. These dynamics share the property
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that the Heisenberg evolution of a local operator is com-
plex, in a manner that resembles the evolution under a
more general, chaotic quantum dynamics; nevertheless,
these quantum dynamics are simulable since they do not
generate any entanglement when acting on a complete
set of product states in an appropriate basis. We iden-
tify key features of the most general automaton dynamics
— in the Heisenberg evolution of local operators, the re-
currence times for an initial state, and in the generation
of operator entanglement — that distinguish them from
other kinds of classically simulable quantum dynamics,
and conjecture that the evolution of local observables un-
der these dynamics can be quantifiably similar to that of
a more generic, chaotic quantum system with the same
symmetries. Two examples of automaton circuits, which
necessarily generate operator entanglement, have been
previously studied in one spatial dimension, and one of
these is known to be integrable [18-20].

We apply our understanding of these automaton dy-
namics to the study of quantum dynamics with subsys-
tem symmetries — symmetries that act along overlapping,
subdimensional “manifolds” of the system — and find a
rich and unexpected behavior involving anomalous subd-
iffusion of charge, slower not only than diffusion in that
physical dimension, but also slower than diffusion in the
dimension of the submanifold acted on by the symmetry.
Our motivation to study these dynamics arises from the
existence of exotic quantum phases of matter with immo-
bile, fractionalized excitations (“fracton” phases) [21-24]
in which these symmetries, such as the conservation of
multipole moments of charge [25], are emergent proper-
ties of these stable phases [26], that severely restrict the
dynamics of these exotic, fractionalized excitations.

In this work, we specifically consider Floquet dynam-
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Subsystem Symmetry Charge Decay
d=2 d=23

Line Symmetry log(t)/v/t | log?(t)/v/t
Plane Symmetry — 1/153/4

TABLE I: Subdiffusive Dynamics with U(1) Subsystem
Symmetries — Summary of analytical results for the subd-
iffusive decay of charges in two and three spatial dimensions,
in the presence of overlapping line-like and planar U(1) sym-
metries. These predictions for line symmetries in d = 2 and
planar symmetries in d = 3 are consistent with numerical
studies of automaton dynamics with these symmetries.

ics that conserve U(1) charge along intersecting lines in
two and three dimensions, and three dimensional dy-
namics that conserve U(1) charge along planes, with
no additional symmetries; effectively, these are infinite-
temperature dynamics in which these subsystem sym-
metries are exact. For a two dimensional system with
line-like symmetries, we find that the local charge re-
laxes as log(t)/v/t, whereas for a three dimensional sys-
tem with planar symmetries it relaxes as 1 /t3/ 4. These
results originate from an analytical explanation in terms
of the emergent operator hydrodynamics of the problem,
and are consistent with extensive numerical studies of
automaton dynamics with these symmetries. Our results
are summarized in Table III. This anomalous subdiffu-
sion is tied to a distinctly non-Gaussian charge distribu-
tion, and reminiscent of classical fractional subdiffusion
[27, 28].

An efficient numerical simulation of dynamical (both
time-ordered and out-of-time-ordered) correlation func-
tions in automaton circuits is possible due to the fact that
these correlations may be computed using a Monte Carlo
sampling procedure. This provides a unique example of
a quantum dynamics, where we can measure these corre-
lations in two and three spatial dimensions for a highly
entangled operator evolution. In two dimensions, we are
able to simulate systems with up to N = 396 x 396 sites
and circuits with up to 32000 layers. In three dimensions,
we present results for systems with N = 128 x 128 x 128
sites and circuit depths up to 21000 layers. Observ-
ables other than the conserved charge display apparently
“quantum chaotic” behavior; out-of-time-ordered corre-
lations of these observables propagate ballistically, and
saturate to values that suggest that the structure of these
Heisenberg-evolved operators equilibrates in a manner
that is consistent with quantum chaos. The widths of the
ballistically-propagating fronts of these operators grow in
time as a power-law t* with exponent o = 0.308(18)
in two dimensions and o = 0.220(5) in three dimen-
sions. These should be compared with the predicted val-
ues @ = 1/3 and o = 0.24 in two and three dimensions,
respectively, for random unitary quantum circuits [9].

This paper is structured as follows. In Sec. I we de-
fine and present general features of automaton dynam-
ics, and argue that a generic automaton evolution can

lead to the complex Heisenberg evolution of local oper-
ators, as quantified by the generation of a large degree
of “operator entanglement”. For certain operators, we
are able to solve for the Heisenberg evolution explicitly.
We then present the numerical algorithm employed for
our simulations. Our comparison of automaton evolu-
tion to other quantum dynamics is presented in Table
II. In Sec. II we present our results on the anomalous
subdiffusion of charges in the presence of various sub-
system symmetries. In Sec. III we study the evolution
of out-of-time-ordered correlation functions under these
automaton dynamics, and show that the Heisenberg evo-
lution of operators other than the conserved charges ap-
pears quantifiably similar to that of a quantum chaotic
system. We conclude in Sec. IV with a discussion of the
implications of our results.

I. AUTOMATON DYNAMICS

We begin by defining the “automaton” dynamics of
a quantum system as a unitary evolution that (i) does
not generate any entanglement in an appropriate basis
of product states, but that (i) leads to the non-trivial
evolution of local operators under Heisenberg evolution.

More precisely, an automaton unitary operator U act-
ing on an appropriate set of orthonormal product states
in a D-dimensional Hilbert space — labeled |m), with
m € {0, ..., D —1} — simply permutes these states up to
a phase factor, i.e.

Ulm) = '

m(m)), (1)

where m € Sp is an element of the permutation group on
D elements. An automaton unitary will generally create
entanglement when acting on product states in a different
basis. We refer to Eq. (1) as the “automaton constraint”
for the remainder of this section.

While the evolution of the product states {|m)} is sim-
ple, the Heisenberg evolution of a local operator

0 - UtoUu (2)

can be complex, in a manner that resembles the Heisen-
berg evolution of an operator under a more generic,
chaotic quantum dynamics; we will quantify this simi-
larity in later sections. For this reason, automaton uni-
tary evolution is of interest as an example of classically
simulable, quantum dynamics that may capture broader
features of the dynamics of chaotic quantum systems.
Before studying the evolution of local operators under
automaton dynamics, it is useful to contrast the simula-
bility of these dynamics with integrable dynamics, Clif-
ford unitary evolution, and the dynamics of a chaotic
quantum system. Our comparison is summarized in Ta-
ble II. We note, in particular, that automaton dynam-
ics are qualitatively the opposite of a Clifford quantum
circuit. In a Clifford unitary dynamics, any Pauli oper-
ator (for a spin-(1/2) system, these are the Pauli X, Y,



(product initial state in 1D)

Features Integrable Clifford Automaton Quantum Chaotic
Dynamics Dynamics Dynamics Dynamics
Generates Volume-Law Yes Yes For s.tates 11.1 Yes
State Entanglement a specific basis
Generates Volume-Law Yes No Yes Yes
Operator Entanglement
Recurrence Time poly(log D) log D (1) D exp(AD)

Ballistic Growth,

Operator Spreading o ]
Diffusive Broadening

Ballistic Growth,
No Broadening

Ballistic Growth,
Power-Law Broadening

Ballistic Growth,
Power-Law Broadening

Opemtwns to szmulaté poly(log D)
one timestep of evolution

poly(log D) D D?

Memory Cost D (1)

log? D D D

TABLE II: Properties of a Generic Automaton Unitary Dynamics, as compared to Clifford dynamics, a generic
integrable dynamics, and the dynamics of a quantum chaotic system, each with a D-dimensional Hilbert space. The typical
recurrence time for a state evolving under an integrable dynamics in one dimension grows polynomially in the system size,
since each quasiparticle takes a time O(log D) to return to its initial position; furthermore, (1) assumes a translationally
invariant, Floquet Clifford circuit [13]. Operator spreading, as quantified by out-of-time-ordered correlations, reveals a power-
law broadening of the front of an evolving operator in time for automaton circuits in this work, which is close to what has
been observed in random unitary dynamics in various spatial dimensions [9], unlike what is observed for integrable dynamics
[29]. The computational cost of simulating one timestep of evolution, by applying O(log D) gates is indicated, with results for
integrable systems from Ref. [30, 31]. The memory overhead is the memory cost to store an evolving state under the indicated
dynamics at long times; this is generally O(D) as a product initial state will generally become volume-law entangled under
each of these dynamics. For Clifford dynamics, the memory cost is significantly reduced for initial states in the Pauli basis [32].
For integrable dynamics (1), the operator entanglement is believed to grow logarithmically in time [20, 33], which reduces the
cost of storing an evolving state, though the state may eventually become volume-law entangled.

Z operators, and their products) simply evolves into a
product of Pauli operators under Heisenberg evolution.
While operator evolution is not complex, Clifford uni-
tary operators can generate a high degree of quantum
entanglement when acting on any wavefunction.

An important example of a unitary operator that can
generate an automaton quantum circuit — defined as a
product of local, automaton unitary operators that each
do not generate entanglement in the same basis — is a
variant of the controllled-controllled NOT gate, a three-
qubit gate which we define as

CCNOT(0)193 = 1 — ITyp + Mo e X, (3)

Here ;2 = [T112)[(T1T2] is the projector onto the up-
state of spins 1 and 2, while X3 is the Pauli X opera-
tor acting on spin 3. Since this unitary transformation
conditionally flips the third qubit based on the states
of the first two qubits, it generates no entanglement
in the Pauli Z basis. However, the Heisenberg evolu-
tion of a local operator is more complex, e.g. Z3 —
(1/2) [Zg - Z1Z3 - ZQZg — leQZ3]. We note that (Z)
CCNOT(f# = 0) is the Toffoli gate, which is universal
for classical, reversible computing [34], as any invertible
Boolean function can be constructed using this gate and
ancilla bits, and that (i7) the Toffoli gate, and the single-
qubit Hadamard gate, define a universal gate set [35].

A. Growth of the Operator Entanglement

We now study the growth of the complexity of an op-
erator under the Heisenberg evolution by an automa-
ton quantum circuit. For simplicity of presentation, and
without loss of generality, we restrict our attention to
a spin-(1/2) system. Under Heisenberg evolution by a
chaotic unitary dynamics, a local Pauli operator O in a
chaotic quantum system will evolve into sums of arbitrary
products of Pauli operators as

O(t) =Y as(1)s, (4)
S

where the sum is over all operators {S} that are products
of Pauli operators on distinct sites in the system. Since
O(t)? = 1, the real coefficients as(t) satisfy the condition
Y sas(t)? =1, for all times ¢.

We now consider an automaton unitary operator U(t)
that generates no entanglement when acting on states in
the Pauli Z-basis. In other words, a projection opera-
tor |m)(m| in this basis evolves as U(t)|m)(m|UT(t) =
|m(m))(m(m)|. A simple consequence of this is that a
Pauli Z operator will only evolve into a sum of products
of other Pauli Z operators under Heisenberg evolution.

While this restricted evolution is a special feature of
the automaton dynamics, we now show that under a
generic automaton evolution, a Pauli Z operator can
grow to develop a weight on any possible operator within



this sub-space. More precisely, we demonstrate that the
“operator entanglement” — which quantifies the complex-
ity of the growing operator U'(t) ZU(t) — can develop
volume-law scaling under an automaton evolution.

To proceed, we let S,, denote a product of Z opera-
tors at sites corresponding to the binary representation
of the integer n € {0,...,D — 1}. For example, the op-
erator S5 = Z1 Z3 (since the binary representation of 5 is
10100 - - ). These operators evolve as

D—-1
Sn(t) =UB)S, UM) = > anm(t) Sm- (5)
m=0

The “automaton constraint” permits us to determine in
Appendix A that the coefficients a,,,(t) are exactly

o)

1

5 (71)7r(k)-m+k<n' (6)

Anm (t) =

>
Il

0

Here, 7 (k) is the binary vector representation of the inte-
ger m(k), and 7 (k)-m and k-n denote the dot product of
the appropriate vectors. As we show in Appendix A, the
fact that the matrix an,(t) is unitary is a consequence
of the unitarity of the original dynamics.

To quantify the growth of the complexity of the Pauli
operator S,(t), it is natural to study its “operator en-
tanglement”, which we define as the entanglement of the
evolving wavefunction

D-1
n(8) = D anm(t) [m), (7)
n=0

where |m) denotes the state of a fictitious N-spin system,
corresponding to the binary representation of the integer
m, so that a “1” (“0”) in this binary representation cor-
responds to a down (up) spin; for example, for m = 5,
we have the state |m) = | JTJ11 -+ ). We observe that
the unitary operator W(¢), whose matrix elements are
(m| W (t)|n) = apm(t), can be written as

W(t) = H*NU(t)H®V, (8)

where H is the single qubit Hadamard gate, which acts
on Pauli operators as HXH = Z, HZH = X. In other
words, the operator entanglement evolves according to
the same automaton circuit in a rotated basis; in this
basis, a generic automaton unitary operator will eventu-
ally produce a high degree of entanglement.

Instead of demonstrating this explicitly by studying
the growth of operator entanglement for a particular au-
tomaton evolution, we quantify the operator entangle-
ment generated by a random automaton unitary opera-
tor. We bi-partition the state [n(t)) into an A and B sub-
system, of Hilbert space dimension D4 and D = D/Dy,
respectively. The reduced density matrix for the A sys-
tem is defined as

pa(n) = Trp [n(t)) (n(t)]- (9)

We determine in Appendix B, that the purity of this
density matrix for a random automaton unitary, corre-
sponding to a random permutation m € Sp, is

1 (n=0)
Trpa(n)® = , (10)
D'+ Dg' =D (n#£0)

where the line - denotes an average over automaton
unitary operators that do not generate entanglement in
the Pauli Z basis. For any finite subsystem A, taking
the thermodynamic limit D — oo, Dy/D — 0 yields

Trpa(n)? = DZI when n # 0, which is the mazimally-

entangled value of the density matrix. We observe that,
Tr pa(0)? = 1 since the state |[n = 0) is an eigenstate of
W (t), as this state corresponds to the trivial evolution of
the identity operator.

We now argue that time evolution must generate a
high degree of operator entanglement for an initial op-
erator that is a product of Pauli X operators. Instead
of attempting to solve for their Heisenberg evolution, we
observe that any product of these operators — which we
label O — implements a permutation 7 € Sp when acting
on states in the Z basis. As a result,

D—-1
Utou(t) =Y en=0ren) |z rr(m) }(m| (1)

m=0

if the automaton unitary U(t) generates no entangle-
ment in the Z basis. If we let 6,, = 0 for all n, then
the Heisenberg-evolved operator O(t) = U(t)TOU(t) can
only act as an element of its conjugacy class, i.e. as an
element of the form o~ !¢, for some o € Sp. Conjugacy
classes of the permutation group are labeled by their cy-
cle type, defined as the lengths of all cycles in an element
of that class. Since O squares to the identity and is
traceless, the permutation 7 consists of D/2 independent
transpositions. The size of this conjugacy class is

D! D00 1(D/2)[1+0(log ™! D)
sorm P | Loz

which is the number of possible operators that O(t) can
evolve into. As this is much larger than the O(D?) op-
erators which are simple products of Pauli operators in
the system, we conclude that O(¢) must exhibit a high
degree of operator entanglement, for a randomly chosen
automaton unitary U (t). If the phases in this automaton
unitary are non-zero (6,, # 0), then O no longer evolves
into a countable set of operators. Nevertheless, the above
argument for the growth of the operator entanglement re-
mains valid.

B. The Recurrence Time and Quantum Chaos

We compare the recurrence times — when a given initial
state returns to itself, so that [(¢|U(t)[)| ~ O(1) — for a



typical automaton circuit, with that of a chaotic quantum
system. For a chaotic quantum system, the Poincare
recurrence time scales exponentially in the Hilbert space
dimension of the system t,o. ~ exp(AD). In contrast,
let U be a random automaton operator that generates a
single timestep of a Floquet unitary operator U(t) = U?,
so that U is proportional to a random permutation of
product states in a D-dimensional Hilbert space. The
behavior of the recurrence time for U(¢) can be varied.
First, the recurrence time for a random product state for
which U generates no entanglement will grow as

torod ~ D/2 (13)

as we show in Appendix C. In contrast, the recurrence
time for a random state (not necessarily a product state)
will be much larger, as this corresponds to the order of a
random element of the permutation group = € Sp whose
asymptotic form as D — oo [36] gives

trana 2 exp [A\/ D/log D] ; (14)

where X is an O(1) constant.

Finally, to compare the operator evolution under an
automaton dynamics with the evolution in a chaotic
quantum system, we consider the out-of-time-ordered
correlation function

Fr,t) = %Tr[or(t)Oé(O)OT(t)Oé(O)], (15)

where O,.(0) and O((0) are two initially local operators,
at the indicated positions. The out-of-time-ordered cor-
relation function probes the structure of the evolving op-
erator O, (t), which we may expand as a sum of products
of Pauli operators as in Eq. (4). For O((0) a Pauli string,
we observe that

F(rit)=1-2 Y as(t). (16)

{8,04}=0

The quantity 3 ;s o/ as(t)? is just the probability
that O.(t) has weight on a Pauli operator that anti-
commutes with O’. For a chaotic quantum system, a typ-
ical operator grows ballistically under Heisenberg evolu-
tion, with a butterfly velocity vy, and within this growing
region, the operator is equally likely to develop a weight
on Pauli operators that commute or anti-commute with
O} so that E{S,Oé}:o as(t)? = (1/2) and

0 ’UBt > |T’|
F(r,t) ~ . (17)
1 wpt < |r|

Therefore, OTOC (4) has a ballistically growing front,
and (4¢) within this region the OTOC asymptotically
vanishes due to the equilibration of the structure of
Or(t). We will confirm that these features, which hold

for chaotic quantum dynamics, are also present for au-
tomaton unitary circuits in our numerical studies. We
note that as before, one can show using Eq. (6) that for
a random automaton dynamics U, that

Te[UT ZoU ZoUT ZoU Zy] = 0, (18)

where “~~ again denotes an average over the choice of
automaton circuits.

Finally, the front of the OTOC is believed to broaden
as a power-law in time ~ t® in a chaotic quantum system,
where « is a dimension-dependent exponent. In d = 1,
the ends of an operator perform a biased random walk,
leading to the exponent aw = 1/2 [9, 13], while in higher
dimensions, these exponents are related to probability
distributions for classical stochastic growth processes [9].
We verify that a power-law broadening of the operator
front occurs for the OTOC in the automaton circuits we
consider.

C. Simulating Automaton Evolution

We now discuss how dynamical correlation functions
may be efficiently calculated for an automaton evolution,
using classical Monte Carlo techniques. Let U(t) be an
automaton unitary evolution that generates no entangle-
ment in the Pauli Z basis. We wish to determine the
weight as(t) = (1/D) Tr[O,(t)S] of an evolving Pauli
operator O, (t) = U(t)T0,U(t) on each basis string S.
We observe that

1
5 L elOn0Sln

as(t)
— % Z e Om=0n) (n ()| O |m(t)) (m|S|n). (19)

This quantity can be easily calculated using classical
methods since |n(t)) = U(t)|n) remains a product state
for any product state |n) in the computational basis. A
further speedup is obtained because for strings diagonal
in the computational basis (e.g. products of Pauli Z op-
erators), (m|S|n) = £dmn, so one only needs to sample
over |n), whereas for a string off-diagonal in the compu-
tational basis (e.g. X) one only needs to sample over
|ny and |m) = X;|n), instead of needing to sample over
|n) and |m) independently. This idea of classically sam-
pling a quantum wave function is standard in variational
Monte Carlo methods. Here, we extend this idea to sam-
pling a class of entangled quantum operators. The coef-
ficients of the basis strings in an expansion of the highly
entangled ‘variational quantum operator’ are generated
by the action of the unitary circuit on an initially local
operator. Using this method we can study the unitary
time evolution of very large quantum systems. In this
paper, we look at 2D circuits with up to 3962 sites and
circuit depths of up to 32000 layers, as well as 3D circuits
with up to 1283 sites and circuit depths of up to 21000
layers.



FIG. 1: Line-like & Planar Subsystem Symmetries.
Top: We study 2D square lattices with linear subsystem sym-
metry where charge is conserved on each row and column of
the lattice. We also look at 3D cubic lattices with planar
subsystem symmetry. In this case, each plane contains a con-
served U(1) charge. Bottom: The 4-site unitary gates act
non-trivially only on the above two configurations. In three
dimensions, such a 4-site gate can act along any plane of the
cube which intersects 4 spins.

II. RESULTS ON AUTOMATON CIRCUITS
WITH SUBSYSTEM SYMMETRIES

In this section, we study automaton quantum dynam-
ics that possess an extensive set of intersecting, global
symmetries. In this case, the conserved charges cannot
move in isolation, but engage in a complex, correlated
motion. We demonstrate through analytical arguments
and numerical studies of these quantum dynamics, that
the conserved charges in systems with overlapping (7)
line-like U(1) symmetries in two spatial dimensions, and
(#4) planar U(1) symmetries in three spatial dimensions,
evolve subdiffusively.

Before proceeding to a discussion of subsystem symme-
tries, we note that if the unitary circuit of interest pos-
sesses a continuous, global symmetry, then there exists a
set of conserved charges, which constrain the Heisenberg
evolution of operators. For example, for a unitary evolu-
tion that preserves the total Z spin — so that ) . Z, is
a conserved operator — the coefficients appearing in the
expansion of any operator O(t) satisfy the constraint

% Z Tr[Z,O(t)] = Z az, (t) = const. (20)

That is, the existence of a symmetry implies there exists
a set of conserved strings which consist of a single Pauli
operator. These are known as the conserved charges. By
dividing an operator into a conserved and non-conserved
part, one can gain a full understanding of the operator
dynamics. It will be important to compare to the known
results of unitary circuits with a global U(1) symmetry.
For such a circuit, the support of the non-conserved op-
erators grows ballistically with time, while the conserved
operators essentially perform a random walk. This leads
to diffusive spreading of the conserved U(1) charge. In
turn, the weights of the conserved operator strings as

FIG. 2: One Timestep of the 2D Automaton Circuit.
Left: The three types of gates which are applied to the 2D
circuit. The displayed gates act on layers £ = 1,5 and 11.
For the next-nearest-neighbor rectangular gates, the unitary
acts trivially on the middle two sites of the rectangle. Right:
A single period of the circuit consists of 16 layers, applied as
shown in the spacetime cross section. The red line indicate
the causal cone for the first site.

take the form of a Gaussian

%Tr[Zr(t)Zo] ~ ef(rg/DOt)/(Dot)d/Q, (21)

where Dy is the diffusion constant, and d is the spatial
dimension.

A. Dynamics with Line-like Subsystem Symmetries
in Two Dimensions

We now consider quantum dynamics with subsystem
U(1) symmetries. In two spatial dimensions, the simplest
such symmetry corresponds to overlapping U(1) charges
along intersecting lines. On the square lattice, we may
consider dynamics that preserve the line charges

Co=) Zpy and Cy=Y Z.y, (22)
Yy x

which are the total Z spin on each row and column of
the square lattice, respectively.

Consider the case where a single charge is placed at the
origin (0,0) on the lattice, so that C; = 0, and Cy =
dy,0. This charge can only move while preserving the
subsystem symmetries if we also allow for the creation of
new charges. In particular, the 2D charge can move along
a row or column if it emits a charge dipole in the direction
perpendicular to its motion. We can implement such
motion via an automaton unitary gate which preserves
the subsystem symmetries.

In two dimensions on the square lattice, there are
no two-site gates which preserve the line-like subsystem
symmetries. The smallest such gate must act on four
sites that lie at the corners of a rectangle. One such gate



which preserves the subsystem symmetries is given by
the “plaquette flip” unitary operator

Ugip = (1 - P)+ PX1X2X3Xy, (23)
where P is the projection operator
1
8

with the indices {1,2,3,4}, as labeled as in Fig. 1. The
projection operator P projects into the subspace spanned
by the two states shown in Fig. 1. The gate U then flips
between the two states in this subspace and acts trivially
on all other states in the four site region. This automa-
ton unitary operator generates operator entanglement;
for example, we observe that

P= (1 — Z]_ZQ)(I — ZQZg)(l — Z3Z4) (24)

31
mhz¢@p:12y+ng+zyf@}

1
+ﬂ%%@+&%&,&%%,%%&](m

We note that the most general unitary operator acting
on an elementary plaquette that preserves the line sym-
metries, is one that performs an arbitrary rotation within
the two-dimensional sub-space spanned by the two states
shown in Fig. 1 — consisting of the states where each pair
of neighboring spins is anti-aligned — plus any phase gate
that is diagonal in the Pauli Z basis.

We can therefore construct a circuit model which is
composed only of these four-site unitary gates. In two
dimensions, in addition to acting such gates on the fun-
damental plaquettes of the square lattice, we also include
next-nearest-neighbor gates. In this case, we apply the
same four-site unitary to the four corner sites of the rect-
angular plaquettes shown in Fig. 2. This is done to im-
prove the ergodicity of the model. We then act the three
gate types sequentially on all plaquette coverings of the
square lattice in the pattern shown in Fig. 2. Therefore
one periodic timestep of our circuit consists of 16 circuit
‘layers’.

1. Numerical Study

We start by numerically studying the 2D automaton
circuit with linear subsystem symmetries, where we ap-
ply the 4-site unitary gates defined in Eq. (24) on all pla-
quettes of the square lattice, in the configuration shown
in Fig. 2. We wish to determine the evolution of the
correlation function

G = 5 T Z0(6)Z0(0)] (26)
We begin by numerically studying the auto-correlation
function when r = 0. The results are shown in Fig. 3.
While one may naively expect the same form for this
correlation function as in the 1D case, since the con-
served charges of the Z(t) operator are constrained to
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FIG. 3: Charge Subdiffusion in 2D - The autocorrela-
tion function G(0,t) for the 2D automaton circuit with line
symmetries, which decays like log(t)/+/t. Inset: Comparison
of log(t)/+/t and 1/+/t decay, showing a clear deviation from
normal diffusion.

move along the 1D rows and columns of the lattice, we
find numerically that
alog(t) +b
3 \/E °
This is in sharp contrast to the 1D and 2D case with
a global symmetry where we expect G(t) ~ t~%/2. We
note that it is only by going to very large system sizes
and large circuit depths through the automaton unitary
evolution, that we can resolve this logarithmic term in
the correlation function.

Furthermore, we numerically determine the full space-
time correlation function G(7,t). Again, in systems with
a global conserved charge, we expect this quantity to
show Gaussian behavior. Our results, shown in Fig. 4,
vary dramatically from this expectation. In particular,
we see a distinct cusp shape in the spatial correlation
function near the ¢t = 0 location of the charge.

This anomalous motion of the charge can be under-
stood from the simple time evolution of the Z opera-
tor given in Eq. 25. Notice that a charge cannot move
freely in this model, but instead can only move by also
emitting a dipole in the direction perpendicular to the
motion. This means that motion of conserved charges
in this model necessarily requires the creation of neg-
ative charges. Evidently, the creation of these dipoles
results in the creation of a medium which slows the dif-
fusion of the conserved charge. We note that this type of
anomalous diffusion can be considered a purely quantum
phenomenon, since these negative charges are associated
with the sign of the operator wave function.

(27)

2. Analytical Study of the Charge Subdiffusion

We can gain some analytic understanding of these dy-
namics by observing that the overlap of Zy with the con-
served line charge is Tr[ZoCy] = Db, and Tr[Z,C,)] =
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FIG. 4: Spatial Charge Distribution in 2D — The sim-
ulated evolution, with N = 3967 sites, of G, along the line
r = (z,0), which shows a dramatic deviation from the usual
Gaussian behavior of normal diffusion. Notice the distinctive
cusp near x = 0 which is a sign of fractional subdiffusion.
Insets: The simulated evolution of the 2D difference equation
(29). For = S Vi, G(x,t) ~ log(t/x?)/v/t. For z > \/t, we
have G(z,t) ~ e IVE

Déy 9. Therefore, for any dynamics that conserves these
charges, the dynamical correlation function G(r,t) satis-
fies the constraint that

E G'r',t = 6ry,0 )
Tz

From this, we may construct the simplest evolution equa-
tion for G, ., after a single timestep of a discrete-time
unitary evolution that preserves the line charges C,, and
Cy. Assuming that the dynamics are invariant under
four-fold rotations on the square lattice, the simplest dif-
ference equation for the evolution of the dynamical cor-
relations is given by

> Gri=0n0.  (28)

Gr,t+1 = (1 - 2)\)Gr,t (29)
+ A [GrJr:J:,t + Grfm,t + Grer,t + Grfy,t}
A
- 5 [Gr+w+y,t + Gr+x—y,t + Gr—m+y,t + Gr—w—y,t]

where ) is a free parameter of the evolution. We note
that this is, in fact, an accurate description of the first
timestep of the automaton unitary evolution considered
in our numerical study with nearest-neighbor gates only
(if we take A = 1/8); however, Eq. (29) neglects “back-
flow” effects — that non-conserved operators appearing
in the Heisenberg evolution of Z,(t) can develop a non-
negligible weight on the operator Z, at sufficiently long
times — which are present in the automaton dynamics
that we numerically simulate.

Taking the continuum limit in time, and going to mo-
mentum space by defining G(k,t) = ﬁZT exp(ik -
r)G(r,t), we find that Eq. (29) becomes

%G(k,t) = —f(k)G(k,t), (30)

where f(k) = 8\sin®(k,/2) sin?(k,/2). We may analyti-
cally determine G(|r| = 0, t) by taking the inverse Fourier
transform, which may be performed to give G(0,t) =
%F% (1;1; —8At), where ,Fp(p;q; z) is the generalized hy-
pergeometric function. The long time expansion of this
expression yields

At—00 1Og()\t) + 0(1)
Vate

as we show in Appendix D; this agrees with our numerical
study of the automaton dynamics. We note that the same
result may be obtained by taking the continuum limit of
Eq. (29) in both space and time, to obtain the partial
differential equation

G(0,1) (31)

0,G(r,t) = —%85856?(1", t).

(32)
By performing a Fourier transform, we may solve for
G(r,t) in terms of special functions, whose expansion
at long times yields the same result as in Eq. (31).

We can also numerically simulate the finite difference
equation Eq. (29). The solution G(r,t) along the line r =
(z,0) is plotted in Fig. 4. The insets show the behavior
in the two limits z << v/t and = >> /%, at fixed times
to. We find that this is consistent with

log(t/(x + x0)?)
T (z < V1)

G(x,t)w ’
Lot (s )

(33)

Vi

where xg is a constant which we can fit numerically.

We would like to emphasize that the spatial charge
distribution in this model is not rotationally invariant.
However, along a generic direction r = (cos(6), sin(#)), a
simple scaling analysis of Eq.(32), yields that the front
of the conserved charge spreads in time as (r) ~ t'/* at
long times for all § # nr/2 with n € Z. In fact, from
Eq.(32), we observe that the full Green’s function takes

the scaling form G(r,t) = GoF (xy/\/ﬂ), where F'(w)

VIt

is a homogeneous function of w = zy/ V/At. This implies
that the front of the subdiffusing charge sits along lines
of the form y = 1/x. Along the particular directions
r = (z,0) and r = (y,0), the charge distribution, given
by G(z,t) in Eq.(33), implies that the conserved charge
spreads (r) ~ t'/2. We note that although the diffusion
is non-Gaussian and anomalous in all directions, it is only
this stronger condition that (r) ~ t* with o < 1/2 which
strictly implies anomalous subdiffusion. In our model,
we therefore generically observe subdiffusive behavior,
but diffusive behavior does appear along particular di-
rections.

Finally, it is interesting to note that, by virtue of con-
serving charge along lines, this circuit also preserves the
dipole moment in both the z and y directions. In Ref.[15]
it was suggested that dipole conserving circuits in two



dimensions should display localization of charge. In con-
trast, our results here establish that charge does spread,
albeit subdiffusively, with the equation for charge spread-
ing containing a term that involves the square of the
Laplace operator. This suggests that the hydrodynam-
ics for dipole conserving circuits proposed in [15] cannot
be complete, and furthermore suggests that the missing
ingredient may be a Laplacian squared term.

Finally, we may consider the dynamics of a conserved
charge in a three-dimensional system with intersect-
ing line-like symmetries along three orthogonal direc-
tions, which are given by the total Z spin along each
of these directions. As we demonstrate in Appendix
E, the three-dimensional generalization of Eq. (32) —
given by 9,G(r,t) = A 070;92G(r,t) — may be solved in
terms of a special function, whose asymptotic form when
At > 229222 yields the result that

N log?(\t) + O(log(\t))
VIt

We have not confirmed this through numerical simula-
tions of an automaton circuit, and we leave a detailed
study of automaton dynamics with line-like symmetries
in three spatial dimensions to future work.

G(r,t) (At > x2y%2?). (34)

B. Dynamics with Planar Symmetries in Three
Dimensions

We can also consider the case of intersecting planar
symmetries on the 3D cubic lattice. In this case, a U(1)
charge must be conserved on all zy, xz and yz planes.
For spin-(1/2) degrees of freedom on the sites of a cubic
lattice, we may define these charges as the total Z spin
on each plane,

Co= Zuye , Cy =3 Zayzy Co=_ Zuy.. (35)
Y,z x,z x,y

Automaton dynamics that respect these symmetries,
along with the symmetries of the cubic lattice may be
implemented using four-site unitary gates. In particular,
the same Upj, unitary gate in Eq. (23) can be applied on
the planes of the cube shown in Fig. 1, plus all symmetric
rotations of these planes. Notice that these gates con-
serve the more strict line symmetries in the plane which
they are applied, but only conserve the U(1) charge on
the plane for the perpendicular planes which they inter-
sect.

We also study 3D circuit by applying the 4 sites gates
sequentially on plaquettes lying in each of the planes
shown in Fig. 1 (plus the symmetry allowed cubic ro-
tations). In this case, each time step consists of 36 layers
of gates (4 layers per plane times nine planes), as opposed
to the 16 layers required for the 2D case.

We study the same quantities in the 3D model where
charges are constrained to move only along two dimen-
sional planes. The numerics in this case find that the
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FIG. 5: Charge Subdiffusion with Planar Subsystem
Symmetries in 3D — The autocorrelation function G(0,t).
We numerically fit this (using the intermediate times only)
to the function G(t) = c¢t™* and find z = 0.741(6) and ¢ =
.046(1). This is close to the analytical prediction, that G(t) ~
t7%7% as N, t — .

autocorrelation function scales like

1

G(0,1) ~ £0.741(6) -

(36)
That is, in this 3D case we find a clear violation of the
diffusion law.

We also study the spatial distribution of G(r, t) at fixed
time for a 2D slice of the system, as shown in Fig. 6. We
see that again the spatial distribution is clearly not Gaus-
sian, and again shows a cusp near x = 0. The charge den-
sity is greater along the lines which are shared between
pairs of planes which have nonzero net charge.

Analytically we may understand this subddiffusive be-
havior by employing similar techniques as we employed
in Sec. ITA. The conservation of planar U(1) charges
requires that the auto-correlation function G, ; is con-
strained, after summing over any zy, yz, or xz plane,
analogous to the constraint derived for line-like subsys-
tem symmetries in Sec. II A. The simplest, discrete-time
evolution of this correlation function that is consistent
with these constraints, and with the symmetries of the
cubic lattice is

G'r‘,t+1 = (1 - 3)\)G7‘,t +A [Gr:ta:,t + Gr:ty,t + Gr:l:z,t]

A
- 1 [GT:I:r:I:y,t + Gr:l:y:l:z,t + Gr:tz:tm,t] 5 (37)
where A is, again, a free parameter of the dynamics. Tak-
ing the continuum limit of this equation in space and
time yields the partial differential equation for the coarse-
grained correlation function

0G(r.0) = X (0202 + 0202 + 0202) Glr.t). (39)
which  yields the result that G(k,t) =

exp[—(At/4) [kfckg + k2k2 + k2k2]] in  momentum
space. Performing the inverse Fourier transform, and
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FIG. 6: Dynamics with Planar Subsystem Symmetries
in 3D —Top: The space time correlation function G(r,t) for
a 2D slice of the 3D cubic lattice at fixed time ¢t = 200 for a
system with N = 120° sites. Notice that the charge has higher
density along the intersection of two planes which contain
the charge. Bottom: 1D slices of the same data, plotted for
different y positions. Notice that again G(r,t) has a cusp
near the origin.

re-scaling k — k' = kt'/* yields the desired result that
G(0,1) " =3/4,

As before, a more careful analysis of the difference
equation (37), where we only take the continuum limit in
time, while Fourier transforming in space, yields

2 k1) = — f(R)G (k1) (39)

dt
sin? (2) sin? (;) . (40)

flR)=4x
i#je{w,y,z}

While we are unable to analytically perform the inverse
Fourier transform to obtain the exact autocorrelation
function from these expressions, we observe that f(k)
vanishes along the three lines k = (k;,0,0), (0,%,,0),
(0,0, k.) that meet at the origin. As a result, the spa-
tial continuum limit considered previously — which cor-
responds to an expansion of (39) near k — 0, where f(k)
vanishes most rapidly — is justified in understanding the
long-time asymptotics of G(0,t).
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IIT. OPERATOR SPREADING IN
AUTOMATON CIRCUITS

We now numerically study the behavior of the out-of-
time-ordered correlation function (OTOC) — defined in
Eq. (15) as F(r,t) = (1/D)Tr [O,(t) O[O (t)Of] — in or-
der to quantify how local operators evolve under Heisen-
berg evolution by the automaton quantum circuits that
we have considered. The primary purpose of our study of
the OTOC is to argue that the “non-conserved part” of
Heisenberg evolution of a local operator under automa-
ton unitary dynamics — defined as the portion of the evo-
lution of an operator that has no overlap with the con-
served charges in the evolution — is quite generic, and re-
sembles the evolution under the most general, symmetry-
preserving unitary gates.

We study the following out-of-time-ordered correlation
functions

Fzx(r,t) = —Tt[Z,(t) XoZn () Xo] (41)

Ol ~ ol =

FXX(rvt) = Tr[XT(t)XOXr(t)XO]a (42)
which we refer to as the “ZX” and “XX” OTOC’s for the
remainder of this section.

As detailed in Sec. 1B, the ballistic growth of a non-
conserved operator in a chaotic quantum system, and the
equilibration of the local structure of these operators im-
plies (¢) that the OTOC has a ballistically-propagating
front, and (4¢) that F(r,t) — 0 as r/(vpt) — 0. The sat-
uration of the OTOC also coincides with the development
of volume-law “operator entanglement” [37]. Finally, we
observe that (¢i¢) the front of the OTOC is believed to
broaden as ~ t*, where « is a dimension-dependent ex-
ponent; in one spatial dimension, the ends of an operator
perform a biased random walk, leading to v = 1/2, while
in higher dimensions, these exponents are related to the
probability distributions for classical stochastic growth
processes [9]. We will verify these three features, which
are characteristic of operator spreading in chaotic sys-
tems, in the out-of-time-ordered correlations of the au-
tomaton circuits considered previously.

In addition, we expect the ZX OTOC to have “tails”
connecting the ballistically propagating front of the

OTOC Property Power Law Exponent
d=2 d=23
Front Broadening | a = 0.308(18) | a = 0.220(5)
Subleading Tail B8 =0.50(1) B8 =1.02(7)

TABLE III: Dynamics of the Non-Conserved Opera-
tors — Summary of dynamics of the non-conserved operators
as demonstrated by the power-law behavior of the leading
OTOC front for the 2D and 3D models with overlapping line-
like and planar U(1) symmetries respectively. We find that
the operator front broadens like t* and the sub-leading tail
fits the functional form (vgt — |r|)®.
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FIG. 7: XX OTOC for the 2D Automaton Circuit — We measure the XX OTOC along the line » = (z,0) for the 2D
automaton circuit. In (a) and (b), we observe a clear light cone, for a system with N = 396 sites, whereby F(r,t) =~ 1 for
|r] > vpt and F(r,t) =~ 0 for |r| < vpt, as well as a broadening of the ballistically-propagating front of the operator. In (c),
we observe that at a fixed spatial position, the OTOC decays exponentially to zero. Shown are exponential curves ~ exp[—ct]
where ¢ ~ 1.53 — 1.16 depending on the position x. For this plot we simulated a smaller system with N = 962 sites in order to
resolve this exponential decay with greater accuracy. In all plots, T = L/(2vg) is the time for the lightcone to spread across

the entire lattice.

OTOC, to its value at position r, due to the fact that
the slow-moving conserved operators appearing in the
Heisenberg evolution of Z,. can “emit” non-conserved op-
erators, which then propagate ballistically [11]. In con-
trast, no such tails are expected for the XX OTOC, which
should saturate (exponentially) rapidly to its asymptotic
value at times ¢ > r/vp. As a result, we consider a scal-
ing form for the XX OTOC,

(43)

Fxx(rt) =/ ( ()

r—upg (Q)t)
which is motivated by similar scaling forms for the OTOC
in a random unitary circuit [9]. Here, vg(Q2) and a(€2) are
direction-dependent butterfly velocities and broadening
exponents, respectively, and €2 denotes a d-dimensional
angle.

We measure these out-of-time-ordered quantities using

classical Monte Carlo techniques. For example, we may
write the ZX OTOC as

1
Fzx(rt) =5 > (n|UZ,UXoU" Z,UXy|n)

= LS ) Zeln(e) (0 (]2 (1), (44)

where [n') = Xy|n). Therefore, measuring the ZX OTOC
is as simple as keeping track of the classical evolution of
the two states |n), |n’). The XX OTOC may be measured
in a similar manner, by evolving the two states |n) and
|m), applying a flip operator at site r to each state, and
evolving the resulting states backwards in time. The av-
erage overlap between the resulting states gives the XX
OTOC. In this case, every space-time measurement at
point (r,t) requires an independent simulation, making
the XX OTOC measurements somewhat slower to simu-
late in practice.

A. Numerical Study of the OTOC

We now present the results of our measurements of the
out-of-time-ordered correlator.

In Fig. 7, we see the growth of the XX OTOC along
the line r = (z,0), for our 2D automaton circuit. We
observe a ballistically spreading light cone, and that the
OTOC is very nearly zero inside the light cone and one
outside. From similar measurements of the XX OTOC
along other directions, we observe a nearly isotropic but-
terfly velocity. We also see in Fig. 7c, that for a fixed
position, the OTOC appears to decay exponentially in
time, within the times that we are able to perform nu-
merical simulations. This is consistent with the expecta-
tion that the OTOC should decay to zero at sufficiently
long times. Finally, shown in Fig. 8 is a scaling collapse
of the XX OTOC, to the functional form in Eq. 43; the
optimal scaling collapse is to the butterfly velocity vg
and front broadening exponent «, which are given by

UB

~ 0.58 o = 0.308(18). (45)

'Umax

Here, vpax is the lightcone velocity along the line r =
(z,0) for our automaton circuit. This should be com-
pared with a = 1/3, which is the observed broadening for
a two-dimensional, random unitary circuit, for which the
growth of the OTOC is related to the stochastic growth of
a two-dimensional cluster. The fluctuations in the grow-
ing edge of the cluster are believed to be the same as
the fluctuations in the height of a stochastically grow-
ing, one-dimensional interface, which is known to grow
in time as /3 [9].

In Fig. 9, we look at the ZX OTOC, and we observe
a “tail” behind the ballistically-propagating front of the
OTOC, due to the fact that the slow-moving operators
that have an overlap on the subsystem symmetry charges
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FIG. 8: Scaling Collapse of the OTOC for the 2D and
3D Automaton Circuits — Top: Shown is a scaling col-
lapse of Fxx(x,t) in 2D to the functional form in Eq. (43),
from which we observe that the operator front broadens as
~ t* with a = 0.308(18). Bottom: The scaling collapse
of the front of Fzx(z,t) in 3D with o = 0.220(5). These
should be compared with the theoretically predicted values of
a =1/3 and o = 0.24 for the 2D and 3D cases respectively.
Again, we take T = L/(2vg). Both OTOC’s are calculated
along the z axis.

continue to “emit” non-conserved operators that propa-
gate ballistically. We fit the tail of the OTOC data in
two and three dimensions to the functional form

vpt>|r| 1
~J

FZX (T‘,t) (46)

(vt —|r])”
and find that 8 = 0.50(1) for our 2D circuit with line-
like subsystem symmetries, while 5 = 1.02(7) for the
3D circuit with planar symmetries. Trendlines with this
power-law behavior are shown in Fig. 9.

For the 3D case, we are unable to calculate the XX
OTOC to long enough times that we are able to perform
a satisfactory scaling collapse to quantify the broadening
of the front of a non-conserved operator. Instead, we
restrict our attention to the ZX OTOC along the line
r = (z,0,0). We obtain a convincing scaling collapse of
the ballistically propagating front of this OTOC — with
a front broadening exponent o = 0.220(5) — in Fig. 8b;
this is very close to the predicted value of the broadening
exponent obtained from studies of operator spreading in
Haar-random unitary circuits [9], which predict a = 0.24.
We also observe that the tail follows a power law form as
in Eq. (46), except with exponent 8 = 1.02(7), as shown
in Fig. 9.
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FIG. 9: The ZX OTOC - The OTOC Fzx(r,t) is shown
along the z axis, for both the 2D (top) and 3D (bottom)
automaton circuits considered previously. Here we can see
a clear tail behind the leading OTOC wave front. In the 2D
circuit, this tail appears to have the same functional form as a
sub-leading tail for a 1D circuit with a global U(1) symmetry.
Fitting the tail at the latest times to Fzx ~ (vpt — |r|)™"
gives 8 = 0.50(1). For the 3D circuit, the tail of the OTOC
(when vgt > |r|) takes the form Fzx ~ (vpt — |r|)~? with
B =1.02(7). Again, we take T" = L/(2vp).

We note that the values of the scaling exponent 5 in
2D and 3D are the same as the predicted exponents for
regular charge diffusion in the lower-dimensional 1D and
2D sub-manifolds respectively. We believe this is a con-
sequence of fact that (r) ~ t'/2 along these manifolds,
which is the same behavior for this observable as in reg-
ular diffusion.

B. Recurrence times

Finally, we study the recurrence time for product states
in the Pauli Z basis, evolving under the automaton dy-
namics; these product states only evolve to other product
states in the same basis. The recurrence time tpr0a(n) is
then the circuit depth for which the state returns to its
initial value, i.e. Uterod(™|n) = |n). In Fig. 10, we show
the distribution of these recurrence times, taken over the
full set of states |n) in the computational basis, for differ-
ent system sizes. From the peaks of these distributions,
we obtain the typical recurrence time as a function of sys-
tem size, as shown in Fig. 10b). We see that t,r0q grows
linearly in the Hilbert space dimension D of the system,



=
[

.

=
98]

=
o

Density of Recurrences
(=)
—

=

log(time)

1010

10°

108

Peak Recurrence Time

20 30 40 50 60 70 80
Number of Sites

FIG. 10: Recurrence Times — The number of time steps
that the 2D circuit is run before an initial product state |n)
returns to its initial value U*|n) = |n). The average number of
time steps needed to see such a recurrence grows exponentially
with the volume of the system.

as predicted for a random automaton dynamics. This is
considerably slower than for fully chaotic systems, where
the recurrence time would be doubly exponential in the
number of sites, but considerably faster than translation
invariant, Floquet Clifford circuits, where one can prove
that t,.. = O(log D) [13].

Additionally, given that the unitary circuits we con-
sider conserve dipole moment, the dynamics will have
a ‘shattered’ Hilbert space [16, 17]. That is, the time
evolution operator will be massively block diagonal even
within a symmetry sector. For automaton circuits, the
size of a given dynamical sector is equal to the recur-
rence time of an initial computational basis state in that
sector, and the observed broad distribution of recurrence
times is at least partially caused by this Hilbert space
shattering.

IV. CONCLUSIONS

We have discussed a new class of circuits in two and
three dimensions, which produce a quantum dynamics
that is classically simulable. In particular, the evo-
lution of certain correlation functions under the action
of these circuits is classically simulable even though the
circuits generate operator entanglement, since these dy-
namics avoid generating state entanglement when acting
on product states in the computational basis. We have
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introduced a set of circuits that respect subsystem sym-
metries, conserving a U(1) charge along either lines in
two space dimensions, or along planes in three space di-
mensions. These constraints lead to dynamics that lies
in a new universality class, with charge spreading sub-
diffusively both with respect to the physical dimension
and with respect to the dimension of the submanifold in
which the symmetries act. In particular, for a two dimen-
sional system with line like symmetries, charge spreads as
log(t)/+/t, whereas for a three dimensional system with
planar symmetries, charge spreads as 1 /t3/ 4. This be-
havior is captured by a finite difference equation, the
continuum limit of which yields an ‘anomalous subdiffu-
sion’ equation in which the Laplace operator is replaced
by something akin to a square of the Laplace operator.

While the dynamics we have considered are structured
(and have to be, in order to be classically simulable),
we have nevertheless shown that they do exhibit sev-
eral features commonly associated with chaos. In par-
ticular, OTOC’s involving non-conserved operators ex-
hibit a ballistic lightcone with a front that broadens as
a dimension-dependent power-law. Furthermore these
OTOC’s appear to saturate to zero at long times, which
suggests that the bulk structure of a non-conserved op-
erator equilibrates in a manner that is consistent iwth
quantum chaos. OTOCs between a conserved and non-
conserved operator exhibit in addition a ‘universal tail’
behind the propagating front, as has also been observed
in a random circuit with a global U(1) symmetry[11]. As
such, we conjecture that our results may hold in more
generic quantum dynamics with the same symmetries.

This work opens up a new direction for the exploration
of quantum dynamics, rendering accessible questions re-
garding chaos and operator spreading in higher dimen-
sions in a class of circuits that are much less structured
and more generic than any previously known classically-
simulable higher dimensional circuit of which we are
aware. It also opens the door to a new class of dynamical
phenomena produced by subsystem conservation laws.

A number of extensions of this work immediately
present themselves for consideration. One possibility is
to move away from the square/cubic lattices considered
herein, and to consider instead subsystem symmetries on
more general crystal lattices. Symmetries involving frac-
tal subsystems, as in Type II fracton models [23, 26] are
important to consider. Either of these extensions holds
the promise of qualitatively new universality classes for
dynamical behavior. Extensions of this work to Hamilto-
nian systems (rather than quantum circuits) are of inter-
est. We expect analogous behavior in the Hamiltonian
setting. Other potential extensions include considering
subsystem symmetry groups other than U(1). A final
possibility is to move away from gates with strictly local
support to e.g. quasilocal gates with exponential tails in
real space. We leave such questions for future work.
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Dynamics

It is convenient to study the growth of the complexity
of an operator evolving under the automaton dynamics
as follows. We consider N spins with Hilbert space di-
mension D = 2. Let n € {0,1,..., D—1} be an integer,
and let n = (n1,n2,...,nx) be an N-component vector
that corresponds to the binary representation of integer
n. We further define S,, to be a product of Z operators
that corresponds to the binary representation n. Specif-
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ically,

N
Il (A1)

For example, Sy is simply the identity operator, while
S; = Z1Z5 73 since seven is represented as 111000 --- in
binary. We note that %Tr(SnSm) = 0pm Where D is the
total Hilbert space dimension.

Under the automaton dynamics, these operators evolve
as

Sn(t) = (A2)

D—1
Ut)S,U(t) = Z:Oanm(t) S

In contrast, for a more general unitary dynamics, each
of the operators {S,,} will evolve into sums of arbitrary
products of Pauli operators in the system.

It is now convenient to define the following wavefunc-
tion in a spin-(1/2) system with the same total Hilbert
space dimension

(A3)

D—-1
= apm(t)m)
m=0

where |m) is the representation of integer m as the state
of a spin-(1/2) system in the Pauli-Z basis, with an up
(down) spin appearing whenever a 0 (1) occurs in the
binary representation of m; as a concrete example, the
state

=441

To summarize, Eq. (A2) describes the Heisenberg evolu-
tion of operators under the automaton dynamics, while
Eq. (A3) describes a fictitious dynamics of a many-body
wavefunction in the same Hilbert space. While the entan-
glement of a wavefunction in the Z basis does not grow
under the automaton dynamics, the states of the ficti-
tious spin system do become highly entangled as they
evolve, reflecting the fact that typical operators become
quite entangled under the automaton evolution.

We now identify a few key points about the fictitious
dynamics of the state |n(t)).

(A4)

(I) The evolution of this wavefunction is unitary, so

that
In(t)) = W(t)In). (A5)
where W ()W (t)t = W()TW (1) =
(IT) W (t) is exactly
W(t) = H®NU(t)H®N (A6)

where H is the single-qubit Hadamard gate that
acts on Pauli matrices as HXH = Z, HZH =
X. That is W(t) is the same automaton unitary
operator acting in a rotated basis.
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Proof of (I): Since (m|W (¢t)|n) = anm(t), we observe

that
i (¢)' = 2 ami{t)ans
_ %Tr[sm(t)é‘n(t)] = Gun (A7)
(mW(OW @) ) = agm(t)arn(t)
k
1
= BTL”[Sm(_t)Sn(_t)] = (sm" (AS)

so that W (t) is indeed unitary.

Proof of (II): The automaton unitary U(t) acts as a
permutation m € Sp on the D-dimensional set of product
states in the Pauli Z basis. We define the projection

operator
P, = [n)(n| (A9)
The automaton unitary acts as
U PU(t) = Prn) (A10)

This relation places a restriction on the coefficients
amn (t). We first rewrite the projection operator as

14 ()™ 7,

D—-1
Z 1 .
J= 5 X s,
r=1

m=0

(A11)

where n = (nq,...,ny) is the N-component binary vec-
tor that corresponds to the binary representation of n,
and where n - m is the dot product of the two vectors.
The Heisenberg evolution of this projector may be writ-
ten as

D-1
1
Ut P,U(t =5 S (1)U IS U()
m=0
| bl
5 amk( )Sk: = 7r(n)
m,k::O
so that
D—-1
" i () = (—1)7(W)E (A12)
m:O
Using the fact that (1/D)Y. (—=1)™™+k) = §, ;. we
have found that
| b1
amn(t) = 5 (_l)w(k)‘nJrk:-m (AIS)
k=0

This is equivalent to the statement that we wish to prove.
We observe that if |m) is a product state in the Pauli Z
basis, where the spin configuration corresponds to the



binary representation of the integer m as in Eq. A4,
then applying a Hadamard gate to every spin yields

1 D—1
HNm) = —= > (=1)™"|n) (A14)
n=0

VD

Now, we observe that

QN QRN 1 = m-k+n~£
(n|H®YU () H® [m) = *Z Or (k).

D
k=0
= amn(t)
We conclude that
W(t) = H®NU(t) H®N (A15)

Appendix B: Operator Entanglement Entropy

We calculate the purity of the wavefunction in Eq.
(A3), which quantifies the complexity of the Pauli Z op-
erator spreading from the automaton dynamics. Con-
sider a bi-partitioning of the state |n(t)) in to an A and
B subsystem, with Hilbert space dimensions D4 and
Dp = D/D,, respectively. Furthermore, let {|ma g)}
denote a complete set of states in A and B, respec-
tively; as before, we let m4 g denote the binary vector
representation of these states, so that the dot product
N-M=MNy -My+MNp- -mMmp.

Using this notation, we may write down the reduced
density matrix as

= Trp|n(t))(n(t)| (B1)
Da—1
= Z pa(ma,ka)lma)(kal,

ma,ka=0

pa(n)

where the matrix elements of the reduced density matrix
are given by

Dp—1

Z 5mB,kB Anm (t)ank (t) (B2)

mB,kB:O

pa(ma,ka) =

Substituting the expression for a,, (t) and performed the
sum over mp, kp in the above expression yields

D—-1

S [Sup (D)7 mataks (33)

q,7=0

D
pa(ma,ka) = fo

x (1) [r M@ O]

Here, 7~ ! is the inverse of the permutation = € Sp,

while w=1(q) is the vector representation of the element
71(q), as before. Using this expression, we find that the
purity (exponential of the second Rényi entropy is given
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by
1 D—-1
TTPQ = —= 5 5/ /6 /5 ’
A D2 E TAqAZT 4344 "TB,Tp "4B,49p
rr'sq,q'=0

y (_1)n~[1‘&'_1(Q)+7T_1(q/)+7|'_1(7‘)+7"_1(7‘l)]i|. (B4)

We now calculate the purity, averaged over all permu-
tations m € Sp. In this case, we observe that for non-zero
n, the quantity m - w~1(g) can be an even or odd integer
with equal probability, for a randomly chosen permuta-
tion 7. Therefore, for non-zero n, we observe that

1
o 2 -

TESDP

“Ho)+m @] = Sqq- (B5)

Similarly, the average of the expression in Eq. (B4) only
contributes if pairs of elements are equal. Therefore for
non-zero n,

1 w1 =) ()= ('
i Z (=)™ @ )T ()T ()]
TESP

= (5qq/5,w + 5qr6q’7” + §qr’5q/r -2 §qqr(5w6qr. (BG)
We may use this expression to compute the purity av-

eraged over all choices of permutations, which we denote

as Tr[p%]. Substituting Eq. (B6) into Eq. (B4) yields

the result that

Tr py(n) = - (B7)
D' +Dg' =D (n#£0)

Appendix C: Recurrence Time Distribution

Consider the permutation group Sp. If # € Sp has a
length-£ cycle that includes a particular element (say the
element 1), then we may write 7 as the product of two
commuting permutations, i.e.

= (lko ... ko) o, (C1)
with o € Sp_, acting on the D — ¢ elements that do not
appear in the length-¢ cycle. For a fixed set of elements
ko, ..., k¢, the number of such permutations # € Sp
is precisely (¢ — 1)I(D — ¢)!.  Furthermore, the num-
ber of ways to choose these elements out of D elements
. -1 .
is ? E Therefore, the number of permutations
m € Sp with a length-£ cycle that contains the element
1 is precisely

(4—1)!(17—@)!(’91):(17—1)!. (C2)

(-1



Alternatively, the probability that a random permutation
in Sp has a length-¢ cycle containing a particular, fixed
element m is

(C3)

For a permutation = € Sp, we define £, (7) to be the
length of the cycle that element n is in. Using this, we
may write that the average number of cycles (V) in a
permutation is

05 X S| -2

weSp Ln=1 n=1

D

ZPZn

(=

Similarly, the average return time for a random element
(t) is given by

0= > [;Dn(w)]

TESD
D [D
1 D+1
ZEZ ZPM = (C4)
n=1 L{=
Therefore, we conclude that
oo D oo
"= () "E lg(D). (CB)

2

Appendix D: Dynamics with 1D Subsystem
Symmetries in Two Dimensions

We assume that the correlation function G,; =
Tr [Z,(t)Zo(t)] /D, where D = 2V is the Hilbert space
dimension of the N-site system evolves according to the
difference equation,

3 1
16

Gristgt + Groz—gt +Gr_grgt + Gr+i—gj,t:| .

Grip1 = (Grigt+Grogi+ Groge + Gr_gi)
1
16
Taking the continuum limit in time, so that G,;11 =~
G(r,t) + dG(r,t)/dt, and going to momentum space,

1 .
Gk,t) = — FrQ(r,t D1
k)= =36 o
we find that
9 6k.1) = )G R D), (D2)
where
f(k) = sin? (%) sin? (k2y> , (D3)
which then gives the solution
1 —iker—f(k)t
G(r,t) = NZ@ (D4)

k

17

given the initial condition G(r,0) = &, .
We now evaluate G(0,¢): in the thermodynamic limit,
we make the replacement N='", — [d?k/(2m)?, so

that
d’k
G(O,t) —/We

—f(k)t (D5)

Performing the integral over k, yields

by Tt (B\] [ (R
o exp{ 2bln <2>} Iy {25111 (2

(D6)

G(0,1) =

where Iy(z) is the modified Bessel function of the first

kind. Finally, the integral over k, yields

where ,Fy(p; ¢; 2) is the generalized hypergeometric func-
tion. The asymptotic expansion of G(0,t) at long times

is then
In(t) 1

G(0,1) "= +o<). D8
0. o ( (D8)

More precisely, the asymptotic expansion is

G0,8) = —— |in(t) — 2y — —=T'(1/2)| +
bl - 71_3/2\/% ’7 ﬁ

(DY)

Resolving the In(¢)/+/t behavior would require going to
very long times (note the logarithm becomes approxi-
mately twice as large as the constant correction only
when ¢ ~ 10%).

We now determine the late-time scaling of the correla-
tion function G(r,t)

G(r,t) :/%e

along the line r = (x,0). Hereafter, we refer to this
correlation function as G(z,t). Performing the integral
over k,, we obtain

ik-r—f(k)t (DlO)

G(z,t) =2 i % cos(kx) g(k,t) (D11)
, where
g(k,t) = e~ 250°(5) [; sin? (;ﬂﬂ . (D12)

At long times ¢ > 1, the quantity (¢/2) sin?(k/2) is large
over the interval k 2 1/4/t. The scaling of the correlation
function in this regime may be approximated by replacing
g(k,t) by its asymptotic form at long times, for small k,

/ —cos (kx)g(k,t) =t / dk cos(kz)
\f k>VE o )




This integral is logarithmically divergent at small k.
When t > 22 > 1, we may evaluate the integral per-
turbatively in x/v/ to find that

1 Vi
Gz, t) ~ —|log| — | +O(1)] .
o= () o]
So that the correlation function “peaks” when ¢t ~ a2,
and the maximum peak height scales as ~ 1/z.

(D13)

Appendix E: Line-Like Symmetries in 3D

For a three-dimensional system with intersecting, line-
like symmetries, we consider the natural generalization
of Eq. (32) in the space-time continuum limit:

0:G(r,t) = A828?82G(r,t) (E1)

zYyYz

where ) is a free parameter of the evolution, so that

G(r,t) ~ /d3k exp [ik - — k2k2k2t]  (E2)

93/2 2,22
- g§j$<vxyz>, (E3)

Vit w | 64Xt
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where G"." is the Meijer G-function, and the vectors v

and w are defined as

<

Il
N
>~ =
]
"
g

Il
7N
“O

“O

QO

DN
N
| =
=]
~_
3!

o~

S~—

The asymptotic form t > x2y?22 of this integral yields
the leading, long-time behavior

log?(t) + O(log(t))
Vi

G(r,t)~ (At > 2%y?2?).  (Eb)
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