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Many-body localization (MBL), characterized by the absence of thermalization and the violation
of conventional thermodynamics, has elicited much interest both as a fundamental physical phe-
nomenon and for practical applications in quantum information. A phenomenological model, which
describes the system using a complete set of local integrals of motion (LIOMs), provides a powerful
tool to understand MBL, but can be usually only computed approximately. Here we explicitly com-
pute a complete set of LIOMs with a non-perturbative approach, by maximizing the overlap between
LIOMs and physical spin operators in real space. The set of LIOMs satisfies the desired exponential
decay of weight of LIOMs in real-space. This LIOM construction enables a direct mapping from
the real space Hamiltonian to the phenomenological model and thus enables studying the localized
Hamiltonian and the system dynamics. We can thus study and compare the localization lengths
extracted from the LIOM weights, their interactions, and dephasing dynamics, revealing interesting
aspects of many-body localization. Our scheme is immune to accidental resonances and can be
applied even at phase transition point, providing a novel tool to study the microscopic features of
the phenomenological model of MBL.

I. INTRODUCTION

How a many-body quantum system thermalizes –or
fails to do so– under its own interaction is a fundamental
yet elusive problem. Localization serves as a prototypi-
cal example for the absence of thermalization, first stud-
ied in the non-interacting single particle regime known
as Anderson localization [1, 2], and then revived in the
context of interacting systems (many-body localization,
MBL) [3]. The existence of MBL as a phase of mat-
ter was demonstrated theoretically [4–6] and numerically
[7–11]. Recently, the MBL phase was observed in cold
atoms [12–17], trapped ions [18, 19] and natural crystals
using nuclear magnetic resonances [20]. Most character-
istics of MBL, such as area law entanglement [21, 22],
Poisson level statistics [8, 9], logarithmic growth of en-
tanglement [7, 16, 23–27] and power law dephasing [28–
32], can be understood via a phenomenological model
that expresses the Hamiltonian in terms of a complete set
of conserved quantities with a local support. However,
the explicit computation of such local integrals of motion
(LIOMs) [21, 25] and their interactions is a challenging
task, complicated by the fact that the set of LIOMs is not
unique. LIOMs have been calculated by the infinite-time
averaging of initially local operators [33, 34], however,
the obtained LIOMs do not form a complete basis. A
full basis of LIOMs can be obtained using perturbative
treatment of interactions [5, 35–38], Wegner-Wilson flow
renormalization [39], minimizing the commutator with
the Hamiltonian [40, 41], ordering the eigenstates with
greedy method [42], prompting the infinite-time averaged
LIOMs [43]. The previous methods either requires strong

disorder field strength, or assumes a cutoff of LIOMs in
real space, so a complete numerical study of localization
lengths is missing.

Here we design and implement a method to compute a
complete set of binary LIOMs (i.e., with eigenvalues ±1)
in a non-perturbative way, by maximizing the overlap
with physical spin operators. This criterion enables a re-
cursive determination, similar to quicksort, of the LIOMs
matrix elements in the energy eigenbasis, without the
need to exhaust all the eigenstate permutations, which
would be prohibitive for system size L > 5. We ver-
ify that in the MBL phase the LIOMs are exponentially
localized in real space, and their interaction strength de-
cays exponentially as a function of interaction range.
This typical behavior is usually investigated by defin-
ing two characteristics lengths, the LIOM localization
lengths and interaction localization lengths, which can
be extracted from the two exponential behavior respec-
tively. Deep in the MBL phase, the two localization
lengths are well characterized by the inequality derived
in Ref. [3]. Near the transition point between localized
and delocalized phase, that our construction enables ex-
ploring, the interaction localization length diverges, while
the LIOM localization length remains finite: this should
be expected given the constraints imposed by our con-
struction, even if it contradicts the inequality in Ref. [3].
The explicit form of the LIOMs further enables exploring
the system evolution, which has been shown to display a
dephasing behavior with a power law decay that is char-
acterized by a third characteristic length, the dynamical
localization length [28]. Here we show that the LIOMs
we derive display a similar dynamics to the physical spin
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operators, and we are able to extract the dynamical local-
ization length from the power law dephasing process. In-
terestingly, we find that the dynamical localization length
is much shorter than would be given by a conjectured re-
lationship to the above two localization lengths [3, 28],
suggesting that the dynamics does not only depend on
the typical value of LIOMs and their interactions, but
also on higher order correlations.

II. ALGORITHM
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FIG. 1. The flow diagram shows an example of the con-
struction of a complete set of LIOMs in a system with L = 3.
Grey blocks represent undetermined matrix elements and or-
ange (green) blocks represent +1 (-1) matrix elements. The
procedure works as follows: after diagonalizing the Hamilto-
nian, find the candidate LIOM τjM that maximizes the over-
lap with the physical spin operator, 〈τ̃ jzσjz〉 (jM = 2 here).
Divide the 8 eigenstates into two sectors each containing 4
states according to 〈n|σ2

z |n〉 and assign τ2z = τ̃2z . For each
sector, find jM within the sector, divide into two sectors each
containing 2 states and assign τ jMz = τ̃ jMz . Repeat the step
one more time and then all LIOMs are determined.

To understand the construction algorithm, we first re-
view the properties of integrals of motions in the many-
body localized phase. LIOMs {τ jz } are diagonal in the
Hamiltonian H eigenbasis, [H, τ jz ] = 0. A complete set
of LIOMs can be related to physical spin operators (de-
scribed by Pauli matrices σj) by a local unitary trans-
formation τ jz = UσjzU

†, which implies that (i) half of
the eigenvalues of τ jz are +1 and the other half are -
1; (ii) LIOMs are mutually independent (orthonormal)
Tr(τ jz τ

k
z )/2L = δjk; (iii) the weight of τ jz decays exponen-

tially in real space for localized Hamiltonians. In partic-
ular, property (ii) requires that, for any j, in either +1 or
-1 sector of τ jz , half of the diagonal elements of τkz are +1
and the other half are -1 for all k 6= j. In another word,
the +1 and -1 sectors of τ jz are effectively two manifolds
that represent two instances of a new system with L− 1
spins, containing all sites except j.

With only constraints (i-ii), there are 2L!/L! different
sets of integrals of motion (IOMs) among which we want
to find the most local one. However, enumerating the
2L!/L! different sets, and quantifying the localization of
the related τ jz , is numerically prohibitive. Instead of ex-
plicitly demanding the exponential localization, the key

idea of our construction is to maximize the overlap of
LIOMs and physical spin operators Tr(τ jzσ

j
z), which are

themselves local. This strategy enables a systematic and
efficient way to find a unique set of LIOMs, and we can
then verify that these LIOMs are indeed exponentially
localized in the MBL phase.

Expanding the IOMs τ jz in the energy eigenbasis {|n〉},
n = 1, 2, · · · , 2L, as τ jz =

∑
n a

j
n|n〉〈n|, our goal is to find

ajn ∈ ±1 under the constrains (i-iii). We note that the
procedure assumes that we have diagonalized the Hamil-
tonian. The algorithm is reminiscent of quicksort (see
Fig. 1):

1. For all eigenstates |n〉 and spin j evaluate
sjn = 〈n|σjz|n〉.

2. For each j, sort the eigenstates according to sjn,
and define candidates τ̃ jz =

∑
n∈Sj

max
|n〉 〈n| −∑

n∈Sj
min
|n〉 〈n|, where Sjmax(min) is the set of

eigenstates giving the 2L/2 largest (smallest) over-
laps sjn.

3. For each j, compute the overlaps 〈τ̃ jzσjz〉 =∑
n∈Sj

max
sjn −

∑
n∈Sj

min
sjn and find the site jM

that maximizes the overlap. For this site, set
τ jMz ≡ τ̃ jMz , thus assigning the ajMn .

4. Consider the two manifolds SjM± corresponding to

the ±1 eigenstates of τ jMz . Each of these manifolds
represents two instances of a new system with L−1
spins, containing all sites except jM . In this new
system, perform the same protocol in steps 1-3 to
set another LIOM. This results in 4 sectors, each
containing 2L−2 states.

5. By repeating the previous steps L − 2 times we
finally reduce the dimension of each sector to just
1 and all ajn are assigned.

We note that our scheme does not necessarily find the
most local set of τ jz , since once the matrix elements of
a LIOM are determined at a given step, the subsequent
search for the rest of the LIOMs is restricted to its per-
pendicular complement to satisfy orthogonality (that is,
we are not ensured to find a global optimum). Therefore,
we choose to divide sectors using the most local LIOM
(largest 〈τ̃ jzσjz〉), so that this division sets the least con-
strains to later divisions. Other choices are possible [43],
but as we show on Fig. S4 of the supplemental material [],
this choice indeed gives the most local results among all
alternate algorithms we tried. Because we only utilize the
overlaps sjn = 〈n|σjz|n〉 in the computation, the scheme
is immune to accidental resonances in the spectrum.
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FIG. 2. (a-b) Median of the LIOM weights |f jn,k| as a func-

tion of distance n for two disorder strengths: (a) W = 20,
deep in the MBL phase, where the median decays exponen-
tially to zero; and (b) W = 1, in the ergodic phase, where the
median saturates to a non-zero value. For each j, the median
is taken over the index k in |f jn,k| as well as 20 different disor-
der realizations. Darker color represents LIOMs in the middle
of the chain, j = L/2, [as shown in the bottom of (b)], and
left (right) half of the LIOMs are represented by dashed (blue)
curves. (c-d) Median of the interaction strength as a function
of range r for two disorder strengths. Dotted curves represent
l-body interaction terms |Vij |, |Vijk|, · · · (l = 2, . . . , 9), where
the median is taken over all indices i, j, · · · , as well as 100
disorder realizations. The solid curve represents median of all
interaction terms for a given range V (r), regardless of how
many LIOMs are involved. L = 10 in all subplots.

III. RESULTS

A. Localization of operators and interactions

To test the proposed algorithm and characterize the
LIOMs that it finds we consider a prototypical exam-
ple of an MBL-supporting system, a Heisenberg spin-1/2
chain [44] with random fields,

H =

L−1∑
i=1

~σi · ~σi+1 +

L∑
i=1

hiσ
i
z, (1)

where the first term is the isotropic exchange interac-
tion (with unit strength) and the second term is a dis-
order longitudinal field with hi uniformly distributed in
[−W,W ] (we set ~ = 1). It is known [8] that in the
thermodynamic limit there is a MBL phase transition at
Wc ≈ 7 ± 2. Although this model conserves the total
magnetization along z, the validity of the algorithm does
not depend on this symmetry. To quantitatively check
the locality of LIOMs, we decompose them into tensor

products of Pauli operators

τ jz =

L∑
n=0

∑
k

f jn,kÔ
j
n,k, (2)

where Ôjn,k is a tensor product of Pauli operators whose
furthest non-identity Pauli matrix from j is of distance
n, e.g. σ1

x ⊗ σ2
x ⊗ σ3

y ⊗ I4 is of distance n = 2 to j = 1,

because σ3
y is the furthest non-identity Pauli matrix. k

labels operators with the same n. f jn,k = Tr(τ jz Ô
j
n,k) is

the weight of j-th LIOM on Ôjn,k. Figures 2(a) and (b)

show the median of |f jn.k| as a function of distance n. In
the MBL phase, the median weight decays exponentially
with distance n, while in the ergodic phase it saturates
at large n.

Because the LIOMs form an orthonormal basis, the
Hamiltonian can be decomposed into this basis unam-
biguously and efficiently:

H =
∑
i

ξiτ
i
z +

∑
ij

Vijτ
i
zτ
j
z +

∑
ijk

Vijkτ
i
zτ
j
z τ

k
z + · · · . (3)

For non-interacting models, only the ξi coefficients are
nonzero. We can define the range r of each coupling
term Vij··· as the largest difference among the indices.
For example, the range for 2-body interaction Vij is
simply r = |i − j|, while for 3-body interactions is
r = max(|i−j|, |i−k|, |j−k|). Figures 2(c) and (d) show
the median interaction strength as a function of interac-
tion range. In the MBL phase, the interaction strength
decays exponentially. The behavior of two-body inter-
actions |Vij | and three body interactions |Vijk|, · · · show
no significant difference [36, 39] and can be essentially
captured by the median of all interaction terms for a
given range V (r). We considered the median instead of
the mean in order to exclude rare events, i.e., instances
where the disorder strength is small in a local region.

To gain more insight into the localization of IOMs and
interactions and observe the occurrence of rare events, in
Figure 3 we further study the probability distribution of
weight f jn,k versus n, and the probability distribution of

interaction strength V (r) versus r in the localized regime

(strong disorder). The distribution of log10(|f jn,k|) can be
described by a single Gaussian peak, centered at smaller
values of |f jn,k| when the distance n increases, confirm-
ing the localization of IOMs. Instead, two peaks can be
observed in the distribution of log10(|V |). The left peak
shifts to smaller |V | with increasing r, while the right
peak (larger |V |) shows no significant shift. Moreover,
the area of the right peak decreases for larger W and
smaller L. Therefore, we identify the left peak as de-
scribing localized cases, the right one as rare events. The
exponential localization of the LIOMs and their interac-
tions are usually the two criteria that define the LIOM.
In the rare region of low disorder, however, the two re-
quirements cannot be satisfied simultaneously and there
is no universal criteria on how to choose LIOMs in this
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FIG. 3. (a) Probability distribution of LIOM weights
log10 |f

j
n,k|. For a given distance n, samples are taken from

all possible j and k as well as 200 disorder realizations. The
distribution shows one single Gaussian peak that shifts to-
ward smaller weights with increasing distance n, signaling the
localization of IOMs. (b) Probability distribution of the in-
teraction strength log10(|V |). For given range r, samples are
taken from all terms in Eq. 3 as well as 10000 disorder real-
izations. Two peaks can be observed: the left peak is due to
the localized cases as it shifts to smaller interaction strengths
for longer range; the right peak shows the delocalized cases
(rare events) as it is independent of interaction range. L = 10
and W = 20 for both (a) and (b).

case. Here we require the IOM τz to be local by construc-
tion, so the presence of a rare region shows up only in
the interaction strengths (see Appendix Sec. B); choosing
different criteria for the LIOM construction may lead to
different results.

B. Localization lengths

From the explicit form of the LIOMs and their in-
teractions, we can extract the LIOM localization length
ξ, via |f jn,k| ∼ exp(−n/ξ), and interaction localization

length κ, via |V (r)| ∼ exp(−r/κ) [3]. In Figure 4 we
show κ and ξ as a function of disorder strength W . The
LIOM localization length ξ is extracted using the rela-
tion Tr(τ jzσ

k
z ) ∼ exp(−|k − j|/ξ) [33, 36] because calcu-

lating f jn,k is numerically demanding [45], and in Ap-
pendix Sec. A we verify the two indeed have the same
localization length. The interaction localization length κ
is extracted by fitting the distribution of log10 |V | (as in
Fig. 3) to two Gaussian peaks and then fitting the local-
ized peak center to a linear function of r. Because our
method forces τz to be local, ξ is always finite, while κ
diverges around W = 8.1 [Fig. 4(b)], which agrees with
the critical point Wc = 7± 2 reported in Ref. [8]. κ = 0
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FIG. 4. (a) Dephasing of the physical spin operator σLx (dark
green, dashed curve) and LIOM τLx (green, solid curve). Ini-
tial state is a product state with each spin pointing randomly
in xy plane, i.e. |ψ(0)〉 = ⊗Lj=1(|+〉j + eiφ|−〉j)/

√
2, with φ

randomly sampled in [0, 2π), σjz|+〉j = |+〉j σjz|−〉j = −|−〉j
for red curve and τ jz |+〉j = |+〉j τ jz |−〉j = −|−〉j for blue
curve. L = 10, W = 20. Averaging is performed over 20
different initial state and 20 disorder realizations. Error bar
represents the standard deviation of all configurations. (b-c)
Localization lengths as a function of disorder strength W for
L = 12. The LIOM localization length ξ is extracted by fit-
ting Tr(τ jzσ

k
z ) ∼ exp(−|k − j|/ξ) as a function of k (for j = 1).

The interaction localization length is obtained from the fit of
the interaction as a function of range, V (r) ∼ exp(−r/κ). The
dynamical localization lengths describes the LIOM dephasing

shown in (a), and is obtained by the fit to 〈〈τLx 〉2〉 ∼ t−ξ
′ ln 2.

Here the error bars derive from the fitting error. The dephas-
ing curve used to fit ξ′ is extracted from the median of 50
disorder realizations and 50 initial states. ξ and κ are ex-
tracted from the median of 5000 disorder realizations. (b) is
a zoom-in of (c) near the transition point.

serves as an unambiguous metric to pinpoint the ergodic
to MBL phase transition point. It has been shown in
[3] that the two localization lengths satisfy the inequal-
ity κ−1 ≥ (ξ−1 − ln2)/2. From the numerical results in
Fig. 4(c), we find that this inequality is satisfied in the
localized phase, except in the vicinity of the phase tran-
sition point.

C. Non-interacting model: tradeoff of localization

We can better understand why the interaction lo-
calization length κ diverges at the critical point
while the LIOM localization length ξ remains fi-
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FIG. 5. LIOM in non-interacting model. (a-b) Median
interaction strength in the LIOM basis, {τ jz}, vs range, r.
Jz = 0 (blue, dashed) corresponds to a non-interacting model
and Jz = 0.1 (red) corresponds to a model with a small in-
teraction. We note that for large disorder the non-interacting
model only has non-zero V for the range r = 1, which denotes
the single-particle Hamiltonian ξjτ

j
z , and even for small disor-

der V (r = 1) is the dominant term. This is in contrast to the
behavior for the interacting model. (c-d) Median overlap be-

tween LIOMs and physical spins Tr(Ôσkz ) for non-interacting

model Jz = 1, with Ô = Σjz (solid) for single-particle LIOM

and Ô = τ jz (dashed) for LIOMs obtained using the scheme
proposed in this paper. Blue color stands for smaller j and
red color stands for larger j except for the single-particle LI-
OMs in (d) where the color is randomly chose because single-
particle LIOMs are too delocalized to be ordered. In (a) and
(c) W = 20. r > 1 interaction strength is below machine
precision ∼ 10−15. Σz and τz show little difference. In (b)
and (d) W = 0.5. τ jz is more localized at site j, but the in-
teraction among LIOMs is not zero. L=10 and 500 disorder
realizations are used in all plots.

nite by varying the ZZ coupling strength and

study the non-interacting model H =
∑L
i=1 hiσ

i
z +∑L−1

i=1

(
σixσ

i+1
x + σiyσ

i+1
y + Jzσ

i
zσ

i+1
z

)
. Jz = 1 is the

Heisenberg model we investigated before and Jz = 0
corresponds to a non-interacting model. For the non-
interacting model, the system is effectively localized for
arbitrarily small W . This Hamiltonian can be mapped to
a free fermionic Hamiltonian via a Jordan-Wigner trans-
formation [46]. The Hamiltonian can be diagonalized by

single-particle IOMs {Σiz}: H =
∑
i ξ̃iΣ

i
z, that is, the

interaction localization length in the {Σiz} basis is zero.
However, note that the single-particle IOMs {Σiz} can
be highly non-local for small W . We can instead apply
our algorithm to find LIOMs {τ jz } for this model as done
for the interacting Hamiltonian and compare {Σjz} and
{τ jz } (see Fig. 5). For large disorder strength, W = 20,
the Hamiltonian is practically interaction-free even in
the τ jz basis, and indeed the LIOMs τ jz approach the
IOMs, τ jz ≈ Σjz. The trade off between the two inter-

action strength κ and ξ becomes evident for small dis-
order, W = 0.5, where τ jz 6= Σjz. In this regime, the
single-particle IOMs Σjz are delocalized, ξ � 1, but the
Hamiltonian still has no interactions, κ = 0. Instead,
the LIOMs obtained by our construction, {τ jz }, are local-
ized but they give rise to long-range interactions in the
Hamiltonian, κ� 1. Even though our method results in
nonzero interaction among LIOMs, it is still able to dis-
tinguish interacting and non-interacting as shown in Fig.
5(a) and (b), where a moderate Jz leads to a significant
increase of the interaction among LIOMs for both weak
and strong disorder. For interacting models, it is difficult
to obtain IOMs that minimize the interactions in a non-
perturbative way. Still, we expect that if one were indeed
able to find such a set of IOMs, there would be a simi-
lar tradeoff between how local they are (small ξ) versus
how local the interactions are (small κ) outside the well-
localized phase. Our choice of criterion for constructing
LIOMs not only allows a simple and efficient algorithm;
by keeping the operators local even when crossing the lo-
calization transition, the τ jz are always well-defined and
can be used to explore properties of the system, such as
its dynamics, around the localization-delocalization tran-
sition point.

D. Dephasing Dynamics

Since physical spin and LIOM operators are related by
a local unitary transformation, they are expected to ex-
hibit a similar dynamics [Fig. 4(a)]. In particular, the
higher order interaction terms in Eq. (3) induce dephas-
ing of the transverse operators by creating an effective
magnetic field Heff at the location of spin j due to all
the other spins. The dephasing of the expectation val-
ues 〈τx(t)〉 and 〈σx(t)〉 is closely related to the logarith-
mic light cone in the MBL phase [28]. It was previously
shown that 〈〈σx(t)〉2〉 ≈ 〈〈τx(t)〉2〉 ∝ t−α, where we took
the average of the expectation values over random ini-
tial states and disorder realizations. For an initial state
given by a product state with each individual spin point-
ing randomly in the xy plane, α = 2ξ′ ln 2 for bulk spins
and α = ξ′ ln 2 for boundary spins, where ξ′ is a localiza-
tion length different from ξ and κ [28]. This length ξ′,
that we name dynamical localization length, describes the
strength of the contribution to the effective magnetic field
felt by spin j due to spins at distance l: H l

eff ∼ exp(−l/ξ′)
(see Appendix Sec. C). By assuming exponentially decay-
ing interactions, |V (r)| = exp(−r/κ), it was conjectured
that ξ′−1 ≤ κ−1 + (ln 2)/2 [3]. We find instead a much
larger dephasing rate [Fig. 4(c)]. To investigate whether
this is due solely to our LIOMs construction which does
not explicitly enforces an exponentially decaying interac-
tion strength, we artificially generate an Hamiltonian sat-
isfying |V (r)| ∝ exp(−r/κ) (see Appendix Sec. C). Still,
although we indeed find a power law decay, this is even
faster than what we observe in Fig. 4(a). We conjecture
that the dephasing process cannot be simply described
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by a mean interaction strength (the model used to jus-
tify the relationship to κ), and higher order correlations
may play an important role.

IV. CONCLUSION AND OUTLOOK

We provide a novel method to efficiently compute the
LIOMs for MBL systems by maximizing the overlap be-
tween LIOMs and physical spin operators. The method
is non-perturbative and thus immune to resonances in
the spectrum, and can be applied at the phase transition
point. The only quantity we use in computing the LIOMs
and their interactions is the expectation value of physical
spin operators on energy eigenstates 〈n|σjz|n〉. Although
we use exact diagonalization here, our scheme is com-
patible with renormalization group methods and matrix
product state representations [38, 47], which can poten-
tially be applied to much larger system and beyond one
dimension. We show the power of the constructed LIOMs
by extracting the localization length of the LIOMs and
the Hamiltonian interactions from their respective expo-
nential decays. We also show that in the MBL phase, the
LIOMs and physical spin operators exhibit similar de-
phasing dynamics, even if it cannot be simply explained
by the typical weights of LIOMs and typical interaction
strengths.

Appendix A: Comparison of LIOMs and physical
spin operators

In the main text we defined the overlap f jn,k as a quan-

tifier of the locality of the LIOMs τ jz . Another metric
that characterizes the LIOMs as a function of disorder
strength is the distance of each τ jz from the corresponding
physical spin-1/2 Pauli operator σjz. Indeed, the larger
the disorder, the more local are the LIOMs, and therefore
the closer to the corresponding Pauli operators. We use
the Frobenius norm of the matrix difference between the
two operators at the same site [see Fig. 6(a)] to quantify
the operator distance. At small disorder strength, the
LIOM and physical spin operators are almost perpendic-
ular,

||σjz − τ jz ||W→0 ∼
√
||σjz||2 + ||τ jz ||2 = 2(L+1)/2. (A1)

As the disorder strength increases, the distance de-
creases, as expected. At strong disorder strength W >
Wc ∼ 7, we find that the distance decreases as 1/W ,
indicating that the system is in the MBL phase. This
result shows that the Frobenius norm distance (or equiv-
alently the trace norm) can be taken as good proxy for

the overlap f jn,k.
In the main text we state that the LIOM localization

length can be extracted from Tr(τ jzσ
k
z ). To confirm this

quantitatively, in Fig. 6(b) we compare the weight of first

100 100.5 101 101.5 102 102.5 103
10-1

10-0.5

100

100.5

101

101.5

0 2 4 6 8 10

100

10-5

10-10
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(b)

FIG. 6. Comparison of LIOMs and physical spins operators.
(a) Blue dots show the Frobenius norm of the difference be-
tween same-site physical spin-1/2 Pauli matrices and local in-
tegral of motion, ||σjz − τ jz || as a function of disorder strength
in a size L = 10 system. For disorder W > Wc ∼ 7 (vertical
black line), the norm scales as 1/W (green line). The red
dashed line shows the norm of difference between two LIOM
at different sites for comparison. (b) Weight of the first LIOM
f1
n,k (blue curves) and overlap of the first LIOM with physical

spins
∑
j Tr(τ1z σ

1+n
z )/L (red curves) as a function of distance

n for W = 20 (a) and W = 40 (b). L = 10 and the median is
taken over k and 100 disorder realizations.

LIOM f1
n,k and Tr(τ1

z σ
1+n
z ). Both of them show exponen-

tial decay with n and the slopes (decay rates) are similar
for n ≥ 2. In numerics, calculating f1

n,k is demanding

because it is defined in the real space [45], while calcu-
lating Tr(τ1

z σ
1+n
z ) can be done in the energy eigenbasis

since the expectation value of σjz on every eigenstate is
already obtained during the construction process. There-
fore we use Tr(τ jzσ

1+n
z ) with n ≥ 2 to extract the LIOM

localization length κ in the main text (Figure 4).

Appendix B: Distribution of interaction strengths
and rare regions

In the main text we linked the occurrence of rare events
in the distribution of interaction strengths to rare regions
of the disordered field. We can verify this conjecture by
taking a closer look at one particular disorder realization
that contains a low-disorder rare region (see Fig. S1 in
[45]). To further confirm the connection between a rare
region and the rare event peak in the interaction strength
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FIG. 7. Median |Tr(τ jzσ
k
z )| (a) and normalized probability

distribution of log10 |V (r)| (b) for a chain of size L = 14
with disordered field only on site 1 to 8 (ie = 8). In (a),
green dashed (blue solid) curves represent the LIOMs in the
disorder-free (disordered) region. In (b), blue curves show
only the coupling terms within the disordered region and red
curves show the distribution of all coupling terms. W = 50
and 100 random realizations are used in both (a) and (b).

distribution, we study a Heisenberg spin chain with dis-
order field only on part of the chain, i.e. hi ∈ [−W,W ] in
the disordered region i ≤ ie and hi = 0 in the disorder-
free region i > ie. The LIOMs in the disordered region
are localized, while the LIOMs in the disorder-free region
are delocalized with an exponential tail extending into
the disordered region [Fig. 7(a)]. Due to the existence
of the disorder-free region, the probability distribution
of log10 |V (r)| shows a large delocalized peak [blue curve
in Fig. 7(b)], which is absent when considering only in-
teractions inside the disordered region. We can further
analyze how the occurrence of rare events changes with
the system size (see Figure S2 of [45]). We find that
for a given interaction range, the area of the delocalized
peak gets larger for longer chain, because the frequency
of having a local low-disorder region is higher for larger
L.

Appendix C: Dephasing with Artificial Hamiltonian

It has been conjectured that the dephasing rate of
〈τx〉 (and 〈σx〉) can be related to the interaction local-
ization length via a simple, mean-field model. Using our
LIOM construction, we found instead surprising results
as shown in Figure 4. Here we want to (i) verify whether
assuming an exponentially decaying interaction strength
does indeed yield the relationship between localization
lengths presented in Ref.[3]; and (ii) determine whether
the Hamiltonian approximation with a simpler, exponen-
tially decaying interaction strength is enough to capture
the exact dephasing dynamics.

To answer these questions, we consider two artificially
generated Hamiltonian: (1) |V (r)| = exp(−r/κ), with
each interaction term randomly assigned a plus or minus

10
0

10
5

10
10

10
15

10
20

10
-3

10
-2

10
-1

10
0

10 15 20 25 30 35 40

0

0.5

1

1.5

2

2.5

(a)

(b)

FIG. 8. (a) 〈〈τLx 〉2〉 under real (green) and two artificial
Hamiltonian (blue and red). The dark green, dashed curve
shows 〈〈σLx 〉2〉 under the real Hamiltonian. L = 12, W = 40,
so that the delocalized cases is negligible. All 〈〈τLx 〉2〉 are av-
eraged over 20 random initial state in xy plane and 20 disorder
realizations. 〈〈σLx 〉2〉 is averaged over 10 random initial state
in xy plane and 10 disorder realizations. (b) The red curve
shows κ−1 as in Fig. 4 of the main text. Green solid curve
represent the dephasing localization length ξ′′ extracted from
artificial Hamiltonian with |V (r)| = e−(r/κ). Green dashed
curve shows ξ′′ + ln 2/2 which overlaps with κ−1 within the
error bars.

sign, and (2) |V (r)| randomly sampled from the simu-
lated probability distribution (see Fig. 3(b) in the main
text for an example) with a random sign.

The first Hamiltonian exactly satisfies the hypothesis
under which the relation between interaction localization
length and dynamical localization length was derived in
Ref. [3]. Therefore we fit the power law dephasing ob-
tained under this Hamiltonian [see Fig. 8(a)] and extract
the dynamical localization length ξ′′ as done in Fig. 4
of the main text. We find that κ−1 ≈ ξ′′−1 + ln 2/2
[Fig. 8(b)], which gives a more stringent relation than
the bound κ−1 ≥ ξ′′−1− ln 2/2 given in Ref. [3]. We can
provide a heuristic argument for the relation between ξ′′

and κ, under the assumption |V (r)| = exp(−r/κ). As
described in Ref. [28], the dephasing can be understood
as arising from an effective magnetic field at site j due to
all other spins τz. Starting from the phenomenological
model in Eq. (3), the effective magnetic field at site j is

Hj = Tr(τ jzH) = ξj +H1
j +H2

j + · · · , (C1)

where H l
j denotes the magnetic field created by spins

within the distance l from spin j. For example, the first
term is given by

H1
j =Vj,j+1τ

j+1
z +Vj−1,jτ

j−1
z +Vj−1,j,j+1τ

j−1
z τ j+1

z . (C2)

Similarly, H l
j contains interactions of range l + 1, l +

2, · · · , 2l + 1. As the interaction strength decays as
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|V (r)| = exp(−r/κ) and the number of terms grows as
∼ 2r, the Frobenius norm of H l

j is estimated as

||H l
j || =

[
2l+1∑
r=l+1

2re−2r/κ

]1/2

≈
(
2e−2/κ

)(l+1)/2

1− 2e−2/κ
. (C3)

In the last term we assumed that l � 1 and the sys-
tem is deep in the MBL phase so that 2 exp(−2/κ) < 1.
We thus find that H l

j also exhibits an exponential decay

H l
j ∝ exp(−l/ξ′′), with ξ′′−1 = κ−1 + ln 2/2, yielding the

dephasing [28] 〈〈τLx (t)〉2〉 ∼ t−ξ′′ ln 2 as shown in Fig. 8.
While we confirm that the dephasing under the ap-

proximated Hamiltonian satisfying |V (r)| = exp(−r/κ)

follows the predicted relation to κ, we still find that de-
phasing under the “real” Hamiltonian is different. The
physical spin and LIOMs under the real Hamiltonian in
Eq. 1 show similar dephasing as expected. Under either
artificial Hamiltonians, however, 〈〈τLx 〉2〉 dephases much
faster than under the real Hamiltonian, suggesting that
the dephasing dynamics cannot be fully captured by the
interaction localization length κ or even the probability
distribution of |V (r)| [Fig. 8(a)]. For instance, in the
real system for a given disorder realization the interac-
tion terms may have some correlation, which gives rise
to a slower dephasing, but this is not captured by the
probability distribution.
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M. H. Fischer, R. Vosk, E. Altman, U. Schneider, and
I. Bloch, Science 349, 842 (2015).

13 J.-y. Choi, S. Hild, J. Zeiher, P. Schauß, A. Rubio-Abadal,
T. Yefsah, V. Khemani, D. A. Huse, I. Bloch, and
C. Gross, Science 352, 1547 (2016).
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24 M. Serbyn, Z. Papić, and D. A. Abanin, Phys. Rev. Lett.
110, 260601 (2013).

25 D. A. Huse, R. Nandkishore, and V. Oganesyan, Phys.
Rev. B 90, 174202 (2014).

26 R. Vosk and E. Altman, Phys. Rev. Lett. 110, 067204
(2013).

27 I. H. Kim, A. Chandran, and D. A. Abanin, (2014),
arXiv:1412.3073.
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