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Abstract

An atomistic effective Hamiltonian, along with a presently-developed analytical model, are em-

ployed to investigate and analyze low-frequency polar, antipolar and antiferrodistortive phonons

at finite temperature in a prototypical hybrid improper ferroelectric, that is (BiFeO3)/(NdFeO3)

(abbreviated as (BFO)1/(NFO)1) 1:1 superlattice. In the high-temperature paraelectric phase,

phonons having both polar and antipolar characters are found to exist, as a result of a bilinear

coupling between different cation motions, with these phonons having frequencies that are basi-

cally independent of temperature. In contrast, phonons having fluctuations of either in-phase or

anti-phase octahedral tiltings are soft in this high-temperature phase (with these two fluctuations

being uncoupled), which results in their condensation below some critical temperature and the

emergence of a low-temperature phase. In this latter low-temperature phase, trilinear energetic

couplings between these two types of octahedral tiltings and Bi and Nd cations’ motions lead to

the appearance of a spontaneous polarization, as consistent with the nature of hybrid improper

ferroelectricity. These trilinear energetic couplings also yield an increase of the number of phonons

possessing both polar and antipolar characters in the low-temperature phase, with most of these

phonons softening when approaching the ferroelectric-to-paraelectric transition from below, as a

result of the fact that they also exhibit antiferrodistortive features. The different temperature

behaviors of polar modes at high versus low temperatures emphasize the uniqueness of hybrid

improper ferroelectrics.
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I. INTRODUCTION

Ferroelectric materials have wide applications, including piezoelectric transducers, tun-

able capacitors, high capacity computer memory cells, etc.1–3. This partly explains why the

recent discovery of a new class of ferroelectrics, namely the so-called hybrid-improper ferro-

electrics (HIF)4–8, has attracted a lot of attention, especially since some of these HIFs also

hold promise to realize high-temperature magnetoelectric devices9. Practically, HIF systems

can be realized by, e.g., creating superlattices (SL) made of two perovskite compounds, each

adopting the Pnma space group – which possesses in-phase and anti-phase oxygen octa-

hedral tiltings as well as antipolar motions. It is known that ferroelectricity in such HIF

stacking arises from a trilinear coupling between polarization and these two oxygen octahe-

dralt ilting modes (see, e.g., Ref.10 and references therein). Many works based on density

functional calculations have been done to reveal and characterize HIF materials5,6,8,11,12, and

an atomistic theory has been even proposed to further understand them10,13.

Interestingly, all these aforementioned works have focused on static properties on HIF, es-

pecially at 0K. Consequently, finite-temperature dynamical properties of HIF remain mostly

unexplored. For instance, one may wonder how the ferroelectric (polar), antiferroelectric

(antipolar), and octahedral tilting modes evolve with temperature. In particular, do the

polar (and antipolar) modes soften when the material undergoes the phase transition into a

ferroelectric phase1, as in proper ferroelectrics, or are they rather hard at any temperature

as in improper ferroelectrics14,15? Do these polar and antipolar phonon modes mix with

phonons associated with fluctuations of oxygen octahedral tiltings in the paraelectric and

ferroelectric phases because of the trilinear energetic coupling, or rather does this hypothet-

ical mixing only occur when in-phase and/or anti-phase tiltings have condensed?

The goal of the article is to answer all these questions, by performing atomistic simulations

on a specific HIF material, namely (BiFeO3)/(NdFeO3) 1:1 superlattice. In particular, we

will demonstrate that, and explain why, most polar and antipolar modes are hard in the

high-temperature paraelectric phase while they soften on approaching the ferroelectric-to-

paraelectric phase transition from below. In other words, due to their “hard” behavior in

the paraelectric phase versus their “soft” behavior in the ferroelectric phase near the Curie

temperature, polar phonons of HIF, in overall, neither follow the behavior of polar phonons

of proper ferroelectrics nor the behavior of polar phonons of improper ferroelectrics.
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The structure of the article is as follows. In section II we describe the method used here.

In section III, the results of our calculations are reported and analyzed. In section IV, we

further discuss our results in the frame of an analytically derived model. Finally, section V

provides the conclusions of our study.

II. METHOD

Here, the effective Hamiltonian (Heff ) scheme of Refs.16,17 is employed to investigate

finite-temperature properties of (BFO)1/(NFO)1 superlattice. Such effective Hamiltonian

considers the following degrees of freedom: (i) the local soft modes {ui} centered on the A

sites (i.e., on Bi or Nd ions), which are directly related to the local electric dipoles on site

i18,19; (2) the homogeneous {ηH} and inhomogeneous {ηI} strain tensors18,19; (3) the pseudo

vector {ωi} that characterizes the oxygen octahedral tilting about the Fe site i20 and (4) the

magnetic moment {mi} centered on Fe ions at site i. The total energy of this Heff has two

main terms:

Etotal = EBFO({ui}, {ηH}, {ηI}, {ωi}, {mi}) + Ealloy({ui}, {ωi}, {mi}, {ηloc}) , (1)

where EBFO is the effective Hamiltonian of pure BFO, while Ealloy characterizes the effect

of substituting Bi ions by Nd ions. The analytical expression of EBFO is provided in Ref.21

while that of Ealloy is given in Refs16,17. In particular, Etotal contains trilinear couplings

between local modes and two octahedral tiltings [13]

∆E1 =
∑

i

∑

l,m,m=0,1

∑

α,β=x,y,z
α6=β

K1i(−1)(lx+my+nz)αωilmn,αui,βωilmn,β , (2)

where the summation over i runs over all the A sites and where the x, y and z axes are

chosen to lie along the pseudocubic [100], [010], and [001] directions, respectively. ωilmn,α

denotes the octahedral tilting that is centered around the Fe site that can be reached from

the Fe site i by a translation of the lattice vector alat(lx+my+nz) with l,m,n=0 or 1, and

alat is the 5-atom lattice parameter (note that the Fe site i can be reached from the A site

i through a translation by −alat
2

(x + y + z)). As shown in Ref.16, the net HIF polarization

arising in the (BFO)1/(NFO)1 superlattice below a certain temperature originates from the

difference in the K1i coefficient for the sites containing Bi versus Nd ions. More details about
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the energy terms EBFO and Ealloy are provided in Ref. [22] (see Supplemental Material [22]

and references therein [16-20]).

The total energy of Eq. (1) is first used in Monte-Carlo (MC) simulations to investigate

static finite-temperature properties of (BFO)1/(NFO)1 superlattice. This SL is constructed

within a 12x12x12 supercell with BFO and NFO layers alternating along the [001] pseu-

docubic direction (this supercell therefore contains six BFO/NFO units along the z-axis).

20,000 MC sweeps are used for equilibration and another 20,000 MC sweeps are employed

to calculate thermal averages.

We also performed Molecular Dynamics (MD) simulations using this effective Hamilto-

nian method and the aforementioned 12x12x12 supercell to investigate dynamical properties

of (BFO)1/(NFO)1. Technically, the MD simulations run over 4×105 steps with a time step

of 0.5 fs. In particular, different frequency-dependent responses related to different order

parameters are computed from the MD data, as described by the following formula:

χAA
′

αβ (ν) =

〈

Aα(t)A
′

β(t)

〉

+ i2πν

∫ ∞

0

dtei2πνt
〈

Aα(t)A
′

β(0)

〉

, (3)

where ν is frequency, α and β denote Cartesian components, A(t) and A
′

(t) are order

parameters at time t, and “〈..〉′′ indicates thermal averages. Practically, we focused on the

following physical A quantities: (i) the uNd and uBi vectors that characterize the vectorial

sum of the local modes at the Nd and Bi sites averaged over all these sites, respectively; (ii)

the uΓ and uX vectors that are directly proportional to the overall electrical polarization and

antiferroelectric (AFE) vector associated with the X point of the 5-atom cubic Brillouin zone,

respectively. Note that the uΓ and uX vectors are related to uNd and uBi, by being equal to

1
2
(uNd+uBi) and

1
2
(uNd−uBi), respectively; and (iii) the anti-phase and in-phase rotations

of the oxygen octahedral tiltings (also known as antiferrodistortive or AFD motions), that

are quantified by the ωR and ωM pseudovectors, respectively. Note that some of these

quantities are energetically coupled to each other via the different local trilinear couplings

involved in Eq. (2). For instance, the z-component of ωM is involved in a term that can be

written (in a macroscopic form) as10,13

Etrilinear,ωM,z
= C{

∑

α=x,y

κNduNd,αωR,αωM,z + κBiuBi,αωR,αωM,z}

= C{
∑

α=x,y

DΓuΓ,αωR,αωM,z +DXuX,αωR,αωM,z}
(4)
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where C is a coefficient, the sums over α run over the x and y Cartesian components, and

κNd and κBi are the K1i parameters of Eq. (2) with i=Nd and i=Bi, respectively. Moreover,

DΓ=
1
2
(κNd + κBi), and DX=

1
2
(κNd − κBi).

Furthermore, the imaginary part of the complex susceptibilities computed by Eq. (3) for

any studied order parameter A is fitted by a sum of Damped Harmonic Oscillators (DHO)

models of the form:

χ =
S2

ν2
r − ν2 − iνγ

, (5)

where νr , γ, and S are the resonant frequency, damping constant, and oscillator strength,

respectively. The fitting of the imaginary part of the complex susceptibilities arising from

the MD data therefore yields, in particular, the natural frequencies, νr, of the phonon modes

associated with the chosen physical quantities.

III. NUMERICAL RESULTS

Figure 1a displays the supercell average of the uΓ and uX vectors as a function of tem-

perature, while Fig. 1c reports the temperature evolution of the ωR and ωM pseudovectors.

All these quantities are obtained from Monte-Carlo simulations, and vanish above 1520K.

Such vanishing corresponds to the occurrence of the P4/mmm space group at high enough

temperature16. On the other hand, below 1520K, the x and y components of uΓ become

finite and equal to each other, as do the x and y components of both uX and ωR, along

with the z-component of ωM becoming non-null (all the other Cartesian components of uΓ,

uX , ωR and ωM can be assumed to be statistically null, except the z-component of ωR that

is finite but rather small). In other words, below 1520K, an electrical polarization and an

antipolar vector both develop along the pseudo-cubic [110] direction, which is accompanied

by oxygen octahedra titling in anti-phase fashion about this same [110] direction and in-

phase tiltings about the out-of-plane [001] direction of the superlattice. Such features are

indicative of ordered Bi0.5Nd0.5FeO3 (BNFO) basically acquiring the Pmc21 space group

below a critical temperature of 1520K16.

Moreover, Fig. 1b also reveals that, below 1520K, the average displacement of Nd ions

along the [110] direction is positive and larger in magnitude than that of the Bi ions which

move in opposite direction (that is along the [1̄1̄0] direction). This difference in magnitude

explains why uΓ is non-null while the opposite motions between Nd and Bi ions natu-
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rally result in uX having larger strength than uΓ below 1520K, since uΓ=
1
2
(uNd+uBi) and

uX=
1
2
(uNd-uBi). Note that the results shown in Figure 1 are essentially the same as the

ones obtained in Ref16 but with a difference in the size of a supercell. We needed to show

those results again here in order to introduce the the overall system behavior. Note also

that Fig. 2 of Ref.17 demonstrates that transition temperatures predicted by the presently

used effective Hamiltonian can be accurate in (Bi,Nd)FeO3 systems.

Furthermore, Fig. 2 (b) displays the imaginary part of the susceptibility χAA′

αα (ν) for the

order parameter A=A′=uX and for αα = x′x′ (where x′ is along the pseudo-cubic [110]

direction) at the temperature of 1780K– that is within the P4/mmm state. Two narrow

peaks can be clearly seen: one peak occurring at around 116 cm−1 and the other at 134

cm−1. Two peaks also happen at the same frequencies for the order parameter A=A′=uΓ

and for αα = x′x′, but the second one appease as a weak shoulder (cf Fig. 2a and its inset).

These peaks in Figs 2b and 2a therefore indicate that the lowest two frequencies of the AFE

phonon mode are identical to those of the ferroelectric (FE) mode, and are thus associated

with the coupled oscillations of the uX and uΓ vectors along the x′ direction. Such coupled

oscillations originate from the facts that (1) both uX and uΓ are related to uNd and uBi; and

that (2) two peaks can also be clearly seen in Fig. 2c at, once again, 116 cm−1 and 134 cm−1

for the the oscillations of the uNd vector along the x
′ direction, and to a less extent in Fig. 2d

for the oscillations of uBi mode along such direction too. As a matter of fact and as we will

discuss later on (see Section IV), uNd and uBi are coupled to each other via a short-range

bilinear energetic interaction of the form JuNd,αuBi,α, where J is a coefficient and α=x or

y . We will thus call these two frequencies as ν
P4/mmm
cation,1 and ν

P4/mmm
cation,2 , in order to emphasize

that they involve cation displacements and occur in the high-temperature P4/mmm phase.

In addition to the FE and AFE modes let us also look at the modes having AFD character

at high temperatures. For that, Fig. 2 (e) displays the imaginary part of the susceptibility

corresponding to the oscillation of the (anti-phase tilting) ωR order parameter along the

x′ direction at the same temperature of 1780K, while Fig. 2(f) shows similar information

but for the zz component of the susceptibility of the (in-phase tilting) order parameter

A = A
′

=ωM . Both of these susceptibilities possess a unique peak, that is located at 42

cm−1 in Fig. 2(e) versus 37 cm−1 in Fig. 2f, and that corresponds to frequencies we denote

as ν
P4/mmm
ωR and ν

P4/mmm
ωM , respectively. Since these two latter frequencies are different from

each other, and also differ from ν
P4/mmm
cation,1 and ν

P4/mmm
cation,2 , one can deduce that anti-phase and

6



in-phase tiltings are neither dynamically coupled to each other nor to the FE and AFE

motions in the high-temperature P4/mmm state.

Let us now focus on results at 750K, that is for a representative temperature within the

Pmc21 state. For that, the imaginary part of the susceptibilities of the order parameters

A = A
′

=uΓ,uX ,uNd,uBi, ωR and ωM are shown in Figure 3 for the same αα components

than in Fig. 2. Seven peaks are seen around 83 cm−1, 121cm−1, 134 cm−1, 162 cm−1, 174

cm−1, 211cm−1 and 228 cm−1 in all these susceptibilities, therefore revealing an increase

of the number of peaks with respect to the high-temperature phase for all these dynamical

responses and suggesting a specific dynamical coupling mixing cation motions (ferroelectric

degrees of freedom and antipolar motions), and in-phase and anti-phase tiltings in the low-

temperature Pmc21 state. As we will see later, this specific coupling is the trilinear energetic

coupling of Eq. (4) between the x and y components of uNd and uBi (or equivalently, of the

FE mode, uΓ, and AFE mode, uX) with the x and y components of the anti-phase AFD

mode, ωR, and the z component of the in-phase AFD mode, ωM . The frequencies associated

with these seven peaks seen in Fig. 3 are denoted as νPmc21
i , with i being an integer ranging

from 1 to 7.

Moreover, Figure 4 displays the temperature evolution of ν
P4/mmm
cation,1 , ν

P4/mmm
cation,2 , ν

P4/mmm
ωR

and ν
P4/mmm
ωM in the P4/mmm phase, as well as that of the νPmc21

i ’s in the Pmc21 state.

Several important results can be inferred from this figure. First of all, ν
P4/mmm
cation,1 and ν

P4/mmm
cation,2

frequencies remain more-or-less constant in the entire range of investigated temperature

within the P4/mmm state and, in particular, do not have any tendency of softening when

approaching the P4/mmm—to—Pmc21 phase transition under cooling. In fact, this latter

phase transition is driven by the condensation of the z-component of the ωM in-phase oxygen

octahedral tiltings and of the x and y components of the ωR anti-phase oxygen octahedral

tiltings below the temperature of 1520K (see Fig. 1c), as also evidenced by the facts that

ν
P4/mmm
ωR and ν

P4/mmm
ωM both soften dramatically upon approaching the phase transition from

above (i.e, within the P4/mmm state). When decreasing the temperature further (i.e., below

1520K), the x and y-components of uNd and uBi (or, equivalently, of uΓ and uX) become

finite (see Figs 1a and 1b) because of their trilinear couplings given in Eq. (4) with the

now-condensed ωR and ωM modes16. Such couplings also further lead to the emergence of

the seven peaks seen in Figure 3 for any displayed response, as we will demonstrate later

on. Figure 4 further shows that most of the seven νPmc21
i frequencies soften when increasing
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the temperature within the Pmc21 state close to the critical temperature of ≃ 1520K, as a

result of them containing AFD characters. One exception to this softening concerns νPmc21
2 ,

that is basically independent of temperature and rather hard within the stability region of

Pmc21. Such exception resides in the fact that the mode associated with νPmc21
2 mostly

involves motions of Bi ions, and consequently has also large FE and AFE characters, along

the x′ direction, as evidenced by the strong peaks seen in Figs. 3(a), (b) and (d) at this

frequency. Such characters also explain why νPmc21
2 is rather close in value to ν

P4/mmm
cation,1 .

Let us now try to further understand the numerical results depicted in Figs 2 and 3,

that is to indeed demonstrate that uNd and uBi modes are dynamically bilinearly coupled

in the P4/mmm state while the fluctuations of uNd, uBi, ωR, and ωM are all coupled in the

Pmc21 state due to trilinear energetic couplings. For that, we develop, and describe below,

an analytical model for the high and low-temperature states.

IV. MODEL

Let us start with the equation of motion associated with our considered degrees of free-

dom:

MA
d2qA,lα

dt2
= FA,lα (6)

where A is one of the structural modes in the system, qA,lα is the α Cartesian component

of the corresponding displacement in the l’s primitive cell, t is time, and MA is the mass of

mode A. Furthermore, the right part of Equation (6) is the force given by:

FA,lα = −dEtotal

dqA,lα
(7)

where Etotal is the total energy of the system and the derivative is taken in the ground state.

Let us now define the reduced force as:

fA,lα =
FA,lα√
MA

(8)

Correspondingly, one can introduce the reduced displacement associated with mode A as

SA,lα =
√

MAqA,lα (9)
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Then Eq. (6) can be rewritten in a symmetric form which does not contain mass in equation

of motion explicitly:
d2SA,lα

dt2
= fA,lα (10)

To simplify this differential equation, we now express the reduced displacements in a

harmonic way:

SA,jα = e−i[ωt+kA·R(j)]SA,kA,α (11)

where kA is a wave vector associated with mode A, R(j) is the vector locating the position

of the j-th primitive cell, and SA,kA,α is the Fourier transform of SA,jα. Now Equation (10)

transforms to the following form:

−ω2∆SA,kA,α = fA,kA,α (12)

where ∆SA,kA,α is the fluctuation of mode A and the right part is the Fourier transform of

the reduced force:

fA,kA,α =
1

N

∑

j

ei[ωt+kA·R(j)]fA,jα (13)

with N being the number of sites.

Now the equilibrium condition for mode A takes the form:

〈fA,kA,α〉 = 0 (14)

where the angle brackets present time averaging.

To simplify Equation (12) further on, we can linearize it. For that, we present the reduced

force in the form of the expansion with respect to different structural displacements. This can

be done because the force at equilibrium is zero and gets finite only due to the displacements

from the ground state. In the linear approximation, we neglect all higher order terms in this

expansion and thus get:

fA,kA,α = −
∑

B

∑

β

DA,kA,α;B,kB,β∆SB,kB ,β (15)

where DA,kA,α;B,kB,β is the dynamical matrix defined via:

DA,kA,α;B,kB,β = −
〈

∂fA,kA,α

∂SB,kB ,β

〉

(16)
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Here the angle brackets represent averaging over time as done in the self-consistent ap-

proximation developed for strongly anharmonic crystals23. Note also that the dependence

of this derivative on time can arise only because of terms in energy higher than bilinear.

For example, trilinear coupling terms can be responsible for the time dependency of this

quantity.

By plugging Equation (15) to Equation (12), we now get the final form of our equation:

ω2∆SA,kA,α =
∑

B

∑

β

DA,kA,α;B,kB,β ∆SB,kB,β (17)

Finally, the frequencies in this new equilibrium state are the roots of the following equation:

|D̂ − ω2Î| = 0 (18)

where Î is the unity matrix.

Thus the central role in the model is played by the dynamical matrix. First, we should

select our basic structural modes. In line with the results of our aforementioned calculations,

we take seven modes, qA,kα, that are: uBi,x, uBi,y, uNd,x, uNd,y, ωM,z, ωR,x and ωR,y. Their

associated wave vectors, in 2π/a units, are (i) the zone-center for uBi,x, uBi,y, uNd,x, uNd,y;

(iii) [1
2
, 1
2
, 0] for ωM,z; and (iii) [1

2
, 1
2
, 1
2
] for ωR,x and ωR,y.

Correspondingly, we obtain, within our model, the form of the dynamical matrix given in

Table I. There are seven diagonal elements denoted as Ω2
qA,α

, since Nd and Bi have different

masses as well as different quadratic energy terms for the local modes centered on them.

Note that some of these seven elements can be equal to each other, such as Ω2
R,x and Ω2

R,y

(for the anti-phase tiltings). Regarding nondiagonal terms, we include (i) bilinear coupling

constants dxx and dyy that are related to the microscopic effective Hamiltonian short-range

bilinear energetic Jij,αβ coefficients (see the energy term Eshort of Eq. (4) in Ref. [22]); and

(ii) trilinear terms between local modes and tiltings, which yield elements that are made

of a product between a quantity we denote as dBi
xx, d

Bi
yy , d

Nd
xx or dNd

yy , and a corresponding

time-average of the appropriate tilting mode. Note that dBi
xx, d

Bi
yy , d

Nd
xx or dNd

yy are related

to the effective Hamiltonian trilinear coupling coefficients between local modes and AFD

motions (which are denoted by Kij,αβ in Eq. (6) of Ref. [22])

Let us now study the solutions of Equation (18), once choosing the dynamical matrix of

Table I, in the cases of the high-temperature and low-temperature phases of our investigated

HIF system.

10



Case I: The P4/mmm phase

In this case, the average of the ωM,z, ωR,x and ωR,y all vanish and they are all decoupled

from each other as well as from the local modes centered on Bi and Nd ions. The average

of the modes on Bi and Nd is also zero. However, these latter local modes are coupled to

each other via the dαα terms of Table I. Correspondingly, the equation of motions become:

(Ω2
Nd,α − ω2)SNd,α = −dααSBi,α (19)

(Ω2
Bi,α − ω2)SBi,α = −dααSNd,α (20)

As we have only two modes (both for the x and y directions) that are bilinearly coupled,

we only have 2 peaks located at the same frequencies in the responses shown in Figs 2c and

2d for the Nd and Bi ions, respectively. Indeed, the eigenvalues of Equations (19) and (20)

can be found from Equation (18):

ω2
α =

Ω2
Nd,α + Ω2

Bi,α

2
±

√

(

Ω2
Nd,α − Ω2

Bi,α

2

)2

+ d2αα (21)

One can see that these two solutions for α = x′, y′ are indeed close to the bare frequencies

of the Nd and Bi modes, but are shifted from them because of the coupling constant dαα.

Case II: The Pmc21 phase

This case is more complex. It definitely provides seven lines in each of the responses

depicted in Fig. 3, because all the aforementioned seven modes are coupled via all the terms

reported in Table I. Indeed, now, the trilinear terms are finite because the average of ωR,x,

ωR,y and ωM,z are all now finite.

Moreover, by employing Equation (14), we can determine the polarization. Indeed, Equa-

tion (14) takes for the Nd and Bi modes in Pmc21 phase the following form:

Ω2
Nd,α 〈SNd,α〉+ dαα 〈SBi,α〉+ dNd

αα

〈

SM,z

〉〈

SR,α

〉

= 0 (22)

Ω2
Bi,α 〈SBi,α〉+ dαα 〈SNd,α〉+ dBi

αα

〈

SM,z

〉〈

SR,α

〉

= 0 (23)

The solutions of these equations are:
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< SNd,α >=
−dNd

ααΩ
2
Bi,α + dBi

ααdαα

Ω2
Nd,αΩ

2
Bi,α − d2αα

〈

SM,z

〉〈

SR,α

〉

< SBi,α >=
−dBi

ααΩ
2
Nd,α + dNd

ααdαα

Ω2
Bi,αΩ

2
Nd,α − d2αα

〈

SM,z

〉〈

SR,α

〉

(24)

These formulas show that
〈

SNd,α

〉

and
〈

SBi,α

〉

are finite only if
〈

SM,z

〉

and
〈

SR,α

〉

are

finite, implying that it is the condensation of the tilting modes that gives rise to finite cation

displacements below 1520K. Moreover, not only dNd
αα and dBi

αα have different magnitudes, they

are also of opposite signs. Consequently, and since Ω2
Nd,α is also different from Ω2

Bi,α,
〈

SNd,α

〉

and
〈

SBi,α

〉

have different magnitude and have different signs. As a result, one can get a finite

electrical polarization, which is simply related to
〈 SNd,α√

MNd

〉

+
〈 SBi,α√

MBi

〉

in our superlattice, which

is the essence of HIF. Note also that their difference will contribute to the antiferroelectric

displacement, that is proportional to
〈 SNd,α√

MNd

〉

-
〈 SBi,α√

MBi

〉

.

Moreover, when approaching the transition temperature of 1520K from below (i.e., within

the Pmc21 phase), the bare ωR and ωM tilting modes should soften as similar to their

behavior when approaching this transition from above (i.e., within the P4/mmm state, as

shown in Fig. 4). The couplings of these tilting modes with the FE and AFE modes within

the Pmc21 state (these couplings are evidenced in Eqs (22) and (23)) naturally result in the

softening of modes having FE and AFE characters when approaching this transition from

below – as indeed seen in Fig. 4.

V. CONCLUSION

In summary, we studied here phonon frequencies in (BFO)1/(NFO)1 superlattice when

cooled from high temperatures. This system possesses a tetragonal paraelectric P4/mmm

state at high temperatures, and a polar Pmc21 phase at low temperature, as in line with its

HIF character. Our results reveal that the resonant frequencies of all polar and antipolar

modes are rather hard and nearly independent of temperature within the P4/mmm state.

On the other hand, most of them abruptly become soft in the low-temperature Pmc21 phase

near the ferroelectric-to-paraelectric transition, because of the very specific trilinear cou-

plings mixing polar and antipolar distortions with the soft oxygen octahedral tilting modes.

Such mixing increases the number of peaks of polar and antipolar phonons, which then each

12



possesses polar, antipolar but also antiferrodistortive characters when passing through the

phase transition from the P4/mmm to Pmc21 phase. Note that the different behaviors of

polar modes at high versus low temperature render hybrid improper ferroelectrics dramat-

ically different from proper ferroelectrics (where polar modes soften both in the high and

low-temperature phases when approaching the transition1) and from improper ferroelectrics

(where polar modes are hard in both the high and low-temperature phases14,15). We devel-

oped a simple analytical model that naturally explains all these features. We hope that the

present study deepens the understanding of ferroelectrics, in general, and their dynamics,

in particular.
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[13] L. Bellaiche and J. Íñiguez, Phys. Rev. B 88, 014104 (2013).

[14] A. P. Levanyuk and D. G. Sannikov, Uspekhi Fiz. Nauk 112, 561 (1974).

[15] W. Kaczmarek and F. Gervaid, Ferroelectrics 80, 197 (1988).
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[17] B. Xu, D. Wang, J. Íñiguez, and L. Bellaiche, Adv. Funct. Mater. 25, 552 (2015).

[18] W. Zhong, D. Vanderbilt, and K. Rabe, Phys. Rev. Lett. 73, 1816 (1994).

[19] W. Zhong, D. Vanderbilt, and K. Rabe, Phys. Rev. B 52, 6301 (1995).

[20] I. A. Kornev, L. Bellaiche, P. E. Janolin, B. Dkhil, and E. Suard, Phys. Rev. Lett. 97, 157601

(2006).
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TABLE I. Form of the dynamical matrix in our model. For simplification of notations, uBi,x,

uBi,y, uNd,x, uNd,y, ωM,z, ωR,x and ωR,y are simply denoted as Bix, Biy, Ndx, Ndy, Mz, Rx and

Ry, respectively, here.

Bix Biy Ndx Ndy Mz Rx Ry

Bix Ω2
Bi,x dxx dBi

xx

〈

SR,x

〉

dBi
xx

〈

SM,z

〉

Biy Ω2
Bi,y dyy dBi

yy

〈

SR,y

〉

dBi
yy

〈

SM,z

〉

Ndx dxx Ω2
Nd,x dNd

xx

〈

SR,x

〉

dNd
xx

〈

SM,z

〉

Ndy dyy Ω2
Nd,y dNd

yy

〈

SR,y

〉

dNd
yy

〈

SM,z

〉

Mz dBi
xx

〈

SR,x

〉

dBi
yy

〈

SR,y

〉

dNd
xx

〈

SR,x

〉

dNd
yy

〈

SR,y

〉

Ω2
M,z dBi

xx

〈

SBi,x

〉

+ dNd
xx

〈

SNd,x

〉

dBi
yy

〈

SBi,y

〉

+ dNd
yy

〈

SNd,y

〉

Rx dBi
xx

〈

SM,z

〉

dNd
xx

〈

SM,z

〉

dBi
xx

〈

SBi,x

〉

+ dNd
xx

〈

SNd,x

〉

Ω2
R,x

Ry dBi
yy

〈

SM,z

〉

dNd
yy

〈

SM,z

〉

dBi
yy

〈

SBi,y

〉

+ dNd
yy

〈

SNd,y

〉

Ω2
R,y
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Figure Captions:

Figure 1 (Color online). Temperature dependence of the (a) the supercell averaged uΓ

and uX vectors characterizing the electrical polarization and antiferroelectric vector at the

X-point of the cubic first-Brilloun zone, respectively; (b) the local mode centered on Nd

and Bi cations (uNd and uBi, respectively); (c) ωR and ωM pseudo vectors quantifying anti-

phase and in-phase tiltings, respectively, of the oxygen octahedra in the (BFO)1/(NFO)1

superlattice.

Figure 2 (Color online). Frequency dependence of the imaginary part of the χAA
′

αα (ν)

susceptibilities in our (BFO)1/(NFO)1 superlattice, for the following order parameters (a)

uΓ, (b) uX , (c) uNd, (d) uBi, (e) ωR, and (f) ωM at a temperature of 1780K – that is,

for the P4/mmm state. For Panels (a-e), α = x′ where x′ is along the pseudo-cubic [110]

direction, while α=z (that is along [001]) for Panel f .The black line displays the MD data

while the red line represents their fit by DHOs. Insets zoom over particular peaks that are

more difficult to see.

Figure 3 (Color online). Same as Fig. 2 but for the temperature of 750K – that is, for

the Pmc21 state.

Figure 4 (Color online). Temperature dependence of natural frequencies of phonon modes

having ferroelectric, antiferroelectric and antiferrodistortive characters. See text for the

notations of these resonant frequencies. The vertical dashed line delimits the two different

phases obtained in our calculations. Error bars for νPmc21
6 arise from the slight difference in

frequency that different responses (see Fig. 3) can have around this frequency.
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