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The implementation of quantum technologies in electronics leads naturally to the concept of coherent single-
electron circuits, in which a single charge is used coherently to provide enhanced performance. In this work,
we propose a coherent single-electron device that operates as an electrically-tunable capacitor. This system
exhibits an oscillating dependence of the capacitance with voltage, in which the amplitude of the capacitance
changes and the voltage period can be tuned by electric means. The device concept is based on double-passage
Landau-Zener-Stückelberg-Majorana interferometry of a coupled two-level system that is further tunnel-coupled
to an electron reservoir. We test this model experimentally by performing Landau-Zener-Stückelberg-Majorana
interferometry in a single-electron double quantum dot coupled to an electron reservoir and show that the voltage
period of the capacitance oscillations is directly proportional to the excitation frequency and that the amplitude
of the oscillations depends on the dynamical parameters of the system: intrinsic relaxation and coherence times,
as well as the tunneling rate to the reservoir. Our work opens up an opportunity to use the non-linear capacitance
of double quantum dots to obtain enhanced device functionalities.

I. INTRODUCTION

The new wave of quantum technologies aims at using ba-
sic principles of quantum mechanics, such as superposition
or entanglement, to obtain functionality beyond what con-
ventional devices can provide1–3. In the field of nanoelec-
tronics, superposition and entanglement can be harnessed to
build coherent quantum circuits that can be used, for exam-
ple, for quantum information processing3, precision sensing4

and quantum-limited amplification5,6. To produce a coher-
ent superposition between quantum states in nanoelectronic
circuits, Landau-Zener-Stückelberg-Majorana (LZSM) inter-
ferometry7,8 is a prime example. In LZSM interferometry,
a quantum two-level system9 is driven strongly across an
avoided energy-level crossing producing first a quantum su-
perposition between the ground and excited state of the sys-
tem. These states evolve with different dynamical phases and,
following a second passage through the anticrossing, coherent
interference between these two states can occur10,11. LZSM
interference has been observed in a number of different plat-
forms such as Rydberg atoms12, superconductive Josephson
junctions11,13,14, nitrogen vacancy centres in diamond15, sil-
icon charge qubits in complementary metal-oxide semicon-
ductor (CMOS) technology16–19 and silicon carbide devices20.
Moreover, it has been used as a diagnostic tool to obtain phys-
ical parameters of two-level systems as well as a method for
the fast manipulation of spin-based qubits21.

Although standard LZSM interferometry has been exten-
sively studied for two-level systems, realistic quantum sys-
tems may have more than just two levels. Multi-level LZSM
physics has been observed, for example, in superconducting
qubits22–26 and semiconductor quantum dots27–34.

Here, we present an application of multi-level LZSM in-
terferometry to propose a device that presents an oscillatory
dependence of the capacitance with voltage in which the am-
plitude of the capacitance changes, and the voltage period can
be tuned by electric means. The device is a tunable capacitor
based on LZSM interferometry of a coupled two-level sys-
tem that is further tunnel coupled to an electron reservoir. In
the double-passage regime, we find that the capacitance of the
system varies periodically with the bias voltage and that the
amplitude of the capacitance changes depends on the intrinsic
relaxation and phase coherence times of the electron as well
as the tunnel rate to the reservoir.

We implement the capacitor experimentally and explore its
functional dependence with bias voltage and drive frequency
following our work on a silicon single-electron double quan-
tum dot (DQD) defined in the top-most corners of a nanowire
transistor35,36 that is also coupled to an electronic reservoir32.
We drive the system in the LZSM double-passage regime us-
ing microwave excitations and probe the non-linear paramet-
ric capacitance of the driven system using radiowave reflec-
tometry. Finally, we compare the theory and experiment and
find good agreement that enables us to determine the dynam-
ical parameters of the system: intrinsic relaxation and coher-
ence time as well as quantum-dot-reservoir tunneling rate.

II. QUANTUM INTERFERENCE CAPACITOR PROPOSAL

In this section, we describe the physical requirements of the
quantum interference capacitor. We consider a quantum two-
level system where the two levels correspond to two different
charge states. The energy difference between levels can be
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FIG. 1. Quantum interference capacitor proposal. (a) Schematic illustration of a DQD coupled to a reservoir and the relevant charge states and
tunneling processes. (b) Left, circuit representation of the DQD coupled to a reservoir. Right, equivalent circuit which includes the geometrical
Cgeom and parametric Cpm capacitance in parallel. (c) Energy levels of the DQD as a function of detuning. Here Γ1 is the relaxation rate from
|e〉 to |g〉, and Γ̂1 from |g〉 to |e〉. The red lines indicate charge states involving the reservoir and cross |g〉 at ε = ±ε̂. ΓR indicates the
QD1-reservoir tunnel rate. Below the graph, the horizontal double arrow indicates the cycle to perform double-passage LZSM interferometry
and its central dot indicates the offset detuning ε0. (d) Simulated parametric capacitance Cpm, normalized to its maximal value C0

pm, versus
the detuning ε0 normalized to the MW amplitude A, for T1 = 50 ns, T2 = 35 ps, TR = 30 ps, and ω/2π = 11 GHz.

controlled by a tuning parameter ε in timescales comparable
or faster than the characteristic relaxation (T1) and coherence
times (T2) of the system. The two levels are coupled via a
coupling term ∆. The Hamiltonian of the two-level system,
expressed in terms of the Pauli spin matrices, is

H(t) = −∆

2
σx −

ε(t)

2
σz. (1)

Furthermore, the system must be tunnel-coupled to the
charge reservoir to allow particle exchange. These elemen-
tary requirements can be found in a variety of systems9, such
as superconducting charge qubits, impurities in semiconduc-
tors17 and DQDs37,38. In this paper, we focus in the latter for
the case where the charged particles are electrons.

In a single-electron DQD, an electron is shared among the
QDs giving rise to two possible classical charge configura-
tions (n1n2) = (10) and (01), where ni corresponds to the
number of charges in the ith QD. We consider the case in
which an electron can tunnel between the QDs and can also
exchange particles with an electron reservoir (states (00) or
(11)), see Fig. 1(a). For a DQD, ε represents the energy de-
tuning between the (10) and (01) charge states, and ∆ is the
tunnel coupling that mixes them at ε = 0.

In Fig. 1(b), we present the minimal electrical circuit to im-
plement the quantum interference capacitor. The two QDs,
are connected to a top-gate electrode via the gate capacitances
CGi. The QDs are tunnel coupled to each other via a mutual
capacitance Cm, and QD1 is further tunnel-coupled to a reser-

voir via a capacitance CD. The differential capacitance, as
seen from the top-gate, can be expressed as39–41

Cdiff =
∂(Q1 +Q2)

∂VTG
= Cgeom + Cpm, (2)

where VTG is the top-gate voltage and Qi is the total charge
in the respective QD, that includes the discrete charges ni and
externally induced charge by the gate electrodes. Here Cgeom
is the geometrical capacitance and Cpm is a voltage-dependent
term, the quantum capacitance, see the equivalent circuit on
the right side of Fig. 1(b). We consider the weak coupling
limitCm � CGi, CD, where the geometrical capacitance reads
Cgeom = CG2/(CG2 + CD). The parametric capacitance can
be probed with a sinusoidal detuning ε(t) = ε0 + εrsin(ωrt)
and, when it has a small amplitude εr � ∆, low frequency (ωr
lower than the relaxation rates of the system) and offset ε0, its
average value can be expressed as32,

Cpm = 2e2α2
−
∂

∂ε0

[
P01 − P10 +

α+

α−
(P00 − P11)

]
. (3)

Here α± = (α2 ± α1) /2, where α1 = CG1/(CG1 +Cm) and
α2 = CG2/(CG2+Cm +CD) are the QD-gate couplings. Note
that we have used the expression

ε = −2eα−
(
VTG − V 0

TG

)
, (4)
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with V 0
TG denoting the top-gate voltage where the states (10)

and (01) anticross, to relate the top-gate voltage to the induced
detuning. Finally, Pn1n2

refers to the probability of being in
the electronic state (n1n2). For the implementation of the
quantum interference capacitor, we will consider DQDs with
similar gate couplings, α− � α+, so that the parametric ca-
pacitance in Eq. (3) is predominately determined by changes
in P00 or P11.

Next, we subject the DQD to a faster oscillatory detuning
ε(t) = ε0 + Asin(ωt) + δε(t), where A is the amplitude of
the detuning oscillations, ω is the frequency of the driving
field (ω � ωr) and δε(t) is the classical noise. When a cou-
pled two-level system is subject to periodic driving with suffi-
ciently large amplitude, LZSM transitions between the ground
|g〉 and excited state |e〉 of the Hamiltonian in Eq. (1) can oc-
cur. We consider the scenario in which the system performs a
double-passage through the anticrossing producing the LZSM
interference and then a QD exchanges particles with the elec-
tron reservoir, see Fig. 1(c). For simplicity, we explain the cy-
cle that involves the (01)-(11) particle exchange process (indi-
cated by the black horizontal arrow) although the discussion
also applies for the symmetric drive with respect to ε = 0
where the exchange is (00)-(10).

The dynamics of the two-level system can be described by
a master equation:

∂tPg = [W (ε0) + Γ1]Pe −
[
W (ε0) + Γ̂1

]
Pg,

Pg + Pe = 1,
(5)

where W is the rate of the LZSM transitions, Γ1 is the re-
laxation rate from the excited state |e〉 to the ground state
|g〉, and Γ̂1 from |g〉 to |e〉, see Fig. 1(c). We consider the
low-temperature limit kBT � ∆, where Γ̂1 = 0. Therefore,
Eq. (5) can be written as

∂tPg = [W (ε0) + Γ1]Pe −W (ε0)Pg. (6)

We calculate the stationary solution of the system and find

Pg = 1− W (ε0)

2W (ε0) + Γ1
. (7)

After a second passage, considering (01) as a starting point,
the system exchanges electrons with the reservoir. The prob-
ability P11 at that point can be expressed as

P11 = PR(ε0)

(
1− W (ε0)

2W (ε0) + Γ1

)
, (8)

where PR represents the tunneling probability to the reservoir.
PR can be expressed asPR(ε0) = 1−exp (−tR/TR), where TR
is the QD-reservoir relaxation time and tR represents the time
the electron spends after passing the crossing point between
the (01) and (11) charge states at ε = ε̂. Given the functional
shape of the drive, we obtain

PR(ε0) = 1− exp
{
−1

TRω

[
π − 2 arcsin

(
ε̂− ε0
A

)]}
. (9)

The probability of the (11) state increases as the system
expends more time passing the crossing point. Eventually, we
calculate the derivative of the probability P11 with respect to
the detuning as it enters in Eq. (3),

∂ε0P11 = ∂ε0PR(ε0)

[
1− W (ε0)

2W (ε0) + Γ1

]
−

−PR(ε0)
Γ1∂ε0W (ε0)

[2W (ε0) + Γ1]
2 .

(10)

As the detuning gets closer to ε̂, the first term in Eq. (10)
becomes negligible compared to the second one, leading to
the final expression for the variation of the probability P11

∂ε0P11 ≈ −PR(ε0)
T1∂ε0W (ε0)

[1 + 2W (ε0)T1]
2 , (11)

with T1 = Γ−11 .Therefore, the problem of calculating Cpm
reduces to calculating the rate of the LZSM transitions, which
we do in the following. After the first passage through the
anticrossing, the system acquires a dynamical phase due to the
energy difference between the two energy states as follows14

∆θ(τ) =

t+τ∫
t

(Ee − Eg)dt = ∆

t+τ∫
t

e−iφ(t)dt, (12)

where φ(t) refers to the driving mechanism, φ(τ) =
τ∫
0
ε(t)dt,

and we assumed ~ = 1. Once the system is far from the
avoided crossing, the |e〉 and |g〉 states evolve independently,
accumulating the so-called Stückelberg phase, ∆θe↔g and the
rate of LZSM transitions can be expressed as

W (ε) = lim
τ→∞

∆θ(t)e↔g∆θ
∗(t+ τ)e↔g
τ

. (13)

Using the Jacobi-Anger expansion, exp(iz sinγ) =∑∞
n=−∞ Jn(z)einγ , where Jn(z) are Bessel functions of the

first kind. We associate the noise energy term exp (−iδε(t))
to a noise in the phase exp (−iδφ(t)). As a result, when we
integrate Eq. (12), we obtain

W (ε0) =
∆2

2

τ∫
0

∑
n

J2
n

(
A

ω

)
e−t[iT2(ε0−nω)−1]/T2dt,

(14)
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FIG. 2. Experiment. (a) Scanning electron microscope image of a device similar to the one measured connected to a radio frequency reflec-
tometry set-up via the top gate. The RF signal is applied via a 100 pF capacitor and a 390 nH inductor. VTG is applied via an on-chip bias tee
with a 100 kΩ resistor. The drain of the device is AC grounded via a 100 pF capacitor. (b) Schematic of the device indicating the location
of the corner quantum dots in top-view, with the top gate transparent for clarity. The electronic transitions are marked by arrows, and ∆
represents the tunnel coupling. (c) Colour map of the DQD charge stability diagram extracted from reflectometry measurements. The dashed
white line indicates the interdot charge transition. The letters indicate sequential operations: starting from the (11) state at point A, followed
by the unloading of an electron to (10) at point B, the creation of a superposition at point C, a return back to B across the transition to create
the interference, which is then projected back onto (11) when returning to A. (d) Measured resonator phase response ∆Φ, normalized by its
maximal value ∆Φ0, vs gate voltage, VTG, for a probing frequency ω/2π = 11 GHz.

where we made use of the white noise theorem〈
e−iδφ(t)e−iδφ(t+τ)

〉
= e−τ/T2 . Assuming n to be large

in Eq. (14), the Bessel function can be approximated to the
Airy function as Jn

(
A
ω

)
= A

ω Ai
[
A
ω

(
n− A

ω

)]
. Furthermore,

using the approximation π cotπz ≈
∑∞
n=−∞

1
z−n , the

LZSM transition rate becomes

W (ε0) =
π∆2ζ2

2ω
Ai2

[
ζ

ω
(ε0 −A)

]
exp−t1/T2 , (15)

where

ζ = (2ω/A)1/3, and t1 = 2 [π − arcsin(ε0/A)] /ω (16)

is the time after the first passage. We restore ~ and write the
parametric capacitance explicitly:

Cpm = C0
pm

2πAi′ (u) Ai (u)(
1 + γAi2 (u)

)2 , u =
ζ (ε0 −A)

~ω
, (17)

where

C0
pm(ε0) =

e2α−α+ζγ

π~ω

[
1− exp

(
− tR
TR

)]
, (18)

γ = T1
πζ2∆2

~2ω
exp(−t1/T2). (19)

Using Eq. (17), in Fig. 1(d), we show a plot of the normalized
Cpm as a function of the reduced detuning ε0/A forA = ε̂ and
ω/2π = 11 GHz, T1 = 50 ns, T2 = 35 ps, and TR = 30 ps.
For values ε0 < A, the parametric capacitance shows an
oscillatory behaviour as a function of detuning, whereas for
ε0 > A the signal decays exponentially. In the oscillatory re-
gion, the variation of the amplitude of the oscillations with
detuning is determined by T2 and TR, whereas the overall
amplitude depends on ω, T1, T2, and TR. To facilitate the
understanding of the functional dependence Cpm, in the limit
ε0 < A, we find that Eq. (17) can be simplified to

Cpm = C0
pm (VTG) cos

[
2π
VTG − VTG,0

δVTG

]
, (20)

where δVTG = π~ω/(2
√

2eα−) is the top-gate voltage period.
To elucidate the validity of our model, we study the imple-
mentation of the quantum interference capacitor using LZSM
interferometry in a single-electron DQD strongly driven by a
microwave (MW) field.
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(a)                                         (b)                                            (c)

FIG. 3. Microwave frequency dependence: experiment and theory. (a) Experimental normalized response of the resonator phase shift as a
function of the top-gate voltage for microwave frequencies ω/2π = 4.72 (black), 6.9 (red), 8 (blue), 11 (green), 15 (purple), 21 GHz (yellow).
Traces are displaced upwards by 1.8 for clarity. (b) Calculated normalized parametric capacitance as a function of the reduced detuning for the
same frequencies as in (a) using T1 = 50 ns, T2 = 35 ps, and TR = 30 ps. Traces are displaced upwards by 1.45. (c) Position in VTG of the
maximum of the Fourier transform of the experimental data in (a) as a function of ω, and linear fit as theoretically expected from the Fourier
transform of Eq. (20).

III. EXPERIMENTAL RESULTS

We now turn to a concrete implementation of the quantum
interference capacitor, consisting of a single-electron DQD in
which we perform LZSM interferometry. Our device con-
sists of a silicon nanowire transistor fabricated using indus-
trial 300 mm silicon-on-insulator (SOI) technology, as de-
scribed in previous work35,36,42 and shown in Fig. 2(a). The
nanowire is 11 nm high, with a width of 60 nm, while a 40 nm
wide wrap-around top-gate covers the nanowire, separated
by a SiO2/HfSiON dielectric layer. In such square-section
transistors, when a positive top-gate voltage (VTG) is applied,
electron accumulation occurs along the top-most corners of
the channel, resulting in a DQD in parallel with the source
and drain electron reservoirs. This situation is shown in the
schematic in Fig. 2(b). The use of SOI technology enables
back-gating the device by applying a voltage (VBG) to the sil-
icon intrinsic handle wafer, made temporarily conductive by
flashing a blue LED placed on the sample printed circuit board
at 35 mK.

To measure the parametric capacitance of the DQD, we em-
ploy gate-based radiofrequency (RF) reflectometry by embed-
ding the transistor in an electrical LC resonator via the top-
gate electrode43–47. The resonator consists of a surface mount
inductor (L = 390 nH) in series with the parallel combination
of the parasitic capacitance to ground and the device differen-
tial capacitance Cdiff, see Fig. 2(a). In this case, both parasitic
capacitance and geometrical capacitance of the device can be
lumped together in a total capacitance term, CT = 660 fF.
Changes in Cpm due to single electron tunneling events, man-
ifest as changes in the natural frequency of oscillation of the
resonator, ωr(Cpm) = 1/

√
L(CT + Cpm). Since we measure

at a fixed frequency ωr0 = ωr(0) = 2π × 313 MHz, capac-

itance changes appear as variations in the phase response of
the reflected signal

∆Φ = −2QCpm/CT, (21)

where Q is the resonator loaded quality factor, Q ∼ 40.
To detect these phase changes we use low-noise cryogenic
and room-temperature amplification combined with homo-
dyne detection.

In order to perform LZSM interferometry, we apply MW
signals directly to the source of the transistor. We operate the
DQD in the charge-qubit regime. The DQD is further coupled
to an electron reservoir at the source and drain, with one quan-
tum dot being significantly more coupled to the reservoirs than
the other, as shown in Fig. 2(b). We measure the charge sta-
bility diagram of the device as a function of the top and back
gates, as shown in Fig. 2(c). We see four stable charge con-
figurations (n1n2). In the absence of additional charge transi-
tions at lower gate voltages, we tentatively conclude that lower
voltages result in the system being depleted of electrons. We
therefore operate in the single-electron regime, with the elec-
tron occupying the left or right dot, denoted as the state (10) or
(01). Loading or unloading of an electron from or into a reser-
voir leads to the states (11) and (00), respectively. From the
FWHM of the interdot charge transition line [(10)↔ (01)],40

we extract ∆ = 34 µeV.
Next, we apply MWs (with the amplitude A = ε̂ and fre-

quency ω/2π = 11 GHz) to the source of the transistor, effec-
tively varying VTG at a fixed VBG, as indicated along the set of
lines in Fig. 2(c). The MW field drives the system back and
forth between the different charge states. For example, if the
system begins in state (11), indicated by point A in Fig. 2(c),
and is then driven to lower gate voltage (point B), an elec-
tron exits the DQD: state (01). At even lower gate voltages
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(point C), the system traverses the (01)-(10) anticrossing, the
system performs a LZSM transition and its wave function is
therefore split into two components, acquiring different dy-
namical phases. Upon a sweep back to higher gate voltage,
the system undergoes a second passage through the anticross-
ing, resulting in interference in the probabilities of the (10)
and (01) states (point B again). Finally, the state (01) is pro-
jected by relaxation to the (11) state in point A and the cycle
starts again. Since ωr � ω, the resonator sees an average of
the occupation probabilities of the DQD at each point in de-
tuning. These changes in probabilities manifest as changes in
the parametric capacitance of the DQD, which we detect via
changes in the phase response.

In Fig. 2(d), we plot the results of the drive sequence in
Fig. 2(c), where we show the normalized phase response,
∆Φ/∆Φ0, as a function of VTG for VBG = −4.3 V. For
VTG < 0.4875 V , where LZSM interference occurs, we ob-
serve the predicted oscillatory phase response. The oscilla-
tions decrease in amplitude when decreasing VTG, as predicted
by our model, see Fig. 1(d). Finally, for VTG > 0.4875 V , the
phase response decays rapidly as predicted by Eq. (17).

IV. COMPARISON BETWEEN THEORY AND
EXPERIMENT

Comparing Fig. 1(d) and Fig. 2(d), we observe a good
agreement between our theoretical prediction and the exper-
iments. The calculations reproduce the experimentally ob-
served oscillating dependence and amplitude attenuation of
the capacitance, with good agreement in the voltage regions
in which the LZSM experiments were performed. Now, we
explore further the validity of our model by probing the sys-
tem at different MW frequencies. In Fig. 3(a), we show the
normalized resonator phase response as a function of VTG for
six different frequencies, ranging from 4.72 GHz (black) to
21 GHz (yellow). Additionally, in Fig. 3(b), we show the nor-
malized parametric capacitance obtained with Eq. (17) using
the same frequencies as in the experiment, with T1 = 50 ns,
T2 = 35 ps, and TR = 30 ps. We observe that our model
reproduces well the experimental results. It captures the fre-
quency and detuning dependence of the amplitude oscilla-
tions, as well as the change in oscillation lineshape at the high-
est MW frequencies (see yellow trace). Changing the rate at
which the system is driven enables testing both the oscillat-
ing dependence and the amplitude of the signal predicted by
Eq. (17).

First, we explore the oscillating shape of the signal. In
Fig. 3(c), we plot the top-gate voltage at which the maximum
in the Fourier transform of the data in Fig. 3(a) occurs for dif-
ferent MW frequencies. We observe a linear relation between
both magnitudes. The results confirm the functional depen-
dence between the parametric capacitance and VTG proposed
in Eq. (20). From the fit we extract a QD gate coupling differ-
ence, α− = 0.06± 0.004.

Next, in Fig. 4, we explore the dependence of the ampli-
tude of the capacitance oscillations with VTG (or equivalently
ε0) and ω. In Fig. 4(a), we show the data for the normalized

(a)                        

(b) -

FIG. 4. Amplitude analysis. (a) Experimental normalized phase re-
sponse as a function of the reduced detuning for ω/2π = 11 GHz
and the envelope of the oscillations obtained using the envelope of
Eq. (17) and T2 = 35 ps and TR = 30 ps (red). (b) Experi-
mental normalized peak-to-peak amplitude of phase response (black
dots). Calculated normalized peak-to-peak parametric capacitance
as a function of the MW frequency for an intrinsic relaxation time
T1 = 50 ns, T2 = 35 ps, and TR = 30 ps (blue dotted line).

phase response as a function of reduced detuning, where we
have used Eq. (4) with V 0

TG = 0.475 V and A = 1.35 meV. In
this case, we show the data for the cycle involving (00)-(10)
particle exchange with the reservoir to show the symmetry of
the signal with respect to ε = 0. Here, we observe the ampli-
tude of the oscillations decaying with increasing VTG. Look-
ing at Eq. (17), we see that the envelope of the oscillations
is determined by T2 and TR. Intuitively, for values ε0 ≈ A,
the system spends less time after the first passage and hence
the effect of decoherence in the amplitude of the signal is re-
duced. Additionally, at this detuning setting, the system has
more time to tunnel to the reservoir increasing the overall am-
plitude of the signal. On the contrary, for values ε0 ≈ 0, the
system has more time to decohere and less to tunnel to the
reservoir, leading to a reduced phase amplitude. The shape of
the envelope allows determining T2 = 35 ps and TR = 30 ps,
extracted from the fit (red lines in Fig. 4(a)) .

Finally, in Fig. 4(b), we explore the peak-to-peak ampli-
tude of the capacitance oscillations as a function of ω. As we
increase the frequency, we observe an increase in the peak-to-
peak amplitude until ω/2π ≈ 10 GHz, where it starts to de-
cay. These results can be explained as a competition between
the different timescales of the system, T1, T2, and TR, as can
be seen in Eq. (17). In the following, we explain this com-
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petition qualitatively. Starting at low ω, where the frequency
is still comparable to the decoherence rate, the system can-
not always complete the LZSM interference cycle leading to
a lower capacitance signal. As we increase the frequency, the
signal increases because, on average, more LZSM cycles are
completed. However, as we continue increasing ω, the TR pro-
cesses start to matter since the system may not have sufficient
time to relax to the reservoir. The position of the maximum
in this experiment is determined primarily by the competition
of these two processes. However, in general the ratio between
the LZSM transition rate and the DQD relaxation rate influ-
ences the position of the maximum. In our case, we observe
a dependence of the maximum with T1 that enables estimat-
ing this parameter. In Fig. 4(b), we plot the best fit, using the
already extracted values of T2 = 35 ps and TR = 30 ps, and
find T1 = 50 ns. Both charge relaxation and coherence times
are compatible with other measurements in silicon qubits17.
Overall, the good agreement between the theoretical model
and the experiment indicates a viable scheme for the quantum
interference capacitor and enables understanding the different
timescales of the system from the shape of the capacitance
curves.

V. CONCLUSIONS

In this article, we have introduced the idea of a capacitor
that obtains its functionality from quantum interference in a
system with discrete charge states. We have demonstrated
a particular implementation using a single-electron double
quantum dot coupled to an electron reservoir under the effect
of a strong MW driving field. The system shows an oscil-
latory behaviour of the capacitance as a function of the QD

energy level detuning, whose amplitude is determined by the
charge relaxation time T1, coherence time T2, and tunneling
time to the reservoir TR. The voltage period of the capaci-
tance oscillations is directly proportional to the frequency of
the MW excitation. Our model, based on a semi-classical
master-equation formalism, captures the dynamics of the sys-
tem and enables predicting the capacitive response of a DQD
in the double-passage LZSM regime. Our work opens up an
opportunity to use the non-linear capacitance of double quan-
tum dots to design devices with enhanced functionality.
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