
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Fragile topology protected by inversion symmetry:
Diagnosis, bulk-boundary correspondence, and Wilson loop

Yoonseok Hwang, Junyeong Ahn, and Bohm-Jung Yang
Phys. Rev. B 100, 205126 — Published 18 November 2019

DOI: 10.1103/PhysRevB.100.205126

http://dx.doi.org/10.1103/PhysRevB.100.205126


Fragile Topology Protected by Inversion Symmetry: Diagnosis, Bulk-Boundary
Correspondence, and Wilson Loop

Yoonseok Hwang,1, 2, 3 Junyeong Ahn,1, 2, 3 and Bohm-Jung Yang1, 2, 3, ∗

1Department of Physics and Astronomy, Seoul National University, Seoul 08826, Korea
2Center for Correlated Electron Systems, Institute for Basic Science (IBS), Seoul 08826, Korea

3Center for Theoretical Physics (CTP), Seoul National University, Seoul 08826, Korea
(Dated: October 31, 2019)

We study the bulk and boundary properties of fragile topological insulators (TIs) protected by
inversion symmetry, mostly focusing on the class A of the Altland-Zirnbauer classification. First,
we propose an efficient method for diagnosing fragile band topology by using the symmetry data
in momentum space. Using this method, we show that among all the possible parity configurations
of inversion-symmetric insulators, at least 17 percent of them have fragile topology in 2D while
fragile TIs are less than 3 percent in 3D. Second, we study the bulk-boundary correspondence of
fragile TIs protected by inversion symmetry. In particular, we generalize the notion of d-dimensional
(dD) kth-order TIs, which is normally defined for 0 < k ≤ d, to the cases with k > d, and show
that they all have fragile topology. In terms of the Dirac Hamiltonian, a dD kth-order TI has
(k − 1) boundary mass terms. We show that a minimal fragile TI with the filling anomaly can
be considered as the dD (d + 1)th-order TI, and all the other dD kth order TIs with k > (d + 1)
can be constructed by stacking dD (d + 1)th-order TIs. Although dD (d + 1)th-order TIs have no
in-gap states, the boundary mass terms carry an odd winding number along the boundary, which
induces localized charges on the boundary at the positions where the boundary mass terms change
abruptly. In the cases with k > (d+ 1), we show that the net parity of the system with boundaries
can distinguish topological insulators and trivial insulators. Also by studying the Wilson loop and
nested Wilson loop spectra, we show that all the spectral windings of the Wilson loop and nested
Wilson loop should be unwound to resolve the Wannier obstruction of fragile TIs. By counting the
minimal number of bands required to unwind the spectral winding of the Wilson loop and nested
Wilson loop, we determine the minimal number of bands to resolve the Wannier obstruction, which
is consistent with the prediction from our diagnosis method of fragile topology. Finally, we show
that a (d + 1)D (k − 1)th-order TI can be obtained by an adiabatic pumping of dD kth-order TI,
which generalizes the previous study of the 2D 3rd-order TI.

I. INTRODUCTION

Understanding the role of crystalline symmetries in the
topological properties of materials is a central topic in re-
cent studies of condensed matter. Soon after the discov-
ery of topological insulators protected by time-reversal
symmetry [1, 2], topological insulators (TIs) and topo-
logical superconductors (TSCs) have been systematically
classified into ten-fold Altland-Zirnbauer (AZ) classes [3],
based on non-spatial symmetries including time-reversal,
particle-hole, and chiral symmetries [4–6]. In this classi-
fication, TIs are characterized by nontrivial topological
invariants and have a Wannier obstruction that is stable
against adding trivial bands. Also d-dimensional (dD)
TIs possess stable gapless states at the (d− 1)D bound-
aries, which is called the bulk-boundary correspondence.

On the other hand, the topological properties of crys-
talline solids can also be protected by space group sym-
metries, which are realized in topological crystalline insu-
lators (TCIs) [7, 8]. Compared to the TIs and TSCs clas-
sified based on ten-fold AZ classes, TCIs have extremely
rich structures because of the large variety of crystalline
symmetries forming 230 space groups and 1651 magnetic
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space groups [9–15]. For instance, recent studies of TCIs
have revealed two intriguing properties that are absent
in the ten-fold classification of TIs and TSCs, that is,
the fragile topology and the higher-order bulk-boundary
correspondence.

Fragile topology is one interesting characteristics of
some TCIs discovered in recent theoretical studies [16–
27]. In general, TCIs are not adiabatically deformable to
atomic insulators without breaking symmetries, that is,
they have an obstruction to constructing exponentially
localized symmetric Wannier states [28–30]. However,
the Wannier obstruction of fragile TIs can be resolved
by adding appropriately chosen trivial bands. This prop-
erty of fragile TIs is clearly distinct from the properties of
TCIs with stable topology whose band topology is not af-
fected by additional trivial bands. Because of this, TCIs
with stable topology can be classified by K-theory [9, 31–
35], where the equivalence class of insulators is examined
when adding trivial bands are allowed. This, at the same
time, implies that K-theory is not an appropriate tool
to study fragile TIs. In general, two different approaches
can be considered to examine the Wannier obstruction of
fragile TIs. One is to investigate the symmetry represen-
tation of exponentially localized Wannier states [16, 21–
24, 26, 27], and the other is to study the winding pattern
of the Wilson loop spectrum [17–20, 23, 26, 27]. While
both approaches have been applied successfully to char-
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acterize the fragile topology of some specific models, the
general characterization of fragile TIs based on them has
not been achieved yet.

Another intriguing property of some TCIs is that they
do not follow the conventional bulk-boundary correspon-
dence. Recently, it has been found that some TCIs have
gapless states only in some subspace of the boundary such
as hinges or corners [26, 36–61]. In general, dD topologi-
cal phases with gapless states in (d−k)D boundaries are
called dD kth-order topological phases. In particular,
when 1 < k ≤ d, they are called higher-order topologi-
cal phases and their bulk-boundary correspondence has
recently been well-established [43, 44, 46, 52].

On the other hand, the nature of boundary states of
fragile TIs is not clearly understood yet. It is gener-
ally expected that the bulk-boundary correspondence of
fragile TIs belongs to a rather trivial category. This is
because fragile TIs cannot have a peculiar spectral fea-
ture at the boundary distinct from that of atomic in-
sulators, since the boundary energy spectrum is insen-
sitive to adding trivial bands below the bulk gap. This
is also consistent with the fact that topological phases
without gapless boundary states are either fragile topo-
logical or atomic [24, 52]. Nevertheless, some charac-
teristic boundary features of fragile TIs have been re-
ported [20, 48]. For instance, it was shown that, in a
2D fragile TI protected by inversion symmetry, fractional
corner charges appear at the boundary when the geome-
try of the system preserves inversion symmetry [20, 48].
Moreover, many atomic insulators protected by rotation
symmetry were shown to host fractional corner charges
in 2D, which is similar to the case of 2D second-order
TIs [36, 37, 40, 45, 60, 61]. The origin of corner charges
in fragile topological and atomic insulators has been at-
tributed to the filling anomaly [60], which denotes an
obstruction to fulfill the electron filling for charge neu-
trality when the relevant crystalline symmetry is pre-
served [20, 40, 48, 60, 61]. To understand the generic
boundary properties of fragile TIs and atomic insulators,
it is highly desirable to establish their bulk-boundary cor-
respondence beyond that of stable topological insulators.

In this work, we fully characterize the bulk and bound-
ary properties of fragile TIs protected by inversion sym-
metry. First, we establish the bulk-boundary correspon-
dence of fragile TIs protected by inversion symmetry. For
this purpose, we generalize the notion of the dD kth-
order TIs to the cases with k > d, and show that the dD
(d+ 1)th-order TIs have fragile topology and exhibit the
filling anomaly with the associated boundary charge ac-
cumulation. On the other hand, dD kth-order TIs with
k > d+ 1 have a featureless boundary even though they
have fragile topology. Second, we propose an efficient
scheme to diagnose fragile band topology by using the
symmetry data in momentum space. Using this method,
we show that among all the possible parity configurations
of inversion-symmetric insulators, at least 17 percent of
them have fragile topology in 2D while only 3 percent
are fragile TIs in 3D. Finally, we show that the fragile

topology of dD kth-order TI with k > d is manifested
in the relative winding of the Wilson loop and nested
Wilson loop spectra. Here, we mainly focus on the class
A of AZ classification that does not have time-reversal,
particle-hole, chiral symmetries. However, we anticipate
that the idea we propose here can be generalized to other
AZ classes. In particular, the Dirac Hamiltonians of gen-
eralized higher-order topological phases are discussed in
Appendix E.

To generalize the notion of the higher-order topology
to the cases with k > d, we use the Dirac Hamiltonian
approach that has been developed recently to understand
the higher-order topology with 1 < k ≤ d [44]. In Ref. 44,
it is shown that when a Dirac Hamiltonian has (k − 1)
mass terms odd under inversion in addition to the mass
term even under inversion, the Dirac Hamiltonian de-
scribes a kth-order topological phase. The mass term
even under inversion is the bulk mass term M while the
other mass terms odd under inversion are boundary mass
terms ma,r (a = 1, · · · , k−1). Then the energy gap at the

boundary Eg = 2
√∑k−1

a=1 m
2
a,r vanishes in the (d − k)D

subspace of the boundary, because the boundary mass
terms vanish there due to the constraint ma,r = −ma,−r
imposed by inversion symmetry.

Using the Dirac Hamiltonian formalism, it is straight-
forward to extend the notion of higher-order topology
to the cases with k > d [51, 57, 59]. For instance, dD
(d+ 1)th-order TIs have d boundary mass terms, so the
boundary is fully gapped in general. In this case, even
though the boundary is gapped, inversion symmetry re-
quires that the (d+ 1) mass terms, including d boundary
mass terms and the bulk mass term, form a Skyrmion-
like structure in real space, and have an odd winding
number along the boundary. In Refs. [57] and [59], it
was shown that 3D 4th-order Dirac Hamiltonian in R3

is equivalent to a bound state at the origin. However,
the relevant bulk-boundary correspondence was not dis-
cussed. In this paper, we show that the winding number
of boundary mass terms gives rise to the filling anomaly
using the Goldstone-Wilczek formula [62]. A related idea
has already been proposed for d = 2 in Ref. 20 but our
theory is generally valid in arbitrary spatial dimensions.
We also clarify the spatial location of extra charge ac-
cumulation or depletion. According to the Goldstone-
Wilczek formula, since the extra charge density is deter-
mined by the mass winding density, the extra charges
are localized in the region where the mass terms change
rapidly. Since the bulk mass term changes rapidly at the
boundary, the induced charges are naturally located at
the boundary. The actual location of the extra charge is
the position on the boundary where the boundary mass
terms vary abruptly. Because of this reason, when the ge-
ometry of the system has sharp corners, the extra charges
appear there. On the other hand, when the geometry of
the system has only smooth boundary, the extra charges
are spread over the whole boundary, as confirmed by nu-
merical calculations.
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Under the periodic boundary condition in which the
fragile band topology is defined, dD (d + 1)th-order TIs
can be constructed in the following way. We start from an
insulator with 2d−1 occupied bands in which all the occu-
pied bands have positive parities at all inversion-invariant
momenta. Let us call such an insulator as a trivial-parity
insulator. Then, replacing all the positive parity states at
an odd number of inversion invariant momenta by neg-
ative parity states gives a dD (d + 1)th-order TIs. In
particular, when a dD (d + 1)th-order TI has negative
parity states only at a single inversion-invariant momen-
tum, the transition between the trivial-parity insulator
and the dD (d+1)th-order TI can naturally be described
by a Dirac Hamiltonian. In this construction, dD kth-
order TIs with k > d have the fragile band topology. In
particular, a minimal fragile TI with the filling anomaly
can be considered as a dD (d + 1)th-order TI. One can
construct a dD kth-order TI with k > (d+1) by stacking
dD (d + 1)th-order TIs. In general, a dD kth-order TI
with k > (d + 1) does not have any nontrivial feature
at the boundary although it has fragile topology. Nev-
ertheless, we show that the trivial-parity insulator and
dD kth-order TI can be distinguished by the net parity
I = N−−N+ [14, 63, 64] of a finite-size system with open
boundary, defined by the difference between the number
of occupied states with odd parity N− and the number
of occupied states with even parity N+. In fact, the net
parity I defined for the given geometry of the finite-size
system is identical to one of bulk topological invariants
for inversion-symmetric fragile TIs and atomic insulators.
This is consistent with the layer construction proposed in
Refs. 52, 56, 58, 63, and 64.

The properties of fragile TIs discussed above are rigor-
ously confirmed by analyzing the symmetry data, that is,
the inversion parities at inversion-invariant momenta in
the Brillouin zone. In fact, in recent studies, it is found
that parities can be organized in the form of symme-
try indicators that distinguish stable topological phases
from fragile topological or atomic insulators [11]. How-
ever, this method cannot analyze fragile TIs. Here we
establish a simple criterion that can be used to distin-
guish fragile TIs from atomic insulators efficiently. Using
this method, we estimate the number of the parity con-
figurations corresponding to inversion-symmetric stable
TIs, fragile TIs, and atomic insulators, respectively, in
both 2D and 3D.

To investigate the fragile topology further, we system-
atically examine how many trivial bands are required
to turn a fragile TI to an atomic insulator. Using
our criterion for fragile topology, we show that for the
dD (d + 1)th-order TI which has 2d−1 occupied bands,
(2d−1−1) bands are needed to trivialize the fragile topol-
ogy. We explain why (2d−1 − 1) bands are necessary
for trivialization by using the Wilson loop method. The
idea is that all the spectral winding of Wilson loops [65–
67] and (generalized) nested Wilson loops [36, 37] have
to be unwound to completely resolve the Wannier ob-
struction in fragile topological phases. Explicitly, we

show that the total number of bands needed to trivi-
alize the dD (d+ 1)th-order TIs can be decomposed into
2d−1 − 1 = 2d−2 + 2d−3 + · · · + 1, where 2d−2−l is the
number of bands needed to remove the spectral winding
of the lth nested Wilson loop (l = 0, 1, 2, · · · ). Here the
zeroth nested Wilson loop denotes the conventional Wil-
son loop. We also generalize this idea to dD kth-order
TIs with k > (d+ 1) which also have fragile topology.

The rest of this paper is organized as follows. We start
Sec. II with the Su-Schrieffer-Heeger (SSH) model in or-
der to introduce the concepts of dD (d + 1)th-order TIs
and its higher-order generalizations. Although there is
no fragile TI in one dimension because there is no Wan-
nier obstruction in one dimension [68], all the idea related
with the bulk-boundary correspondence can be general-
ized straightforwardly to higher dimensions. In Sec. III,
we introduce the Dirac Hamiltonians of dD kth-order TIs
for arbitrary d and k. Then, we show that the d bound-
ary mass terms of dD (d+1)th-order TI have a nontrivial
winding number on the boundary in the presence of inver-
sion symmetry. The winding number of boundary mass
terms is directly connected to the induced current which
dictates the nontrivial charge accumulation at the bound-
ary. In Sec. IV, we construct a mapping between a par-
ity configuration in the Brillouin zone and the inversion-
symmetric Wannier states. With the mapping, we obtain
(2d + 1) invariants for the class A inversion-symmetric
insulators in d dimensions. From this, we develop an effi-
cient method for diagnosing the atomic, fragile topologi-
cal, and stable topological phases and classify all the pos-
sible parity configurations in two and three dimensions.
Also, we introduce the net parity of a finite-size system
with open boundary and the condition for the presence
of the filling anomaly. In Sec. V, we demonstrate our
theoretical prediction through numerical calculations of
tight-binding models with open boundary condition. In
Sec. VI, we show that fragile topological phases protected
by inversion symmetry are characterized by the relative
winding [66] in the (nested) Wilson loop spectrum, which
is fragile against adding trivial bands. Using the 3D 4th-
order TI as a concrete example, we count the number of
trivial bands needed to unwound the relative winding in
the Wilson loop and the nested Wilson loop spectra and
show that this matches with the result expected from our
diagnosis method. Then, we generalize this counting to
the case of dD kth-order TIs. In Sec. VII, we study the
general pumping process of inversion-symmetric insula-
tors. Specifically, we construct (d + 1)D (k − 1)th-order
TI by a pumping of dD kth-order TI, which generalizes
the result in Ref. 20 for d = 2 and k = 3. Finally, we
conclude in Sec. VIII.
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II. SYMMETRY DATA AND GENERALIZED
HIGHER-ORDER TOPOLOGY IN

ONE-DIMENSION

Here we introduce the notion of the generalized higher-
order topology in one-dimensional (1D) systems by con-
sidering the Su-Schrieffer-Heeger (SSH) model [69] and
its multiple copies. Let us note that the meaning of
“topological phases” is a bit subtle in 1D, since only
atomic and obstructed atomic insulators exist in 1D [68],
in contrast to higher dimensional systems where topolog-
ical phases mean the phases with either fragile or stable
band topology. For convenience, however, here we use
the term “topological phases” to denote the obstructed
atomic insulators in 1D systems.

A. Second-order topology in 1D

Let us begin with the 1D SSH model Hamiltonian with
inversion symmetry,

HSSH(k) = sin k σx + (t+ cos k)σz, (1)

which is invariant under inversion symmetry I = σz as
well as chiral symmetry S = σy, that is,

IHSSH(k)I−1 = HSSH(−k),

SHSSH(k)S−1 = −HSSH(k). (2)

The energy spectrum is given by E(k) =

±
√

sin2 k + (t+ cos k)2, which is gapped when |t| 6= 1.

When t = 1 (t = −1), the band gap closes at k = π
(k = 0).

The insulating phases are distinguished by a topolog-
ical invariant, which is nothing but the winding number
of the two-component vector (t+ cos k, sin k) around the
origin (0, 0), so that the insulating phase is topological
when |t| < 1 while it is trivial when |t| > 1.

The topological and trivial insulators can also be dis-
tinguished by the parity configuration of occupied states
at inversion-invariant momenta. In the trivial phase, the
parity of the occupied band at k = 0 (p0) and that
at k = π (pπ) is (p0, pπ) = (−,−) when t > 1 while

TABLE I. The parity of the occupied state at inversion-
invariant momenta of inversion-symmetric atomic insulators.
s and p denote the even- and odd-parity states, respectively.
A and B are Wyckoff positions of 1D inversion-symmetric
lattices shown in Fig. 1(a).

Orbital k = 0 k = π

s(A) + +

p(A) − −
s(B) + −
p(B) − +

(a) (b)

A B
s

p

Trivial Topological

(c) (d)
δ=-1δ=1

FIG. 1. The Wannier center of 1D SSH model and filling
anomaly. (a) Wyckoff positions A and B of a 1D inversion-
symmetric lattice. s and p orbitals are denoted by the blue
and red circles, respectively. (b) The parity configurations of
trivial and topological phases are equivalent to those of the
atomic insulators s(A) and p(B), respectively. (c) A finite-
size trivial insulator with open boundaries, which is inver-
sion symmetric. (d) A finite-size topological phase with open
boundaries cannot be made inversion symmetric. In order
to have inversion-symmetric ground state, one extra electron
must be added (δ = 1) or removed (δ = −1) to the half-filled
system, which is called the filling anomaly [60].

(p0, pπ) = (+,+) when t < −1. In the topological phase
with |t| < 1, (p0, pπ) = (−,+). Table I shows the parity
configurations of atomic insulators with inversion sym-
metry, which shows that the parity configuration of the
topological insulator is equivalent to that of the atomic
insulator with a p orbital at the Wyckoff position B. On
the other hand, the parity configuration of the trivial in-
sulator is equivalent to that of the atomic insulator with
a s (p) orbital at the Wyckoff position A when t < −1
(t > 1) [See Fig. 1(b)].

To examine the surface states, let us construct a het-
erostructure composed of a topological insulator in the
region with |x| < L/2 and trivial insulators on the sides
with |x| > L/2. Such a heterostructure can also be de-
scribed by the Hamiltonian in Eq. (1) when t depends on
the spatial coordinate x. For simplicity, we assume that
−1 < t(x) < 1 for |x| < L/2 and t(x) < −1 for |x| > L/2.
Since the band gap closes at k = 0 at the critical point
with t = −1, one can consider the following low energy
Dirac Hamiltonian

H(1,1) = kσx + ϕ1(x)σz, (3)

where ϕ1(x) ≡ 1+ t(x) that plays the role of a bulk mass
term. Then ϕ1(x) > 0 for |x| < L/2 and ϕ1(x) < 0 for
|x| > L/2. ϕ1(x) = ϕ1(−x) due to inversion symmetry.
Let us note that the symbolH(d,k) indicates the dD Dirac
Hamiltonian with k anti-commuting mass terms.

When the length L is sufficiently large, there are two
zero-energy states at two edges (or two domain walls),
where the bulk mass term ϕ1(x) changes its sign [See
Fig. 2(c)]. Because of inversion symmetry, the two edge
states should be either occupied or unoccupied simultane-
ously. Thus, an inversion-symmetric ground state cannot
satisfy the exact half-filling condition, which is described
in Figs. 1(c) and 1(d). This phenomenon is known as the
filling anomaly [60].
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N/2-1

N/2+1
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E
N/2-1

N/2-1

20

FIG. 2. Mass profiles of the 1D SSH model and the rele-
vant charge density and energy spectrum. (a) A heterostruc-
ture composed of a 1D topological insulator at |x| < L/2
sandwiched by trivial insulators at |x| > L/2. The do-
main walls between the trivial and topological insulators
described in Eqs. (3) and (4) are implemented by using

ϕ1(x) = −1 − tanh(x−L/2
l1

) + tanh(x+L/2
l1

) and ϕ2(x) =

0.2
(

exp[−(x−L/2
l2

)2] − exp[−(x+L/2
l2

)2]
)
. l1 = l2 = L

10
are

used. The domain of the topological insulator is depicted by
a brown rod. Two ends of the rod are located at x = ±L

2
. (b)

The accumulated charge density ρ when the second mass term
ϕ2(x) is added. ρ(x) is localized only in the region where the
bulk mass ϕ1(x) changes its sign. (c) The energy spectrum of
H(1,1) in Eq. (3). Two zero-energy states localized at domain
walls are degenerate due to inversion symmetry. (d) The en-
ergy spectrum of H(1,2) in Eq. (4) with the boundary mass
term ϕ2(x) that breaks chiral symmetry but preserves inver-
sion symmetry. The pair of domain wall states are merged
into the bulk spectrum. There is a single hole in the valence
band at half-filling indicating the filling anomaly.

Let us now break chiral symmetry by adding an
inversion-symmetric second mass term ϕ2(x) to H(1,1),
which gives

H(1,2) = kσx + ϕ1(x)σz + ϕ2(x)σy, (4)

where ϕ2(x) = −ϕ2(−x). We assume that ϕ2(x) is finite
only around the domain wall and call this type of mass
terms as “boundary” mass terms. The Dirac Hamilto-
nian with (k − 1) boundary mass terms describes a kth-
order topological insulator. In this respect, H(1,2) means
the Dirac Hamiltonian of 1D second-order TI. We gen-
eralize the notion of dD kth-order TI for arbitrary k in
Sec. III A.

The boundary mass term ϕ2 makes the energy of the
edges states shifted from zero. However, since inversion
symmetry is maintained, the two edge states are still de-
generate, and thus the filling anomaly remains. In par-
ticular, the profile of ϕ2 depicted in Fig. 2(a) lowers the
energy of the edge states. When the edge states are oc-
cupied simultaneously, the system has one extra charge
relative to the half-filling, and the resulting phase is said
to have the filling anomaly with δ = 1 [See Fig. 2(d)].

The extra charge density accumulated at a domain wall
shown in Fig. 2(b) is given by the Goldstone-Wilczek
formula [62]

ρ(x) =
1

2π
εab

ϕa∂xϕb
ϕ2

=
1

2π
∂x tan−1

(ϕ2

ϕ1

)
. (5)

It is worth noting that Eq. (5) shows that the extra charge
is accumulated mostly at the domain wall, even when
the edge spectrum merges into the bulk spectrum. This
is because the bulk mass term ϕ1 varies only near the
domain wall where the accumulated charge density is lo-
cated. This property is shared by any dD (d+1)th-order
inversion-symmetric TIs as shown in Sec. III C.

The total amount of the extra charge Q =
∫
dxρ(x)

is given by the winding number of (ϕ1, ϕ2). Note that
we can compactify R1 to S1 since (ϕ1, ϕ2) → (−1, 0) at
x → ±∞, and thus the integer winding number can be
defined. The boundary conditions on ϕ1 and ϕ2 imposed
by inversion symmetry constrain Q to be 1. This result
is consistent with the picture based on the shifting of the
energy level of the edge states by adding ϕ2. When the
bulk mass term ϕ1(x) changes its sign near each domain

wall, tan−1
(
ϕ2

ϕ1

)
is abruptly changed by π. Therefore,

a half-integral charge should be accumulated at each do-
main wall.

B. Third- and fourth-order topology

The idea of higher-order topology can be generalized
further even to the cases with k > (d + 1). To illus-
trate the idea, let us first consider two copies of the SSH
model. The relevant Hamiltonian is obtained by doubling
HSSH(k) in an inversion-symmetric way as

H(k) = τx ⊗HSSH(k)

= sin k τxσx + (t+ cos k) τxσz. (6)

The corresponding Dirac Hamiltonian linearized near
k = 0 is

H = k τxσx + ϕ1(x) τxσz, (7)

where ϕ1(x) > 0 for |x| < L/2 and ϕ1(x) < 0 for |x| >
L/2, which again describes a heterostructure with two
domain walls at x = ±L/2. The Hamiltonian H is invari-
ant under inversion symmetry I = τxσz and chiral sym-
metry S = τzσ0. When chiral symmetry S = τzσ0 is pre-
served, two boundary mass terms ϕ2(x)τxσy+ϕ3(x)τyσ0

are allowed. Adding them to H gives

H(1,3) =k τxσx + ϕ1(x) τxσz+

+ϕ2(x) τxσy + ϕ3(x) τyσ0, (8)

where ϕ2,3(x) = −ϕ2,3(−x). The resulting Dirac Hamil-
tonian describes a 1D 3rd-order TI belonging to class
AIII.
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(a) (b)

(c) (d)

Inversion

≃

FIG. 3. The Wannier centers of 1D third- and fourth-order
TIs and net parities. (a) Two copies of trivial insulators of
a finite-size with even Ncell. All unit cells form inversion-
symmetric pairs giving an equal number of even-parity and
odd-parity states, and thus I = 0. (b) Two copies of trivial
insulators of a finite-size with even Ncell. The upper config-
uration is rearranged into the lower one which is inversion
symmetric. All p orbitals except the two at the center within
the orange box form the equal number of bonding and anti-
bonding states, and thus I = 2. (c) Similar to (a) but with
odd Ncell. All s orbitals except the two at the center form
inversion-symmetric pairs, and thus I = −2. (d) Similar to
(b) but with odd Ncell. All orbitals form inversion-symmetric
pairs, and thus I = 0. In all cases, I ≡ N− − N+ is deter-
mined by the difference in the number of p and s orbitals at
the center within the orange box.

There is one remaining boundary mass term ϕ4(x)τzσ0

that breaks S but keeps I. By adding this term to H(1,3),
we obtain the following Dirac Hamiltonian

H(1,4) =k τxσx + ϕ1(x) τxσz + ϕ2(x) τxσy

+ ϕ3(x) τyσ0 + ϕ4(x) τzσ0, (9)

which describes a 1D 4th-order TI belonging to class A.
For both H(1,3) and H(1,4), there are neither the filling

anomaly nor zero-energy states. However, the relative
topology between the trivial and topological phases can
still be revealed by real space wavefunction.

To demonstrate the idea, let us consider a finite-size
doubled SSH model composed of Ncell unit cells in which
the total number of energy eigenstates is 4Ncell. In the
case of a trivial insulator, two s orbitals are located at the
center of each unit cell, whereas, in the case of a topolog-
ical insulator, two p orbitals are located at a boundary
of each unit cell. We first consider a trivial insulator

TABLE II. The relation between N+, N−, Ncell, and I for
doubled SSH models of finite-size, which corresponds to the
1D 3rd and 4th-order topological insulator described byH(1,3)

and H(1,4).

Ncell Phase N+ N− I

Even
Trivial Ncell Ncell 0

Topological Ncell − 1 Ncell + 1 2

Odd
Trivial Ncell + 1 Ncell − 1 −2

Topological Ncell Ncell 0

with an even integer Ncell shown in Fig. 3(a). Since a
unit cell is related with another unit cell via inversion
symmetry, their bonding and anti-bonding combinations
generate equal number of even- and odd-parity states.
That is, N+ = N− = Ncell where N+ (N−) denotes the
number of occupied bands with even (odd) parity. Sim-
ilarly, when Ncell is odd as shown in Fig. 3(c), all the
unit cells except the one at the center form inversion-
symmetric pairs, and contribute equally to N+ and N−.
However, the central unit cell containing two s orbitals
at the inversion center contributes 2 only to N+, which
leads to N+ = Ncell + 1 and N− = Ncell − 1.

Similar analysis can be done for topological insulators.
Since there is no filling anomaly, a finite-size doubled SSH
model can have inversion-symmetric atomic configura-
tions as shown in Figs. 3(b) and 3(d). In contrast to the
trivial insulator in which orbitals are located at the cen-
ter of each unit cell, the orbitals of a topological insulator
are located at the edges of each unit cell. When Ncell is
even, p orbitals at an edge are related with another p
orbitals via inversion symmetry, and their bonding and
anti-bonding combinations contribute equally to N+ and
N−. Since the remaining two p orbitals at the inversion
center contribute 2 only to N−, we have N+ = Ncell − 1
and N− = Ncell + 1. On the other hand, when Ncell is
odd, all p orbitals are related by inversion symmetry and
thus N+ = N− = Ncell. The dependence of N± on the
parity of Ncell is summarized in Table II.

The four distinct cases considered above can be distin-
guished in terms of the net parity I [14, 63, 64] defined
as (with an additional −1 in our convention)

I ≡ N− −N+. (10)

Since a pair of orbitals related by inversion symmetry
contribute equally to N+ and N−, they do not contribute
to I. Thus it is determined by the difference in the num-
ber of p and s orbitals localized at the inversion center of
the finite-size system. When Ncell is even, one can easily
find I = 0 (I = 2) for a trivial (topological) insulator.
On the other hand, when Ncell is odd, we obtain I = −2
(I = 0) for a trivial (topological) insulator [See Fig. 3].

A similar analysis can also be applied to the 1D 2nd-
order TI in which the filling anomaly exists. The result
is summarized in Fig. 4 and Table III. In fact, I can
serve as a bulk topological invariant for general inversion-

TABLE III. The relation between N+, N−, N±, and I for the
1D 2nd-order TI described by H(1,2) when the extra charge δ
is added due to the filling anomaly.

Ncell Phase N+ N− I

Even
Trivial Ncell Ncell 0

Topological 1
2
(Ncell + δ − 1) 1

2
(Ncell + δ + 1) 1

Odd
Trivial 1

2
(Ncell + 1) 1

2
(Ncell − 1) −1

Topological 1
2
(Ncell + δ) 1

2
(Ncell + δ) 0
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(a) (b)

(c) (d)

FIG. 4. The Wannier centers of 1D second-order TI and
net parities. (a) Atomic configuration for a finite-size trivial
insulator relevant to the 1D 2nd-order TI when Ncell is even.
All s orbitals form inversion-symmetric pairs, and thus I = 0.
(b) Atomic configuration for a finite-size topological insulator
relevant to the 1D 2nd-order TI when Ncell is even. The red
empty circles at the boundaries must be occupied or unoc-
cupied simultaneously because of the filling anomaly. All p
orbitals except the one at the center form inversion-symmetric
pairs, and thus I = 1. (c) Similar to (a) but when Ncell is odd.
All s orbitals except the one at the center forms inversion-
symmetric pairs, and thus I = −1. (d) Similar to (b) but
when Ncell is odd. All p orbitals form inversion-symmetric
pairs, and thus I = 0.

symmetric insulators without gapless boundary states,
which is discussed in Sec. IV E.

III. GENERALIZED HIGHER-ORDER
TOPOLOGY IN d > 1-DIMENSIONS

A. Dirac Hamiltonian approach

Here we extend the notion of dD kth-order TI with
k > d to general dimensions d > 1. We focus on the
symmetry class A of the AZ symmetry classification. For
this purpose, we use the Dirac Hamiltonian describing
the transition between two topologically distinct phases.
The Dirac Hamiltonians of inversion-symmetric TI/TSCs
have been exhaustively studied in Ref. 44 that we refer to
construct the Dirac Hamiltonian with generalized higher-
order topology.

In general, a Dirac Hamiltonian is expressed in terms
of 2n × 2n Γ matrices which satisfy the Clifford algebra
{Γi,Γj} = 2δij for i, j = 1, · · · , 2n+ 1 as

H0(k) =

d∑

i=1

kiΓi + λM, (11)

where {M,Γi} = 0 and M2 = 12n . Here 12n denotes
the 2n × 2n identical matrix. In Eq. (11), M is the bulk
mass term because the energy eigenvalues are given by
E(k) = ±

√
k2 + λ2. Changing the sign of the bulk mass

term M flips all the inversion parities at k = 0. We
choose λ > 0 (λ < 0) to mean the topological (trivial)
insulator. Here we consider the cases when the inversion
symmetry operator is identical to the bulk mass term,
i.e., I =M. When we choose M = Γ2n+1, there remain
(2n−d) additional mass terms, m1Γd+1+· · ·+m2n−dΓ2n,
which anticommute with M, and thus break inversion
symmetry when mi=1,...,2n−d are constant.

Now we consider a topological insulator with bound-
aries whose global shape is inversion symmetric, and al-
low the position r dependence of both the bulk mass
term λ(r)M and the boundary mass terms ma,rΓd+a

with a = 1, · · · , 2n − d. The corresponding inversion-
symmetric Dirac Hamiltonian including the boundary
mass terms is given by

H(k, r) =

d∑

i=1

kiΓi + λ(r)M+

2n−d∑

a=1

ma,rMa, (12)

where Ma = Γd+a and λ(r) > 0 (λ(r) < 0) inside (out-
side) the topological insulator. H(k, r) satisfies

IH(k, r)I−1 = H(−k,−r), (13)

in which ma,r = −ma,−r.
The order k of H(k, r) is defined as follows. At the

boundary r with λ(r) = 0, the energy gap is given by

2ms(r) where ms(r) =
√∑2n−d

a=1 m2
a,r. When k ≤ d

where k = 2n−d+1, all boundary mass terms ma,r van-
ish simultaneously on (d − k)D domain due to the con-
dition ma,r = −ma,−r imposed by inversion symmetry.
In this case, the order is given by k, which is the conven-
tional way of defining the order of a topological insulator.
On the other hand, when k > d, the boundary states are
fully gapped, and thus the order k cannot be well-defined.
In spite of this, however, we generalize the definition of
the order k so that (k − 1) is identical to the number of
boundary mass terms. Namely, when a dD Dirac Hamil-
tonian has (k−1) boundary mass terms, the relevant TI is
a dD kth-order TI as defined in Sec. I. Let us emphasize
once again that a dD kth-order TI in periodic systems
can be well-defined by the Dirac Hamiltonian when the
relevant trivial insulator is the trivial-parity insulator, so
that the sign reversal of the bulk mass term mediates the
transition between the trivial-parity insulator and the dD
kth-order TI.

Now we consider the Dirac Hamiltonian for dD kth-
order TI with k > d. Since a dD kth-order TI exists only
when d + k = 2l + 1 where l = 1, 2, · · · , the minimal
order k of a dD TI without gapless boundary states de-
scribed by a Dirac Hamiltonian is k = d+ 1. The Dirac
Hamiltonian of dD (d+ 1)th-order TI is

H(k, r) =

d∑

i=1

kiΓi + λ(r)M+

d∑

a=1

ma,rMa. (14)

Then dD kth-order TI with k > (d+1) can be obtained

by superposing 2
k−d−1

2 copies of dD (d + 1)th-order TI.
For instance, in 1D, we have obtained the 1D 4th-order
TI by doubling the 1D 2nd-order TI. Interestingly, all dD
kth-order TIs with k > d turn out to be a fragile phase as
shown in Sec. V. The properties of the Dirac Hamiltonian
of dD (d+ 1)th-order TI in Eq. (14) is discussed in detail
in Sec. III B and III C.
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B. Homotopy of boundary mass terms

The Dirac Hamiltonian for the boundary theory
h(k, r) is obtained via the boundary projection of the
bulk Hamiltonian [43, 44, 46, 52]

h(k, r) = P+(r)H(k, r)P+(r), (15)

where P+(r) = 1
2 (1− i(nr ·Γ)M) denotes the projection

operator to the boundary where nr is the surface normal
vector at the position r and Γ = (Γ1, · · · ,Γd). Thus, the
boundary theory of dD (d+ 1)th-order TI is given by

h(k, r) = kS · Γ̃ +

d∑

a=1

ma,rM̃a, (16)

where kS = k − (k · nr)nr denotes the boundary mo-

mentum and Γ̃i and M̃a are boundary-projected Gamma
matrices and mass matrices. The details about the
boundary projection are summarized in Appendix F. The
boundary states of Eq. (16) are gapped everywhere be-
cause of d distinct boundary mass terms. Since there is
no gapless boundary state, the system seems to be topo-
logically trivial. However, we show that the nontrivial
higher-order band topology is manifested in the nontriv-
ial winding structure of the boundary mass terms in real
space. With a unit vector ϕ(r) defined in terms of the
boundary mass terms ~mr = (m1,r, · · · ,md,r),

ϕ(r) =
~mr

|~mr|
, (17)

one can consider a mapping from the boundary posi-
tion r to the unit vector ϕ(r). Note that ϕ(r) is well-
defined since the boundary gap ms(r) = |~mr| is non-
zero everywhere on the boundary. Also ϕ(r) satisfies
ϕ(r) · ϕ(r) = 1. Since both the boundary and ϕ(r) are
homotopic to the (d−1)D sphere Sd−1, one can define the
homotopy group πd−1(Sd−1) = Z. The winding numbers
wd relevant to πd(S

d) = Z are given by

w1 =

∫
dθ

1

2π
∂θ tan−1

(ϕ2(θ)

ϕ1(θ)

)
, (18)

w2 =

∫
dθdφ

1

4π
ϕ(θ, φ) · ∂θϕ(θ, φ)× ∂φϕ(θ, φ), (19)

and similar expressions in higher-dimensions. When
the system is inversion symmetric, the unit vector ϕ(r)
should satisfy

ϕ(r) = −ϕ(−r). (20)

With this configuration, the winding number is con-
strained to be an odd integer [70]. Let us note that
even when a phase transition at the boundary occurs,
the winding number modulo 2 remains invariant due to
Eq. (20). This shows that the winding number wd of
boundary mass terms characterizes the nontrivial bulk
topology. In the following section, Sec. III C, the con-
nection between the winding number wd and the bulk-
boundary correspondence of dD (d+1)th-order TI is dis-
cussed in detail.

C. Induced U(1) current and bulk-boundary
correspondence

Consider the Dirac Hamiltonian for a dD (d + 1)th-
order TI given in Eq. (14),

H(d,d+1) = −
d∑

i=1

iΓi∂i +

d+1∑

a=1

ma,rMa, (21)

where md+1,r = λ(r) and Md+1 = M. This can be in-
terpreted as the Hamiltonian describing a massless Dirac
fermion coupled to (d + 1) scalar fields Ma. Then, the
induced electric current Jµd is given by

Jµd =
sd

d! Area(Sd)
εµµ1···µdεa1···ad+1

Φa1∂µ1
Φa2∂µ2

· · · ∂µdΦad+1
, (22)

where µ, µi = 0, 1, · · · , d, ∂0 = ∂t, Φa =
ma,r
mr

,

m2
r =

∑d+1
a=1m

2
a,r, Area(Sd) = 2π(d+1)/2

Γ( d+1
2 )

, and Γ(d) is the

Gamma function [71]. Here the sign of sd = ±1 de-
pends on the representation of Gamma matrices where
Tr[Γ1, · · · ,Γ2d+1] = 2did. In our convention for Gamma

matrices, sd = −(−1)
d(d−1)

2 . The derivation of Eq. (22) is
given in Appendix G. Let us note that ∂µJ

µ
d = 0. More-

over, since Φa → {0, · · · , 0,−1} as r → ∞, Rd can be
compactified to Sd. Then, one can regard

∫
Rd
Jd as a

winding number on Sd.
To compute the induced current explicitly, let us con-

sider a finite-size dD (d+1)th-order TI with the boundary
between the topological phase and the vacuum (or a triv-
ial insulator). Then, the d boundary mass terms wind
along the boundary while the bulk mass term λ(r)M
varies rapidly across the boundary. According to the ex-
pression of Jµd in Eq. (22), charges are accumulated in the
region where the mass terms vary rapidly, that is, only
near the boundary. Note that Jµ1 is also used in Sec. II A
to explain the 1D 2nd-order TI [See Eq. (5)]. Since Jµd
is non-zero only near the boundary, the current density
at the boundary jµd−1 can be determined by integrating

Jµd along r taking into account ∂rma,r � ∂rmd+1,r for
a = 1, · · · , d as

jµd−1 =

∫ ∞

0

dr Jµd

'(−1)d
sd

(d− 1)! Area(Sd−1)
εµµ1···µd−1εa1···ad

ϕa1∂µ1
ϕa2∂µ2

· · · ∂µd−1
ϕad , (23)

where ϕa =
ma,r
|~mr| and ~mr = (m1,r, · · · ,md,r). One

can also derive Eq. (23) rigorously in the following way.
When the domain of the TI is sufficiently large, the
boundary theory of dD (d + 1)th-order TI given in
Eq. (16), can be regarded as the Dirac Hamiltonian de-
fined in Rd−1 with d mass terms. Then the induced cur-
rent Jµd−1 is obtained by the boundary projection, and its
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sign is fixed by comparison with Eq. (23). We get jµd−1
at the (d− 1)D boundary of dD (d+ 1)th-order TI after
compactifying Rd−1 to Sd−1 [See Appendix G].

Eq. (23) shows that the total charge of boundary states∫
Sd−1 j

0
d−1, which is nothing but the anomalous charge δ

due to the filling anomaly, is determined by the winding
of boundary mass terms as

δ =

∫

Sd−1

j0
d−1 = −(−1)

d(d+1)
2 wd−1. (24)

We note that the condition ϕa(r) = −ϕa(−r) imposed by
inversion symmetry restricts the winding to be an odd in-
teger. The anomalous charge δ modulo two characterizes
the bulk-boundary correspondence of dD (d+ 1)th-order
TIs since any inversion-preserving process can change the
boundary charge only by even integers unless it closes the
bulk gap. The charge densities predicted by j0

d−1 are as
follows.

j0
0 =

1

2
. (25)

j0
1 =

1

2π
ε0µεabϕa∂µϕb =

1

2π
∂θ tan−1

(ϕ2

ϕ1

)
. (26)

j0
2 = − 1

8π
ε0µνεabcϕa∂µϕb∂νϕc

= − 1

4π
ϕ · ∂θϕ× ∂φϕ. (27)

It is worth noting that the induced currents shown
above were also discussed in Refs. 62, 72–76 in various
contexts. In all the previous studies, however, all the
mass terms are considered as either bulk order param-
eters or bulk pumping parameters in time direction. In
contrast to this, in our case, all ϕ(r) are defined along the
boundary. Thus the physical implication of the induced
currents in our work is different from that in the pre-
vious studies. Before closing this section, let us remark
on the cases when the boundary projection is not well-
defined or the boundary is not smooth. In general, the
boundary projection is not well-defined when the bound-
ary mass terms are comparable to or larger than the bulk
mass term. Nevertheless, as long as the total amount
of boundary charge δ (modulo two) is preserved under
any bulk gap-preserving and inversion-symmetric pertur-
bation, our discussion on the bulk-boundary correspon-
dence is still valid. When the boundary is not smooth, it
can be treated as an extreme curvature limit of the sys-
tem with smooth boundary. In Sec. V A, we numerically
show that our predictions of boundary charge are still
valid even when the boundary mass terms are compa-
rable to the bulk mass term and/or the boundary is not
smooth. In addition to the total amount of the boundary
charge, the distribution of the boundary charge density is
also consistent with that of the winding number density.

IV. SYMMETRY DATA AND CLASSIFICATION
OF INVERSION-SYMMETRIC INSULATORS

In this section, by using symmetry data, we system-
atically classify inversion-symmetric insulators into three
classes: atomic insulators, fragile topological insulators,
and stable topological insulators. In particular, we pro-
vide a convenient scheme to diagnose fragile topology,
and estimate the number of parity configurations belong-
ing to each class. Also we discuss the net parity of a
finite-size system with open boundary and the condition
for the presence of the filling anomaly.

In a dD inversion-symmetric system, there are 2d dis-
tinct Wyckoff positions Wi and inversion-invariant mo-
menta kinv

i which are left invariant under inversion sym-
metry.

{
Wi=1,··· ,2d

}
=
{ d∑

l=1

xlal|∀xl = 0,
1

2

}
, (28)

{
kinv
i=1,··· ,2d

}
=
{ d∑

l=1

ylGl|∀yl = 0, π
}
, (29)

where a and G are the lattice and reciprocal vectors,
respectively, which satisfy ai ·Gj = 2πδij . We label Wi

and kinv
i as follows.

Wi=1+
∑d
j=1 2j−1σj

=
1

2
(σ1, σ2, · · ·σd) (30)

kinv
i=1+

∑d
j=1 2j−1σj

= π(σ1, σ2, · · ·σd) (31)

where σ = 0, 1. More explicitly,

W1 = (0, 0, · · · , 0), W2 = (
1

2
, 0, · · · , 0),

W3 = (0,
1

2
, · · · , 0), W4 = (

1

2
,

1

2
, · · · , 0),

· · · ,W2d = (
1

2
,

1

2
, · · · , 1

2
), (32)

and similarly,

kinv
1 = (0, 0, · · · , 0), kinv

2 = (π, 0, · · · , 0),

kinv
3 = (0, π, · · · , 0), kinv

4 = (π, π, · · · , 0),

· · · ,kinv
2d = (π, π, · · · , π). (33)

A. Mapping between Wannier states and parity
configurations

Any given parity configuration B can be mapped to lin-
ear combinations of inversion-symmetric Wannier states
wξ(W ). Here wξ(W ) denotes a Wannier state with par-
ity ξ localized at the Wyckoff position W . At the mo-
mentum kinv in the Brillouin zone, a state with parity
ξ exp(2ikinv ·W ) can be induced by wξ(W ). For example,
s and p orbitals localized at W1 correspond to w+(W1)
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and w−(W1), respectively. Let us note that it is suffi-
cient to consider symmetric Wyckoff positions Wi only.
When a orbital is located at generic point W 6= −W , its
partner must also be located at −W because of inver-
sion symmetry. Then the symmetric and anti-symmetric
combinations of the two states give s and p orbitals at a
certain symmetric Wyckoff position, say Wi. It is worth
noting that this s and p orbital pair located at Wi can
be deformed adiabatically to another Wyckoff position,
say Wj , without breaking inversion symmetry. Such an
adiabatic deformation of Wannier states can be referred
as “Wannier gauge redundancy”.

For a given Wannier state representation⊕
W,ξ µW,ξwξ(W ), there is a corresponding parity

configuration B in the Brillouin zone. The equivalence
relation between them [17, 18, 20, 21, 23, 25, 40, 41, 60]
is denoted as

B ⇔
⊕

W,ξ

µW,ξwξ(W ). (34)

Here µW,ξ is a rational number [11], i.e., µW,ξ ∈ Q,
and dictates how many wξ(W ) are superposed in a given
atomic configuration. For later convenience, we denote
a parity configuration of NB bands in dD that satisfies
n−(Γ = kinv

1 ) = n+(kinv 6= Γ) = NB as BΓ(d,NB).
Namely, all occupied bands have odd parity at the Γ
point whereas they have even parity at the other kinv in
BΓ(d,NB).

The equivalence relation Eq. (34) is not one-to-one
since there is an ambiguity in choosing Wannier states,
that is, the Wannier gauge redundancy:

⊕

ξ=±
wξ(W ) =

⊕

ξ=±
wξ(W

′). (35)

This follows from the fact that w+1(W )⊕w−1(W ) gives
n+(kinv) = n−(kinv) = 1 for any W and kinv.

According to the recent studies [10, 11, 16], a par-
ity configuration B can be classified into three distinct
classes depending on the type of µW,ξ ∈ Q. i) B is di-
agnosed to be a stable topological phase when the set
of µW,ξ includes a fraction. Adding trivial bands corre-
sponds to ∆µW,ξ ∈ Z, and thus it does not change the
fractional part of µW . ii) B is diagnosed to be a fragile
topological phase when the set of µW,ξ includes at least
one negative integer in any fixed Wannier gauge. iii) B
is diagnosed to be an (obstructed) atomic phase when all
µW,ξ are integers greater than or equal to 0 in at least
one fixed Wannier gauge.

For example, i) BΓ(2, 1) is equivalent to 	 1
2p(W1) ⊕

1
2p(W2) ⊕ 1

2p(W3) ⊕ 1
2p(W4). Because of the fractional

coefficients of p orbitals, the phase is diagnosed to be a
stable topological phase. In fact, according to the re-
cent symmetry indicator analysis, this phase is charac-
terized by an odd Chern number [11, 77], which indi-
cates its stable band topology. ii) BΓ(2, 2) is equivalent
to 	p(W1)⊕p(W2)⊕p(W3)⊕p(W4). The negative coeffi-
cient of p(W1) cannot be removed in any Wannier gauge,

and thus the phase is diagnosed to be a fragile topological
phase. iii) B ⇔ s(W1)	 s(W2)⊕ 2p(W1) has a negative
coefficient of s(W2), and seems to be a fragile topological
phase. However, B ⇔ p(W1)⊕ p(W2) up to the Wannier
gauge redundancy s(W1)⊕p(W1) = s(W2)⊕p(W2), thus
B is diagnosed to be an atomic phase.

Now let us compare the real space data {wξ(W )} and
the momentum space data {nξ(kinv)}. There are 2d+1

possible types of wξ(W ), counting the number of Wyckoff
positions with two different parities. But only (2d+ 1) of
them are independent due to the Wannier gauge redun-
dancy shown in Eq. (35). Namely, the Wannier gauge
redundancy s(W1) ⊕ p(W1) = s(W2) ⊕ p(W2) = ... =
s(W2d)⊕p(W2d) give (2d−1) constraint equations. Tak-
ing into account this, one can write down (2d+1) numbers
invariant under the Wannier gauge redundancy as

{nocc, νW1
, νW2

, · · · , νW
2d
}, (36)

where νW = µW,− − µW,+. Note that µW,− and µW,+
change by the same amount under the Wannier gauge re-
dundancy, thus νW can serve as a topological invariant.
This approach was introduced in Ref. 45 for rotation sym-
metric (Cn=2,3,4,6) insulators and νW indices were found
explicitly. However, the possibility to interpret νW in-
dices as the indicators for fragile topological phases was
not appreciated. We show that inversion-symmetric insu-
lators can be completely classified in terms of the indices
in Eq. (36), which can also be used for the diagnosis of
fragile topological phases.

On the other hand, the parity configuration B is char-
acterized by 2d+1 integers,

{n+(kinv
1 ), n−(kinv

1 ), · · · , n+(kinv
2d ), n−(kinv

2d )}. (37)

In an insulating phase, the number of occupied states
nocc is fixed to be nocc = n+(kinv)+n−(kinv) for all kinv.
This is called the compatibility relation [9–11]. Thus, B
can be characterized by (2d + 1) independent integers.
One canonical choice of these (2d + 1) integers is

{nocc, n−(kinv
1 )− n+(kinv

1 ), ..., n−(kinv
2d )− n+(kinv

2d )},
(38)

including n−(kinv
i ) − n+(kinv

i ) with i = 1, · · · , 2d. Ob-
serving that wξ(W ) has the parity ξ exp(2ikinv · W )
at kinv, one can find a mapping between {νW } and
{n−(kinv)− n+(kinv)} as




νW1

νW2

νW3

...

νW
2d




= Ad




n−(kinv
1 )− n+(kinv

1 )

n−(kinv
2 )− n+(kinv

2 )

n−(kinv
3 )− n+(kinv

3 )
...

n−(kinv
2d )− n+(kinv

2d )



, (39)

where the 2d × 2d matrix Ad maps the real data {νW }
and the momentum space data {n−(kinv) − n+(kinv)},
and its components are given by

[
Ad
]
ij

=
1

2d
exp(2ikinv

i ·Wj). (40)
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Stable: St(St) ∪ St(F ) ∪ St(A)

Fragile: F (F ) ∪ F (A)

Atomic: A

St(St): {νW1 , · · · , νW2d
} /∈ Z2d

St(F ) ∪ F (F ):
∑
W |νW | > nocc

St(A) ∪ F (A) ∪A:
∑
W |νW | ≤ nocc

Diagnosis of B

FIG. 5. Diagnosis of band topology. Left: All set of possible band topology are divided into three sets, [Ωi=1,2,3] = ∪j≤iΩi(Ωj)
where Ω1, Ω2, and Ω3 denote the atomic, fragile topological and stable topological phases, respectively. Notation Ωi(Ωj) means
that the phase is diagnosed to be Ωj only with the symmetry data while the phase is actually Ωi. Right: These phases are
rearranged into three sets, ∪j≥iΩi(Ωj), and these are diagnosed in terms of νW indices.

Also, Ad satisfies the following relations,

A−1
d = 2dAd, ATd = Ad,

2d∑

i=1

[
Ad
]
ij

= δj,1. (41)

For example, Ad=2 is given by

A2 =
1

4




+1 +1 +1 +1

+1 −1 +1 −1

+1 +1 −1 −1

+1 −1 −1 +1


 , (42)

and the expressions for νWi=1,2,3,4 are the same as those

in Ref. 45. From the fact that n±(kinv) must be
a non-negative integer, the possible sets of {νW } are
restricted. The most fundamental restriction is that

2d
∣∣∑2d

j=1[Ad]ijνWj

∣∣ must be an integer less than or equal
to nocc. Below, we list some useful restrictions and in-
equalities derived from this.

|νWi
| ≤ nocc, |νWi

± νWj 6=i | ≤ nocc,
∣∣∑

W

νW
∣∣ ≤ nocc

2d−1νWi
∈ Z, 2d−2(νWi

± νWj
) ∈ Z. (43)

For example,

{νW1 , · · · , νW4} = {1

2
, 0,−1

2
, 0} or {−1, 0, 1, 0} (44)

cannot be realized when nocc = 1 in 2D. The first set
{ 1

2 , 0,− 1
2 , 0} is forbidden due to 2d−2(νWi ± νWj 6=i) ∈ Z

while the second set {−1, 0, 1, 0} is forbidden because of
|νWi ± νWj | ≤ nocc. The properties of Ad and νW , and
the derivation of the equations from Eq. (39) to Eq. (43)
are shown in Appendix B.

B. Diagnosis of fragile topology

Now, we provide an efficient scheme for diagnosing the
band topology in terms of {nocc, νW1 , · · · , νW2d

}. Any

given inversion-symmetric phase is an element of [Ω]
where Ω = A, F, St. Here, [A], [F ] and [St] denote a set
of atomic, fragile topological, stable topological phases,

respectively. Each set can be partitioned into mutu-
ally exclusive subsets: [St] = St(St) ∪ St(F ) ∪ St(A),
[F ] = F (F ) ∪ F (A), and [A] = A(A). The notation
Ωi(Ωj) means that the given inversion-symmetric phase
belongs to Ωi, but its parity configuration B predicts it
to be in the set Ωj . We denote A(A) = A for simplicity.

The diagnosis of stable topological phases has been
well-established in 2D and 3D in terms of symmetry in-
dicators [11, 12]. However, an efficient method to diag-
nose fragile phases has not been established. Here we
propose one efficient scheme. The procedure for diagnos-
ing inversion-symmetric insulators proceeds as follows. i)

St(St) is diagnosed by a criterion {νW1
, · · · , νW

2d
} /∈ Z2d

where Z2d indicates the set of 2d integers. ii) A fragile
phase can be diagnosed by a criterion

∑
W |νW | > nocc,

which can be obtained by the fact that an atomic phase
must satisfy

∑
W |νW | ≤ nocc. Thus, a phase which

satisfies
∑
W |νW | > nocc belongs to St(F ) ∪ F (F ).

iii) A phase which satisfies
∑
W |νW | ≤ nocc cannot

be distinguished from atomic phases, so it belongs to
St(A) ∪ F (A) ∪ A. This two-step diagnosis procedure is
summarized in the following diagram, and also in Fig. 5.

{νW1
, · · · , νW

2d
} /∈ Z2d ⇒ St(St)

⇓∑
W |νW | > nocc ⇒ St(F ) ∪ F (F )

⇓∑
W |νW | ≤ nocc ⇒ St(A) ∪ F (A) ∪A

Let us emphasize that our diagnosis procedure goes be-
yond the diagnosis method proposed previously for stable
topological phases [11, 13] in that our approach can di-
agnose even fragile topological phases. The criterion for
fragile topological and atomic phases is derived in Ap-
pendix A. It is worth noting that our classification of
inversion-protected fragile TIs is complete. The band
topology of class A insulators is fully characterized by
inversion parities at high-symmetry points and all the
Chern numbers defined in the Brillouin zone [9, 11, 15].
Since the Chern numbers are stable topological invari-
ants, fragile TIs and atomic insulators can be fully char-
acterized by using only inversion-parities. This implies
that F (A) is an empty set and [F ] = F (F ).

FIG. 5. Diagnosis of band topology. Left: All set of possible band topology are divided into three sets, [Ωi=1,2,3] = ∪j≤iΩi(Ωj)
where Ω1, Ω2, and Ω3 denote the atomic, fragile topological and stable topological phases, respectively. Notation Ωi(Ωj) means
that the phase is diagnosed to be Ωj only with the symmetry data while the phase is actually Ωi. Right: These phases are
rearranged into three sets, ∪j≥iΩi(Ωj), and these are diagnosed in terms of νW indices.

Also, Ad satisfies the following relations,

A−1
d = 2dAd, ATd = Ad,

2d∑

i=1

[
Ad
]
ij

= δj,1. (41)

For example, Ad=2 is given by

A2 =
1

4




+1 +1 +1 +1

+1 −1 +1 −1

+1 +1 −1 −1

+1 −1 −1 +1


 , (42)

and the expressions for νWi=1,2,3,4
are the same as those

in Ref. 45. From the fact that n±(kinv) must be
a non-negative integer, the possible sets of {νW } are
restricted. The most fundamental restriction is that

2d
∣∣∑2d

j=1[Ad]ijνWj

∣∣ must be an integer less than or equal
to nocc. Below, we list some useful restrictions and in-
equalities derived from this.

|νWi
| ≤ nocc, |νWi

± νWj 6=i | ≤ nocc,
∣∣∑

W

νW
∣∣ ≤ nocc

2d−1νWi
∈ Z, 2d−2(νWi

± νWj
) ∈ Z. (43)

For example,

{νW1 , · · · , νW4} = {1

2
, 0,−1

2
, 0} or {−1, 0, 1, 0} (44)

cannot be realized when nocc = 1 in 2D. The first set
{ 1

2 , 0,− 1
2 , 0} is forbidden due to 2d−2(νWi

± νWj 6=i) ∈ Z
while the second set {−1, 0, 1, 0} is forbidden because of
|νWi ± νWj | ≤ nocc. The properties of Ad and νW , and
the derivation of the equations from Eq. (39) to Eq. (43)
are shown in Appendix B.

B. Diagnosis of fragile topology

Now, we provide an efficient scheme for diagnosing the
band topology in terms of {nocc, νW1 , · · · , νW2d

}. Any

given inversion-symmetric phase is an element of [Ω]
where Ω = A, F, St. Here, [A], [F ] and [St] denote a set

of atomic, fragile topological, stable topological phases,
respectively. Each set can be partitioned into mutu-
ally exclusive subsets: [St] = St(St) ∪ St(F ) ∪ St(A),
[F ] = F (F ) ∪ F (A), and [A] = A(A). The notation
Ωi(Ωj) means that the given inversion-symmetric phase
belongs to Ωi, but its parity configuration B predicts it
to be in the set Ωj . We denote A(A) = A for simplicity.

The diagnosis of stable topological phases has been
well-established in 2D and 3D in terms of symmetry in-
dicators [11, 12]. However, an efficient method to diag-
nose fragile phases has not been established. Here we
propose one efficient scheme. The procedure for diagnos-
ing inversion-symmetric insulators proceeds as follows. i)

St(St) is diagnosed by a criterion {νW1 , · · · , νW2d
} /∈ Z2d

where Z2d indicates the set of 2d integers. ii) A fragile
phase can be diagnosed by a criterion

∑
W |νW | > nocc,

which can be obtained by the fact that an atomic phase
must satisfy

∑
W |νW | ≤ nocc. Thus, a phase which

satisfies
∑
W |νW | > nocc belongs to St(F ) ∪ F (F ).

iii) A phase which satisfies
∑
W |νW | ≤ nocc cannot

be distinguished from atomic phases, so it belongs to
St(A) ∪ F (A) ∪ A. This two-step diagnosis procedure is
summarized in the following diagram, and also in Fig. 5.

{νW1 , · · · , νW2d
} /∈ Z2d ⇒ St(St)

⇓∑
W |νW | > nocc ⇒ St(F ) ∪ F (F )

⇓∑
W |νW | ≤ nocc ⇒ St(A) ∪ F (A) ∪A

Let us emphasize that our diagnosis procedure goes be-
yond the diagnosis method proposed previously for stable
topological phases [11, 13] in that our approach can di-
agnose even fragile topological phases. The criterion for
fragile topological and atomic phases is derived in Ap-
pendix A. It is worth noting that our classification of
inversion-protected fragile TIs is complete. The band
topology of class A insulators is fully characterized by
inversion parities at high-symmetry points and all the
Chern numbers defined in the Brillouin zone [9, 11, 15].
Since the Chern numbers are stable topological invari-
ants, fragile TIs and atomic insulators can be fully char-
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acterized by using only inversion-parities. This implies
that F (A) is an empty set and [F ] = F (F ).

C. Results of diagnosis

We tabulate how many parity configurations are diag-
nosed to be atomic, fragile topological, and stable topo-
logical phases. We first fix the number of occupied bands
nocc. Then, we apply the diagnosis procedure to all pos-
sible parity configurations, and count N(A), N(F ) and
N(St), which are the number of parity configurations
diagnosed to be atomic, fragile topological, and stable
topological phases, respectively. The sum of N(A), N(F )
and N(St) must be Ntot. Here, Ntot is the number of all

possible parity configurations and is given by (nocc+1)2d .
Let us note that when the ordering of energy bands is ne-
glected, there can be 0, 1, · · · , nocc states with odd par-
ity at each inversion-invariant momentum, so there are

(nocc + 1)2d possible parity configurations.
In 2D, as shown in Table IV, N(A), N(F ) and N(St)

are given by 1
3Ntot,

1
6Ntot and 1

2Ntot, respectively, when
nocc is sufficiently large. Namely, at least, one-sixth (one-
half) of parity configurations are predicted to be fragile
(stable) topological phases. On the other hand, in 3D,
most of parity configurations are diagnosed to be stable
topological phases as shown in Table V. When nocc is suf-
ficiently large, we find that N(A) is given by 1

315Ntot but
it is difficult to determine the exact values of N(F ) and
N(St) in the nocc →∞ limit. However, from the values
of N(A), N(F ) and N(St) for various nocc, we conjec-
ture that N(F ) = 283

10080Ntot and N(St) = 31
32Ntot, which

implies that only about 3 percent of parity configurations
are diagnosed to be fragile topological phases.

The implications of Tables IV and V are as follows.
First, there is no fragile TI with nocc = 1 in any
dimensions [80]. This follows from the second inequality

TABLE IV. Results of the parity configuration diagnosis in
2D. When nocc is sufficiently large, N(A), N(F ) and N(St)
approach to 1

3
Ntot,

1
6
Ntot and 1

2
Ntot. At least, two-third of

parity configurations are topologically nontrivial.

nocc Ntot N(A) N(F ) N(St)

1 16 8 0 8

2 81 33 8 40

3 256 96 32 128

4 625 225 88 312

5 1296 456 192 648

6 2401 833 368 1200

7 4096 1408 640 2048

8 6561 2241 1040 3280

9 10000 3400 1600 5000

10 14641 4961 2360 7320

nocc →∞ (nocc + 1)4 1
3
Ntot

1
6
Ntot

1
2
Ntot

in Eq. (43), |νWi
± νWj

| ≤ nocc. Second, a layer-stacking
of 2D fragile TIs with negligible interlayer coupling gives
rise to fragile TIs in higher dimensions. For instance in
2D, there are eight fragile TIs with nocc = 2. The νW
indices of these fragile TIs are given by {∓1,±1,±1,±1}
and its permutations. With these representative νW
indices, the fragile TIs with nocc = 2 in 3D can be
constructed in the following way. Let us consider
{νW } = {−1, 1, 1, 1, 0, 0, 0, 0} as an example of indices
for a 3D insulator. These indices correspond to a 3D
insulator obtained by a stacking of 2D layers with
{νW } = {−1, 1, 1, 1}, which satisfy d · (x, y, z) = 0 (mod
1) where d = (0, 0, 1) and (x, y, z) denotes the position
on the 2D layers. Since there are 14 independent 2D
layers that satisfy d ·(x, y, z) = 0 or 1

2 (mod 1) where d =
(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0), (1, 0, 1), (0, 1, 1), (1, 1, 1),
we have 8 × 14 = 112 fragile TIs with nocc = 2 in 3D.
Also, we note that the 1344 fragile TIs with nocc = 3
in 3D can be obtained by adding a trivial band to
112 fragile TIs with nocc = 2. There are 16 ways to
add a trivial band, which is one of s(Wi) and p(Wi)
for i = 1, · · · , 8. However, four of them trivialize a
3D fragile TI with nocc = 2. Accordingly, we have
112 × 12 = 1344 fragile TIs with nocc = 3 in 3D. From
the layer-stacking picture, we conclude that the minimal
number of occupied bands to have the fragile topology
is two in any dimensions. This process for obtaining
a higher-dimensional fragile TI by layer-stacking 2D
fragile TIs can be described by using a pumping process
in momentum space as discussed in Sec. VII. Third,
fragile topology can be trivialized under the doubling of
the unit cell. For instance, let us consider the doubling
of the unit cell in all spatial directions. In this case,
all the symmetric Wyckoff positions except W2d form
inversion-symmetric pairs at generic positions, thus the
resulting νW is composed of 2d νW

2d
of the original

system, that is, νWi
= νW

2d
for i = 1, · · · , 2d. If

we repeat the same doubling process, the number of
occupied bands increases while

∑
W |νW | = 2d|νW

2d
|

is fixed. Then, the result of the diagnosis for fragile
TI,

∑
W |νW | > nocc, can change to

∑
W |νW | ≤ nocc.

Finally, when n−(kinv
i ) for i = 1, · · · 2d are less than

2d−1, at least one νW index among νW
2,3,··· ,2d

is zero,

i.e.,
∏2d

i=2 νWi
= 0. We have verified that this is true for

arbitrary number of occupied bands in 2D and 3D, and
we expect that this is also true in any dimension d > 3.

D. Filling anomaly in general dimensions

In this section, we propose a condition for the pres-
ence or absence of the filling anomaly, independent of
the geometry of finite-size systems. First, we observe
that, for a given finite-size system, the number of the
Wannier centers at the boundary modulo two, N∂ , is in-
variant under an attaching or a detaching of unit cells to
the boundary in an inversion-symmetric way. This is de-
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TABLE V. Results of the parity configuration diagnosis in 3D. When nocc is sufficiently large, N(A) is 1
315

Ntot. As for N(F ) and
N(St), although their exact numbers in the nocc → ∞ limit are not known, considering their nocc dependence, we conjecture
that N(F ) = 283

10080
Ntot and N(St) = 31

32
Ntot in the large nocc limit. In contrast to 2D, the majority of parity configurations

are stable topological phases. Here, z4 = −4νW1 denotes the Z4 symmetry indicator [11, 13, 43] for inversion symmetry. The
relation between symmetry indicators and νW indices is discussed in Appendix C. Let us also note that stable topological
phases are Weyl semimetal when z4 is odd [78, 79].

nocc Ntot N(A) N(F )
N(St)

z4 = 0 z4 = 1 z4 = 2 z4 = 3

1 256 16 0 56 64 56 64

2 6561 129 112 1400 1640 1640 1640

3 65536 704 1344 14336 16384 16384 16384

4 390625 2945 9536 85176 97656 97656 97656

5 1679616 10128 42368 367416 419904 419896 419904

6 5764801 29953 151248 1260000 1441200 1441200 1441200

7 16777216 78592 445696 3670016 4194304 4194304 4194304

8 43046721 187137 1160944 9413600 10761680 10761680 10761680

9 100000000 411280 2713728 21875000 25000000 24999992 25000000

10 214358881 845185 5859936 46884600 53589720 53589720 53589720

picted in Fig. 6(a). Second, there are 2d building blocks
for the finite-size systems in dD. Any finite-size inversion-
symmetric insulators can be constructed by attaching
unit cells at the boundary of these building blocks. For
example, in 2D, there are four building blocks composed
of 1× 1, 2× 1, 1× 2 and 2× 2 unit cells [See Fig. 6(b)].
For the building block made of the 1 × 1 unit cell, N∂
is given by νW2

+ νW3
+ νW4

modulo 2. However, in the
case of the building block composed of 1 × 2 unit cells,
N∂ is given by 2νW2

+ νW3
+ 2νW4

modulo 2. Since the
filling anomaly exists when N∂ is odd and N∂ depends on
the building blocks, the presence or absence of the filling
anomaly depends on the type of these building blocks for
given νW2,3,4

. Investigating all the building blocks in dD,

we conclude that νWi
for i = 2, 3, · · · , 2d must be odd

integers (even integers) at the same time to have (not to
have) the filling anomaly independent of the type of the
building blocks. Physically, this condition is equivalent
to the vanishing polarization, P =

∑
W WνW = (0, 0)

in 2D. In the rest of this paper, we focus on the cases
where the filling anomaly is well-defined independent of
the type of the building blocks.

The condition for the presence of the filling anomaly
puts a constraint to the number of occupied bands.
As at least one νW index among νW

2,3,··· ,2d
is zero

when n−(kinv
i ) for i = 1, · · · 2d are less than 2d−1,

the filling anomaly occurs only when nocc ≥ 2d−1.
For atomic insulators, the number of occupied bands
must be greater than or equal to (2d − 1) in order to
have all νW

2,3,··· ,2d
as odd integers. Thus, there are

22d−1 minimal atomic insulators with the filling anomaly,
and they have {νW } = {0,±1,±1,±1} in 2D and
{0,±1,±1,±1,±1,±1,±1,±1} in 3D. Here all ± are in-
dependent. In contrast to atomic insulators, fragile TIs
can have the filling anomaly when nocc ≥ 2d−1. In other

words, all insulators with the filling anomaly are fragile
TIs when 2d−1 ≤ nocc ≤ 2d − 2.

E. Net parity in open boundary

In this section, we discuss the net parity [52, 63, 64]
of finite-size inversion-symmetric insulators without gap-
less boundary states, which generalizes the discussion in
Sec. II B. For any inversion-symmetric insulator in dD
which does not host gapless boundary states, the en-
ergy spectra of occupied and unoccupied states are well-
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FIG. 6. Filling anomaly and the building blocks of finite-size
systems. Attaching or detaching the unit cells to the bound-
ary of the finite-size inversion-symmetric insulators does not
change the number of Wannier centers at the boundary mod-
ulo two, N∂ . Four Wyckoff positions W1,2,3,4 are denoted as
A, B, D and C, respectively. (a) A process changing N∂
by
∑
ξ(µB,ξ + µC,ξ + µD,ξ) −

∑
ξ(µB,ξ + 3µC,ξ + µD,ξ) =

−2
∑
ξ µC,ξ = 0 modulo 2. Note that νW = µW,− − µW,+ =∑

ξ µW,ξ modulo 2. (b) For any finite-size system, the corre-
sponding building block is determined uniquely. In 2D, there
are four building blocks. The building block corresponding
to the geometry depicted in (a) is 2× 2 unit cells. The pres-
ence (absence) of the filling anomaly is well-defined only when
νB,C,D are odd (even) integers simultaneously.
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a 
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Unit cell

Inversion

FIG. 7. Schematic figures describing how the net parity
is defined for inversion-symmetric insulators without gapless
boundary states. (a) Localized degrees of freedom, red dots,
added to the boundary in an inversion-symmetric way. Their
symmetric and anti-symmetric combinations generate s and p
orbitals, and thus I does not change. (b) A finite-size system
with an open boundary in which the Wyckoff position B is
at the inversion center, the orange dot. In this case, the net
parity I is given by νB .

defined. In this case, the net parity of a finite-size system
I = N− − N+ in Eq. (10), characterizes the bulk band
topology [52, 63, 64]. Here N± denotes the number of oc-
cupied states with parity ±. Now, we argue that I does
not change if we add localized states at the boundary.
For instance, when an electron is added to the boundary,
its inversion partner also has to be added to preserve in-
version symmetry as shown in Fig. 7(a). Then, the two
electrons form a symmetric and an antisymmetric states.
In this process, both N+ and N− increase by one, so I is
invariant. The only way to change I is to add electrons
at the inversion center. However, this cannot be done
in an inversion-symmetric way. Therefore, I is the bulk
topological invariant of inversion-symmetric systems that
does not change as long as the bulk gap is preserved.

As discussed in Sec. II B, the net parity I is determined
by the difference in the number of p and s orbitals at the
center of the system with an open boundary, ∆Ncenter.
When the system with an open boundary is inversion
symmetric, its center must be one of the Wyckoff position
W ∗. Hence, ∆Ncenter is given by νW∗ , and the net parity
I is manifested as one of νW indices as shown in Fig. 7(b).

V. dD (d+ 1)TH-ORDER TI AS MINIMAL
FRAGILE TOPOLOGICAL INSULATOR WITH

FILLING ANOMALY

In this section, we propose a minimal Dirac Hamilto-
nian for a fragile TI with filling anomaly. We assume that
the number of occupied bands is NB, and all the occu-
pied bands at the Γ point have negative parity while they
have positive parity at all the other inversion-invariant
momenta. Then, the corresponding parity configura-
tion is BΓ(d,NB). Since such a parity configuration can
be generated by a band inversion at Γ, starting from a
trivial-parity insulator having only positive parity states
at inversion-invariant momenta, the state corresponding

to BΓ(d,NB) can be described by a Dirac Hamiltonian.
The minimal dimension of the Dirac Hamiltonian can

be determined by our diagnosis method of fragile topol-
ogy as follows. First, we compute 2d inversion indices
{νW1 , · · · , νW2d

} by using Eq. (39). Namely,




νW1

νW2

νW3

...

νW
2d




= Ad




NB
−NB
−NB

...

−NB



, (45)

which gives

{νW1
, · · · , νW

2d
} = 21−dNB{1− 2d−1, 1, 1, · · · , 1}. (46)

To be a fragile topological phase, {νW } must be a set
of integers and satisfy

∑
W |νW | > NB. These conditions

constrain NB to be an integer multiple of 2d−1 in any
dimensions greater than one. Thus, the minimal number
of occupied bands for the fragile phase is NB = 2d−1.
Importantly, all νWi

for i = 2, · · · , 2d are odd integers
when NB = 2d−1, and thus the filling anomaly exists.
This is consistent with the result discussed in Sec. IV D
where it is shown that the filling anomaly can occur when
nocc ≥ 2d−1. Also, we can find the equivalent representa-
tion for Wannier states corresponding to BΓ(d, 2d−1) by
using νW = µW,− − µW,+ such as

BΓ(d, 2d−1)⇔
2d⊕

i=1

p(Wi)	 2d−1 p(W1). (47)

Let us note three implications of Eqs. (46) and (47).
First, the Wannier obstruction can be lifted after adding
(2d−1 − 1) p(W1) orbitals. Second, BΓ(d,NB) with
NB < 2d−1 must have stable band topology since νW
must be a fractional number. Third, an integer multiple
of BΓ(d, 2d−1) retains the fragile topology since multiply-
ing Eq. (46) by an integer does not change the relevant
inequality, i.e.,

∑
W |νW | > nocc.

In Sec. III A, it is shown that the Dirac Hamiltonian for

a class A dD kth-order TI is expressed by 2
d+k−1

2 ×2
d+k−1

2
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FIG. 8. Parity configurations for dD (d+ 1)th-order TIs. (a)
BΓ(2, 2) for a 2D 3rd-order TI. (b) BΓ(3, 4) for a 3D 4th-order
TI.
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Gamma matrices. Hence, the Dirac Hamiltonian cor-
responding to BΓ(d, 2d−1) can describe a dD (d + 1)th-
order TI. For example, the Dirac Hamiltonian relevant
to BΓ(2, 2) describes a 2D 3rd-order TI, and similarly,
the Dirac Hamiltonian relevant to BΓ(3, 4) describes a
3D 4th-order TI. The corresponding parity configurations
are shown in Fig. 8. When the number of occupied states
is greater than 2d−1, the corresponding Dirac Hamilto-
nian describes a dD kth-order TI with k > (d + 1). As
discussed above, all dD kth-order TIs with k > d have
fragile band topology.

In Sec. V A-V B, we examine the charge accumulation
in the dD (d + 1)th-order TI and establish the bulk-
boundary correspondence, which can be viewed as 2D
and 3D generalization of the idea discussed in Sec. II A.

Before we proceed, let us comment on the case where
the occupied states with negative parity are distributed
over the multiple inversion-invariant momenta. In this
case, the minimal number of occupied bands to have
fragile topology is two in any dimensions which is smaller
than 2d−1 for d > 2. [See Sec. IV C.] However, these insu-
lators cannot have the filling anomaly unless the number
of occupied bands is greater than or equal to 2d−1 as dis-
cussed in Sec. IV D. In Appendix D, we discuss how an
odd number of band inversions corresponding to the dD
(d + 1)th-order Dirac Hamiltonian generates the filling
anomaly.

A. Tight-binding model

First, we define 4 × 4 Gamma matrices Γn=1,...,5 and

8 × 8 Gamma matrices Γ̌m=1,...,7 in order to construct
the tight-binding models for class A 2D 3rd-order and
3D 4th-order TIs protected by inversion symmetry.
We choose that Γn and Γ̌n with an even (odd) n
are real (imaginary). For example, {Γ1, · · · ,Γ5} =
{τxσx, τxσy, τxσz, τyσ0, τzσ0} and {Γ̌1, · · · , Γ̌7} =
{µxτxσx, µxτxσy, µxτxσz, µxτyσ0, µxτzσ0, µyτ0σ0, µzτ0σ0}.

Now, we discuss how the boundary mass terms can
be introduced in lattice models. Following [46, 52], we
briefly review the mechanism for generating the bound-
ary mass terms from symmetric perturbations to the bulk
Hamiltonian. An inversion-symmetric Dirac Hamilto-
nian without any perturbation is

H0(k) =

d∑

i=1

kiΓi + λM, (48)

IH0(k)I−1 = H0(−k), (49)

where I denotes the operator for inversion symmetry.
Inversion-symmetric perturbation H1 is given by

H1 = i

d∑

i=1

d∑

a=1

∆i,a ΓiMaM, (50)

where Ma = −IMaI
−1 with a = 1, · · · , d.

After projection to the boundary, H1 becomes

P+(r)H1 P+(r) =

d∑

i=1

d∑

a=1

∆i,a nr,iM̃a, (51)

where M̃a = MaP+(r). Then, one can identify the

boundary mass terms as ma,r =
∑d
i=1 ∆i,anr,i. Since

ma,r is proportional to the surface normal vector nr,
ma,r = −ma,−r is naturally implemented. Finally, the
lattice regularization with the substitution ki → sin ki
and λ→ −(d−λ−∑d

i=1 cos ki) leads to the bulk Hamil-
tonian

H(k) =

d∑

i=1

sin kiΓi − (d− λ−
d∑

i=1

cos ki)M+H1,

(52)

which naturally contains the boundary mass terms whose
explicit form appears after projection to the boundary.
All the tight-binding models used in the paper are con-
structed by using this method. For example, the tight-
binding models for class A 2D 3rd-order and 3D 4th-order
TIs are given by

HA(2,3) =

2∑

i=1

sin kiΓi − (2− λ−
2∑

i=1

cos ki)Γ5

+ i

2∑

i=1

4∑

a=3

∆i,a ΓiΓaΓ5, (53)

and

HA(3,4) =

3∑

i=1

sin kiΓ̌i − (3− λ−
3∑

i=1

cos ki)Γ̌7

+ i

3∑

i=1

6∑

a=4

∆̌i,a Γ̌iΓ̌aΓ̌7. (54)

For the tight-binding models defined above, since the

boundary mass terms are given byma,r =
∑d
i=1 ∆i,anr,i,

the corresponding winding numbers are determined by
the sign of the determinant of ∆i,a. For example,

w1 =
1

2π

∮
dθ
(
ϕ1∂θϕ2 − ϕ1∂θϕ2

)

=
1

2π

∮
dθ

1

m2
1 +m2

2

(
m1∂θm2 −m1∂θm2

)

= Det(∆)
1

2π

∮
dθ

1

m2
1 +m2

2

=
Det(∆)

|Det(∆)|
= sgn(Det(∆)), (55)

where we use ma=1,2 = ∆1,a+2 cos θ + ∆2,a+2 sin θ and

1

2π

∮
dθ

1

A cos 2θ +B sin 2θ + C
(56)

= sgn(C −A)
1√

C2 −A2 −B2
. (57)
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FIG. 9. Energy spectra and boundary charge accumulations of finite-size 2D 3rd-order and 3D 4th-order TIs. (a) The energy
spectrum of the lattice model for 2D 3rd TIs in Eq. (53), in the topological phase (λ = 1). The system has the square geometry
with 20×20 unit cells (N = 1600). (b) The extra charge accumulation ∆ρ(x, y) defined in Eq. (58) in the square geometry with
20× 20 unit cells. (c) The extra charge accumulation ∆ρ(x, y) in the disk geometry. The radius of the disk (R) is equal to the
length of 20.5 unit cells (R = 20.5). (d) The energy spectrum of the lattice model for 3D 4th TIs in Eq. (54), in the topological
phase (λ = 1). The system has the cube geometry with 15×15×15 unit cells (N = 27000). (e) The extra charge accumulation
∆ρ(x, y, z) in Eq. (61) in the cubic geometry with 15 × 15 × 15 unit cells. (f) The extra charge accumulation ∆ρ(x, y, z) in
the sphere geometry. The radius of the sphere (R) is equal to the length of 6.7 unit cells (R = 6.7). The orientation of the
coordinate system is same as (e). In (b)-(c) and (e)-(f), the size of the dots and spheres dictates the absolute value of the
accumulated or depleted charges. A black (red) dot and sphere denotes the depletion (accumulation). To enhance the visibility
of the boundary, the cube with the edge length of 14.5 unit cells and the sphere with the radius of 6.2 unit cells are depicted
in (e) and (f), respectively.

Similarly, we obtain wd = sgn(Det(∆)). Thus, the dD
(d+1)th-order TI described by the relevant Dirac Hamil-
tonian is characterized by wd = 1 (mod 2).

B. Numerical calculations

In order to verify our theoretical prediction for charge
accumulation at the boundary based on the continuum
Dirac Hamiltonian, here we calculate the energy spec-
trum and the eigenstates of 2D 3rd-order and 3D 4th-
order TIs described by the lattice Hamiltonian HA(2,3)

and HA(3,4), by considering various shapes of open
boundaries. We choose square and disk geometries for
2D 3rd-order TI, and cube and sphere geometries for
3D 4th-order TI. For numerical calculations, we choose
∆1,3 = 0.240, ∆1,4 = −0.196, ∆2,3 = −0.259, ∆2,4 =

−0.204 for the 2D 3rd-order TI, and ∆̌1,4 = −0.25,

∆̌1,5 = 0.05, ∆̌1,6 = 0.10, ∆̌2,4 = −0.05, ∆̌2,5 = 0.30,

∆̌2,6 = −0.10, ∆̌3,4 = 0.05, ∆̌3,5 = −0.05, ∆̌3,6 = 0.35
for the 3D 4th-order TI. Then sgn(Det(∆)) = −1 and
sgn(Det(∆̌)) = −1 in both cases. Also, we assume that
all sublattice site are located at the unit cell center for
simplicity.

The energy spectra in Figs. 9(a) and 9(d) show that
the number of occupied bands and that of unoccupied
bands are different in the topological phase (λ = 1)
whereas they are the same in the trivial phase (λ = −1).
Figs. 9(a) and 9(d) correspond to the 2D 3rd-order TI
and the 3D 4th-order TI, respectively. Moreover, when
the states below (above) the gap are fully occupied (unoc-
cupied) by adding an extra electron or hole to the half-
filled system, we find that the extra charge accumula-
tion is localized only at certain subregions of the bound-
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ary where the surface and the bulk mass terms change
rapidly. More explicitly, it is found that the extra charge
is localized at the corners of the system with a square or
cube geometry, while the extra charge is spread over the
whole boundary region when the system geometry has a
disk or sphere shape, as shown in Fig. 9.

The difference in the number of occupied and unoccu-
pied states in dD (d+ 1)th-order TIs can be understood
by examining the change in the energy spectrum of a dD
dth-order TI with chiral symmetry when chiral symmetry
breaking perturbations are added. Specifically, a dD dth-
order TI with chiral symmetry has two zero-energy modes
related by inversion. Adding chiral symmetry breaking
perturbation, the zero-energy modes are pushed either
upward or downward until they are merged to the unoc-
cupied or occupied states, leading to a dD (d+1)th-order
TI without in-gap states. As long as inversion symmetry
is preserved, the two in-gap states should be degenerate
during this process. The filling anomaly requires that an
extra electron or hole is added to the half-filled system,
and the states below (above) the gap are fully occupied
(unoccupied), to preserve inversion symmetry. Then one
can examine the extra charge accumulation relative to
the half-filling [See Sec. II A for the related discussion in
1D 2nd-order TIs].

However, to understand the distribution of the extra
charge accumulation at the boundary, we need the addi-
tional information of the induced current jµd as explained
in Sec. III C. To confirm the charge accumulation pre-
dicted by the induced current in Sec. III C, we first nu-
merically solve the lattice model for a 2D 3rd-order TI
and compute the extra charge density ∆ρ(x, y) at the po-
sition (x, y) relative to the half-filling (ρ0 = 2). In both
the square and disk geometry, the extra charge density

TABLE VI. The extra charge accumulation in the 2D 3rd-
order TI. Qnum.

i=1,2,3,4 (Qi=1,2,3,4 ) indicates the extra charge in
the ith quadrant computed from the lattice model (from the
induced charge of the continuum model). Note that Qnum.

1 =
Qnum.

3 and Qnum.
2 = Qnum.

4 due to inversion symmetry, and
similar relations hold for Qi.

Qnum.
1 Q1 Qnum.

2 Q2

−0.282329 −0.284825 −0.217611 −0.215175

TABLE VII. The extra charge accumulation in the 3D 4rd-
order TI. Qnum.

i=1,··· ,8 (Qi=1,··· ,8) indicates the extra charge in
the ith octant computed from the lattice model (from the
induced charge of the continuum model). Note that Qnum.

1 =
Qnum.

7 , Qnum.
2 = Qnum.

8 , Qnum.
3 = Qnum.

5 and Qnum.
4 = Qnum.

6

due to inversion symmetry, and similar relations hold for Qi.

Qnum.
1 Q1 Qnum.

2 Q2

0.116481 0.113613 0.203660 0.223673

Qnum.
3 Q3 Qnum.

4 Q4

0.089725 0.081586 0.090134 0.081127

∆ρ(x, y) is defined as

∆ρ(x, y) =

Nocc∑

i=1

|ψi(x, y)|2 − ρ0, (58)

where ψi(x, y) is the ith energy eigenstate and Nocc is
the number of occupied states. Since total extra charge
is −1 according to δ =

∫
j0
1 = sgn(Det(∆)) = −1, the

total sum of ∆ρ(x, y) is equal to −1. Namely,

Nx∑

x=1

Ny∑

y=1

∆ρ(x, y) = −1, (59)

where Nx and Ny denote the number of lattice sites in
the x and y directions, respectively.

In the case of the square geometry, the extra charge
is mostly localized at the corners as shown in Fig. 9(b).
This is simply because the boundary mass terms vary
abruptly near the corners. To demonstrate the spatial
distribution of the extra charge accumulation, we di-
vide the system into four quadrants. Then we compare
the total extra charge in each quadrant, Qnum.

i=1,2,3,4 with

the total induced charge density j0
1 along the boundary

of each quadrant, Qi. Because of inversion symmetry,
Qnum.

1 = Qnum.
3 and Qnum.

2 = Qnum.
4 . Explicitly, Qnum.

1,2

are defined as

Qnum.
1 =

∑

Nx
2 <x

∑

Ny
2 <y

∆ρ(x, y),

Qnum.
2 =

∑

x<Nx
2

∑

Ny
2 <y

∆ρ(x, y). (60)

According to the numerical data displayed in Table VI,
the deviation of Qi from Qnum.

i is only about one-percent.
This is because when the bulk gap is sufficiently large,
our formula for the induced current becomes more accu-
rate due to the negligible contributions of higher-order
terms in the derivative expansion. More detailed infor-
mation about how the induced currents are computed is
in Appendix G. On the other hand, in contrast to the
case of the square geometry, the extra charge is spread
over the whole boundary in the disk geometry as shown
in Fig. 9(c). This delocalized charge accumulation is also
consistent with the profile of j0

1(θ) in Eq. (26).
Now, let us consider the 3D 4th-order TI. Both in

the cube and sphere geometry, the extra charge den-
sity ∆ρ(x, y, z) at the position (x, y, z) compared to half-
filling (ρ0 = 4) is defined as

∆ρ(x, y, z) =

Nocc∑

i=1

|ψi(x, y, z)|2 − ρ0, (61)

where ψi(x, y, z) is the ith energy eigenstate and Nocc

is the number of occupied states. Also, the total
accumulated charge is 1 according to δ =

∫
j0
2 =
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−sgn(Det(∆̌)) = 1, and thus the total sum of ∆ρ(x, y, z)
is equal to 1. Namely,

Nx∑

x=1

Ny∑

y=1

Nz∑

z=1

∆ρ(x, y, z) = 1, (62)

where Ni=x,y,z denote the number of lattice sites in the
i direction.

In the case of the cube geometry, the extra charge is
mostly accumulated at the corners where the boundary
mass terms varies rapidly, as shown in Fig. 9(e). To
demonstrate the spatial distribution of the extra charge
accumulation, we divide the system into eight octants.
Then we compare the total extra charge in each octant,
Qnum.
i=1,··· ,8 with the total induced charge density j0

2 along
the boundary of each octant, Qi. Inversion symmetry
imposes Qnum.

1 = Qnum.
7 , Qnum.

2 = Qnum.
8 , Qnum.

3 = Qnum.
5

and Qnum.
4 = Qnum.

6 . Explicitly, Qnum.
1,2,3,4 are defined as

Qnum.
1 =

∑

Nx
2 <x

∑

Ny
2 <y

∑

Nz
2 <z

∆ρ(x, y, z),

Qnum.
2 =

∑

x<Nx
2

∑

Ny
2 <y

∑

Nz
2 <z

∆ρ(x, y, z),

Qnum.
3 =

∑

x<Nx
2

∑

y<
Ny
2

∑

Nz
2 <z

∆ρ(x, y, z),

Qnum.
4 =

∑

Nx
2 <x

∑

y<
Ny
2

∑

Nz
2 <z

∆ρ(x, y, z). (63)

The results of numerical calculations are displayed in Ta-
ble VII, which shows that the deviation of Qi from Qnum.

i

is about ten percent. This is because our formula for
the induced current in Eq. (22) get corrections from the
higher-order terms when the bulk gap is small. When
the bulk gap becomes larger, the deviation of Qi from
Qnum.
i becomes smaller. In contrast to the case of the

cube geometry, the extra charge is spread over the whole
boundary in the sphere geometry as shown in Fig. 9(f).
This delocalized charge accumulation is also consistent
with the profile of j0

2(θ, φ) in Eq. (27). These numerical
studies for 2D 3rd-order and 3D 4th-order TIs in various
open boundaries demonstrate the validity of the theory
based on the induced current.

VI. WILSON LOOP OF FRAGILE TI

As we have shown in Sec. IV and Sec. V, the inversion-
parities completely characterize inversion-protected frag-
ile topological insulators. On the other hand, there is
an alternative powerful method, called the Wilson loop
method [36, 37, 65–67, 81], that can be used to diagno-
sis the Wannier obstruction. Here, we demonstrate the
consistency between the inversion-parity analysis and the
Wilson loop method to complete the analysis of the frag-
ile band topology.

The Wilson loop is an operator defined along a pe-
riodic direction in the Brillouin zone, whose spectral
winding along the other periodic direction indicates the
Wannier obstruction on the 2D subspace in the Bril-
louin zone [29, 65, 81]. When the Wilson loop spec-
trum is gapped, the nested Wilson loop can be defined by
treating the Wilson loop spectrum like the energy spec-
trum [36, 37]. As shown below, the spectral winding of
the Wilson loop and the nested Wilson loop spectra con-
tains the essential characteristics of fragile TIs in three
dimensions.

For completeness, in this section, we investigate the
fragile topology of dD (d + 1)th-order TIs by using the
Wilson loop method and show that the Wilson loop anal-
ysis is consistent with the diagnosis based on the par-
ity eigenvalues. First, we observe that the Wilson loop
spectrum of fragile TIs has a non-zero relative wind-
ing [66]. Then, we show that the relative winding of
the Wilson loop can be unwound by adding appropri-
ately chosen trivial bands. In dimensions greater than
two, however, the number of additional orbitals required
to trivialize the fragile topology does not match with the
number of additional orbitals required to unwind the rel-
ative winding of the Wilson loop spectrum. We find that
their number difference counts the number of orbitals
required to unwind the relative winding of the nested
Wilson loop spectrum. Comparing the Wilson loop and
nested Wilson loop spectra of 2D 3rd-order and 3D 4th-
order TIs, we show that the fragile topology of 3D insu-
lators is characterized by a non-zero relative winding of
the nested Wilson loop, and its unwinding requires extra
trivial bands to be added. We show that this idea is gen-
erally valid for dD kth-order TIs with d ≥ 3 and k > d.
In all dimensions d and for all order k, the number of
trivial bands needed to unwind all nested Wilson loops
is consistent with the number of bands needed to trivial-
ize the fragile topology determined by parity eigenvalues,
which is indicated in Eq. (47).

A. Fragile band topology and the relative winding
number

The fragile band topology of a dD (d+1)th-order TI is
manifested by the winding of the (nested) Wilson loop
spectrum. The Wilson loop Wk0+G←k0 indicates the
parallel transport of Bloch wavefunctions along a non-
contractible loop in the Brillouin zone, from k0 to k0 +G
where G is a reciprocal lattice vector [65–67]. In a tight-
binding model, the Bloch wavefunction is replaced by the
eigenstate |n,k〉 of the tight-binding Hamiltonian H(k),
which satisfies H(k)|n,k〉 = En(k)|n,k〉. The Wilson
loop is defined in terms of |n,k〉 as

[
Wk0+G←k0

]
nm

= lim
N→∞

〈n,k0 + G|
[N−1∏

i=1

P (ki)
]
|m,k0〉,

(64)
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where ki = k0 + i
NG with an integer i, and nocc de-

notes the number of occupied states. And the projec-
tor into the occupied states P (k) is defined by P (k) =∑nocc

n=1|n,k〉〈n,k|. Note that the Wilson loop spectrum

{θ(k0)}, Wk0+G←k0
|θ(k0)〉 = eiθ(k0)|θ(k0)〉, is indepen-

dent of the start point k0. Instead of the Wilson loop
spectrum, we sometimes use the equivalent term, the
Wilson bands in the following discussions. Also, since
we mostly consider the Wilson loop defined along the k1

direction, we will denote {θ1(k2, k3, · · · )} as the Wilson
loop spectrum. The definition and properties of the Wil-
son loop is summarized in Appendix H.

Here, let us review the Wilson loop of inversion-
symmetric systems studied comprehensively in Ref. [66].
For simplicity, let us consider a 2D plane (k1, k2) which is
left invariant under the inversion. The Wilson loop spec-
trum satisfies {θ1(k2)} = {−θ1(−k2)} and can exhibit
chiral and/or relative winding. We always assume that
there is no chiral winding since it represents the non-zero
Chern number and we are interested in the insulators
which are not stable TIs. Fig. 10 shows the Wilson loop
spectra for a 2D 3rd-order TI and a 3D 4th-order TI.
In Fig. 10(a) relevant to the 2D 3rd-order TI, one Wil-
son band has the winding number 1 while the other one
has the winding number −1. Their winding number dif-
ference is called the relative winding number NW , and
NW = 1 in this case. Similarly, Fig. 10(b) has NW = 2
while Figs. 10(c) and 10(d) have NW = 0.

Due to the constraint {θ1(k2)} = {−θ1(−k2)}, the Wil-
son loop spectrum at k̄2 = 0, π consists of θ1(k̄2) = 0 or
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FIG. 10. Wilson loop spectrum. (a) 2D 3rd-order TI. (b)-
(d) 3D 4th-order TI. The Wilson loop spectrum shows (a)
NW = 1, (b) NW = 2 at k3 = 0. The Wilson loop spectrum
(c) at k3 = 0.5π, (d) at k3 = π. The Wilson loop is defined
along the k1 direction.

π which are inversion-symmetric by itself, or (−θ0, θ0)
which are inversion symmetric as a pair. Thus, we define
nW0 (k̄2), nWπ (k̄2) and nWc (k̄2), which indicate the num-
ber of Wilson loop spectrum with eigenvalues θ(k̄2) = 0,
π, and (−θ0, θ0), respectively. For example, the par-
ity configuration BΓ(2, 2) shown in Fig. 8(a) is mapped
to {nWθ (0)} = (nW0 (0), nWπ (0), nWc (0)) = (0, 2, 0) and
{nWθ (π)} = (nW0 (π), nWπ (π), nWc (π)) = (2, 0, 0). Then
the relative winding number NW is given by [66]

2NW = max(nWπ (0)− nWπ (π)− nWc (π),

nWπ (π)− nWπ (0)− nWc (0), 0), (65)

which is unambiguously determined by nξ(k
inv) where

nξ(k
inv) denotes the number of the occupied bands at

kinv = (0, 0), (π, 0), (0, π), or (π, π) with inversion parity
ξ = ±1. The mapping between the inversion parities of
occupied states {nξ(kinv)} and the Wilson loop spectrum
{nWθ (k̄2)} is studied for arbitrary number of occupied
states nocc [66], as summarized in Appendix. H 6.

Eq. (65) implies that the relative windingNW is fragile,
i.e., NW decreases as appropriately chosen trivial bands
are added. To see this, let us consider the lattice model
for a dD (d+1)th-order TI in Eq. (52) with λ = 1, which
has 2d−1 occupied eigenstates whose parity configura-
tion corresponds to BΓ(d,NB = 2d−1). We focus on the
(k1, k2) plane with ki>2 = 0. It is straightforward to show
that the Wilson loop spectrum of BΓ(d, 2d−1) is given
by {nWθ (0)} = {nW0 (0), nWπ (0), nWc (0)} = {0, 2d−1, 0}
and {nWθ (π)} = {nW0 (π), nWπ (π), nWc (π)} = {2d−1, 0, 0}.
Then Eq. (65) gives the relative winding number NW =
2d−2. Now, let us examine how NW changes as trivial
bands are added. In the 2D unit cell in real space, which
is reciprocal to the (k1, k2) plane, there are four Wyckoff
positions: A = 0, B = 1

2a1, C = 1
2a1 + 1

2a2, D = 1
2a2

where a1,2 are relevant lattice vectors. Then, adding a
p(B), p(C) or p(D) orbital does not change NW . Here
we use the expression p(W ) to denote the p orbital at the
Wyckoff position W . On the other hand, adding a p(A)
decreases NW by 1. In general, the relative winding of
the Wilson loop can be unwound by adding 2d−2 p(A)
orbitals for a dD (d + 1)th-order TI. The above results
are summarized in Table VI A.

We verify numerically the fragile nature of the relative
winding number discussed above. Fig. 11 shows that the
Wilson loop spectrum of 2D 3rd-order TIs changes as ex-
pected when s(A) or p(A) orbitals are added. Namely,
adding a p(A) orbital opens a gap in the Wilson loop
spectrum while adding a s(A) orbital cannot. The details
of numerical calculations are summarized in Appendix. J.
Since the Wilson bands are divided into two sectors (P1,2)
after we add a p(A) orbital as shown in Fig. 11(b), the

Berry phase Φ̃ of each sector can be calculated. P1,2 re-
group the Wilson bands in an inversion-symmetric man-
ner, and thus have quantized Berry phases Φ̃[P1,2] in the

k2 direction. We find Φ̃[P1] = π and Φ̃[P2] = (0, π).
On the other hand, let us note that the average Φ of
the Wilson loop eigenvalues in P1 and P2 sectors along
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TABLE VIII. Change of parity configuration and the Wilson loop spectrum after adding trivial orbitals.

Band rep.
{nWθ (k2 = 0)} {nWθ (k2 = π)}

NW
nW0 (0) nWπ (0) nWc (0) nW0 (π) nWπ (π) nWc (π)

BΓ(d, 2d−1)⊕ p(A) 1 2d−1 0 2d−1 − 1 0 2 2d−2 − 1

BΓ(d, 2d−1)⊕ p(B) 0 2d−1 + 1 0 2d−1 1 0 2d−2

BΓ(d, 2d−1)⊕ p(C) 0 2d−1 + 1 0 2d−1 1 0 2d−2

BΓ(d, 2d−1)⊕ p(D) 1 2d−1 0 2d−1 + 1 0 0 2d−2

the k1 direction are 0 in both cases. As the two Wilson
bands in P2 have a fixed symmetric value θ1(k2) = π at
k2 = 0, we interpret Φ[P2] = 0 in a way that the Wan-
nier centers of the two Wilson bands in the a1 direction
are 1

2 in both cases. Thus, we conclude that the Wan-
nier centers of three bands in P1 and P2 are (0, π), (π, 0),
and (π, π), respectively. These values support that the
Wannier state representation for the 2D 3rd-order TI is
	p(A)⊕ p(B)⊕ p(C)⊕ p(D) [20]. This is also consistent
with Eq. (47) and the corner charge accumulation [60] in
the square boundary shown in Fig. 9(b).

Let us note that the fragility of NW = 1 Wilson bands
has already been studied in Ref. 20 and 48. However,
the fragility of NW = 2 Wilson bands in a 3D 4th-order
TI and in its higher-dimensional generalization has more
involved structures and has not been studied yet. In
the following, we show that, when d > 2, adding 2d−2

p(A) orbitals are not sufficient to trivialize the fragile
topology of dD (d+ 1)th-order TI even though it makes
all the relative windings of the Wilson loops to be zero.
This implies the nontrivial winding of the nested Wilson
loops, which is addressed in the next section.
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FIG. 11. The Wilson loop spectrum of 2D 3rd order TI. (a)
Adding s(A) orbital cannot open the gap of Wilson spectrum.
(b) Adding p(A) orbital opens the gap of Wilson loop spec-
trum. Three bands are divided into P1 and P2. The black
band (red bands) belongs (belong) to P1 (P2). P1 band has
the nested Berry phase π, and P2 bands have the nested Berry
phases (0, π).

B. Nested Wilson loop and trivialization of fragile
topology

In this section, we discuss the fragility of the Wilson
loop of the 3D 4th-order TI. Symmetry data analysis
shows that the trivialization of the 3D 4th-order TI re-
quires at least three p(A) orbitals although the relative
winding of the Wilson bands can be gapped with two
p(A) orbitals. To understand the origin of the mismatch
in the number of required orbitals, we investigate the
nested Wilson loop of the 3D 4th-order TI with two or
three additional p(A) orbitals.

1. Adding one p(A) orbital

Adding one p(A) orbital reduces the relative winding
from NW = 2 to NW = 1 as shown in Figs. 12(a)-(c).
Thus, the winding of the Wilson loop persists, and thus
the nontrivial band topology still exists.

2. Adding two p(A) orbitals

Adding two p(A) orbitals reduces the relative winding
from NW = 2 to NW = 0 as shown in Figs. 12(d)-(f).
Six Wilson bands are divided into two groups, Pin and
Pout, in an inversion-symmetric manner. Then we can
compute the nested Wilson loops of Pin and Pout, which
show non-zero nested Chern numbers Cnest = −2 and
Cnest = 2, respectively, as shown in Figs. 13(a) and 13(b).
This can be explained by the fact that a 3D 4th-order TI
can be considered as two copies of the class A 3D 2nd
order TI, i.e., the axion insulator, which is characterized
by an odd nested Chern number [20]. However, let us
note that an even value of the nested Chern number it-
self does not guarantee the nontrivial bulk topology. This
is because only the parity of Cnest remains robust when a
band crossing between Wilson bands in Pin and those in
Pout, or a Wilson band transition, happens while keeping
the bulk gap [20]. Since two p(A) orbitals cannot trivi-
alize the band topology according to the symmetry data
analysis, the nontrivial bulk topology must be manifested
in the nested Wilson loop. We show that the nontrivial
band topology appears in the form of the relative wind-
ing in the nested Wilson loop. After the band crossing
between Wilson bands, the nested Wilson loop of Pin
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FIG. 12. The Wilson loop spectrum of 3D 4th-order TI (a)-(c) after adding one p(A) orbital, (d)-(f) after adding two p(A)
orbitals, (g)-(i) after adding three p(A) orbitals. (a) The Wilson loop spectrum at k3 = 0. The NW = 2 relative winding is
reduced to NW = 1. (b) The Wilson loop spectrum at k3 = 0.5π, (c) The Wilson loop spectrum at k3 = π. (d) The Wilson
loop spectrum at k3 = 0. The NW = 2 relative winding is reduced to NW = 0. (e) The Wilson loop spectrum at k3 = 0.5π,
(f) The Wilson loop spectrum at k3 = π. (g) The Wilson loop spectrum at k3 = 0. The NW = 2 relative winding is reduced
to NW = 0. (h) The Wilson loop spectrum at k3 = 0.5π, (i) The Wilson loop spectrum at k3 = π. As the Wilson spectra are
gapped after adding two or three p(A) orbitals, we can define two sectors of Wilson bands, Pin and Pout.

shows the nested relative winding number NW,nest = 1
while the nested Wilson loop of Pout is completely un-
wound as shown in Figs. 13(c) and 13(d). In the nested
Wilson loop spectra for Pin sector shown in Figs. 13(a)
and 13(c), we have |Cnest| + 2NW,nest = 2. This means
that the fragile band topology manifests as the nontrivial
winding of the nested Wilson loop spectrum encoded in
either Cnest or NW,nest.

By generalizing the above results, we propose an indi-
cator Nd,nest which characterizes the fragile band topol-
ogy. First, let us define Nd,nest in a way similar to its
counterpart Nd in Eq. 65 is defined for the Wilson loop:

Nd,nest ≡max(nWnest
π (0)− nWnest

π (π)− nWnest
c (π),

nWnest
π (π)− nWnest

π (0)− nWnest
c (0)) (66)

where nWnest
π (k̄3) and nWnest

c (k̄3) are the number of eigen-

values equal to π and that equal to a generic value, re-
spectively, in the nested Wilson loop spectrum computed
at k̄3 = 0, π. The indicator Nd,nest is invariant under
a band crossing between the Wilson bands, and thus it
determines the band topology of a given nested Wilson
loop spectrum. We note that there may be one or more
gaps in the Wilson loop spectrum, and all possible nested
Wilson loop spectra have to be considered. Let us dis-
tinguish the indicator Nd,nest into the following ways: i)
When Nd,nest is an odd integer, the nested Wilson loop
spectrum shows an odd Cnest. This implies the stable
band topology. ii) WhenNd,nest is a positive even integer,
|Cnest| + 2NW,nest = Nd,nest holds for |Cnest| < Nd,nest.
Thus, the nested Wilson loop shows the nested relative
winding number equal to NW,nest = 1

2Nd,nest even when
the band crossing between the Wilson bands change Cnest
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FIG. 13. The nested Wilson loop spectra of 3D 4th-order TI after adding two or three trivial p(A) orbitals. (a)-(d) The nested
Wilson loop spectrum of 3D 4th-order TI with two additional p(A) orbitals. The nested Wilson loop spectrum of (a) Pin, (b)
Pout before the Wilson band transition. The nested Wilson loop spectrum of (c) Pin, (d) Pout after the Wilson band transition.
(e)-(h) The nested Wilson loop spectrum of 3D 4th-order TI with three additional p(A) orbitals. The nested Wilson loop
spectrum of (e) Pin, (f) Pout before the Wilson band transition. The nested Wilson loop spectrum of (g) Pin, (h) Pout after the
Wilson band transition.

to zero. iii) When Nd,nest is a negative even integer or
zero, the nested Wilson loop can be unwound by a band
crossing between the Wilson bands. The rules ii) and iii)
can be applied to the nested Wilson loop spectrum of Pin

and Pout which show Nd,nest = 2 and −2, respectively, as
shown in Figs. 13(a)-(d). More details of our claim and
the relevant proof are provided in Appendix. I.

3. Adding three p(A) orbitals

Adding the third p(A) orbital to the case considered
above makes little changes in the Wilson loop spectra.
For instance, the third p(A) orbital does not change
the nested Chern number Cnest as shown in Figs. 13(e)
and 13(f). However, after the band crossing between Wil-
son bands in Pin and those in Pout, the windings in the
nested Wilson loops for both Pin and Pout have been un-
wound as shown in Figs. 13(g) and 13(h). This can be in-
ferred from the fact that the nested Wilson loop spectrum
of Pin and Pout in Figs. 13(e)-(h) show Nd,nest = 0 and
−2, respectively. Therefore we conclude that the fragile
TI is characterized by the nontrivial relative winding of
the nested Wilson loop.

Since the Wannier obstruction is fully relaxed, we can
find the Wannier state representations corresponding to
the cases shown in Figs. 13(g) and 13(h). One inter-
esting feature of the nested Wilson loops in Fig. 13(g)
is that even the nest Wilson bands from Pin can be di-

vided further into two different groups of nested Wilson
bands, Pin(Pin) and Pout(Pin), which is possible since
there is no winding or relative winding in the spec-
trum. Similarly, Fig. 13(h) shows that the nested Wil-
son bands from Pout can be divided into Pin(Pout) and
Pout(Pout) [See Appendix H for more details]. Then
the corresponding averaged eigenvalues Φ and the Berry
phases Φ̃ are given by Φ[Pin,out] = Φ[Pin,out(Pin,out)] = 0,

Φ̃[Pin(Pin)] = π, Φ̃[Pout(Pin)] = (0, π), Φ̃[Pin(Pout)] =

(0, π), and Φ̃[Pout(Pout)] = (0, π). Here Φ[Pi] (Φ[Pi(Pj)])
indicates the average eigenvalues of the Wilson band Pi
(the nested Wilson band Pi(Pj)) while Φ̃[Pi] (Φ̃[Pi(Pj)])
denotes the Berry phase of the Wilson band Pi (the
nested Wilson band Pi(Pj)). The corresponding Wannier
centers of the seven occupied states are (0, π, 0), (π, 0, 0),
(π, π, 0), (0, 0, π), (0, π, π), (π, 0, π) and (π, π, π), respec-
tively. This supports that the Wannier state represen-
tation for the 3D 4th-order TI is

⊕8
i=2 p(Wi)	 3p(W1),

which is consistent with Eq. (47). Also, the corner charge
accumulation in the cubic geometry shown in Fig. 9(e)
can be related to the Wannier state representation in the
same way as in 2D.

C. Generalization to higher dimensions and
higher-order

The idea presented in the previous section can be gen-
eralized further to dD kth-order TI with d ≥ 3 and k > d.
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The key observation is that only the inner Wilson bands
in Pin of the trivialized lth nested Wilson loop have the
relative winding number in their (l+ 1)th nested Wilson
loop spectrum. We assume that the nested Chern num-
bers are always zero, which can always be achieved via
the band crossing between Wilson bands.

Explicitly, according to the discussion in Sec. V, a dD
kth-order TI has an equivalent Wannier state represen-
tation given by

2n−d
[ 2d⊕

i=1

p(Wi)	 2d−1 p(W1)
]
, (67)

where d + k = 2n + 1 and n = d, d + 1, · · · for class A
systems. Thus, the dD kth-order TI can be trivialized
by adding 2n−d(2d−1 − 1) p(W1) orbitals according to
Eq. (67). Now, we give a heuristic argument suggesting
that 2n−d × 2d−l−2 p(W1) orbitals trivialize the relative
winding of lth nested Wilson loop for l = 0, 1, · · · , d− 2.
Here the 0th nested Wilson loop means the conventional
non-nested Wilson loop. First, we consider the Wilson
loop of dD kth-order TI defined along the kd direction.
As shown in Sec. VI A, it has the relative winding number
2n−d × 2d−2. Thus, adding 2n−d × 2d−2 p(W1) orbitals
unwinds the Wilson loop completely. Then the resulting
Wannier state representation is

2n−d
[ 2d⊕

i=1

p(Wi)	 2d−2 p(W1)
]
. (68)

Since there is no relative winding in the Wilson loop, the
Wilson bands can be divided into two groups Pin and
Pout. Here Pin consist of the nearly flat Wilson bands
near θ1 = 0 which come from the additional trivial or-
bitals. This indicates that the Wannier centers of the
Wilson bands in Pin in the ad direction are all zero. Then
the Wannier state representation of the Wilson bands in
Pin is equivalent to

2n−d
[ 2d−1⊕

i=1

p(Wi)	 2d−2 p(W1)
]
, (69)

where we projected out the Wyckoff positions Wi (i =
2d−1 + 1, · · · , 2d) whose coordinate in the ad direction is
1/2. Since the Wannier state representation in Eq. (69),
is equivalent to that for the (d − 1)D (k − 1)th-order
TI, we can repeat a similar procedure to trivialize the
first nested Wilson loop. Repeating this procedure re-
cursively, we conclude that the inner Wannier bands
Pin of the lth nested Wilson loop are equivalent to the
(d−l−1)D (k−l−1)th-order TI which is characterized by
the relative winding number 2n−d × 2d−l−3. This com-
pletes our heuristic proof. Since adding 2n−d × 2d−l−2

p(W1) orbitals can unwind the lth nested Wilson loop
for l = 0, 1, · · · , d−2, the total number of p(W1) orbitals
required for complete trivialization is

d−2∑

l=0

2n−d × 2d−l−2 = 2n−d(2d−1 − 1). (70)

In this way, we can understand the total number of addi-
tional orbitals required to trivialize the fragile topology
in terms of the relative winding numbers in all possible
nested Wilson loops.

VII. GENERAL PUMPING PROCESS

In this section, we describe the pumping process of
inversion-symmetric TIs. The main claim is that the
band topology of the (d + 1)D (k − 1)th-order TI can
be understood in terms of the adiabatic pumping pro-
cess between the dD kth-order TI and the trivial-parity
insulator along the (d+1)th momentum direction. In par-
ticular, we discuss how the higher-order TIs with hinge
states, i.e., (d+1)D dth-order TIs, can be constructed via
the pumping process of dD (d+ 1)th-order TIs. This can
be considered as the generalization of the idea proposed
in Ref. 20.

A. General pumping process

Let us consider an adiabatic pumping process of
the parity configurations of dD kth-order TIs along
the kd+1 direction between kd+1 = 0 and kd+1 = π
planes. We label the symmetry data in the kd+1 = 0
plane as {n−(kinv

1 )−n+(kinv
1 ), · · · , n−(kinv

2d )−n+(kinv
2d )}

and those in the kd+1 = π plane as {n−(kinv
2d+1) −

n+(kinv
2d+1), · · · , n−(kinv

2d+1)−n+(kinv
2d+1)}, respectively. At

each dD subspace, the momentum space symmetry data
can be mapped to 2d νW (kd+1) indices for dD inversion-
symmetric insulator by using Eq. (39) as




νW1
(0)

νW2
(0)

νW3(0)
...

νW
2d

(0)




= Ad




n−(kinv
1 )− n+(kinv

1 )

n−(kinv
2 )− n+(kinv

2 )

n−(kinv
3 )− n+(kinv

3 )
...

n−(kinv
2d )− n+(kinv

2d )



, (71)

and




νW1
(π)

νW2
(π)

νW3(π)
...

νW
2d

(π)




= Ad




n−(kinv
2d+1)− n+(kinv

2d+1)

n−(kinv
2d+2)− n+(kinv

2d+2)

n−(kinv
2d+3)− n+(kinv

2d+3)
...

n−(kinv
2d+1)− n+(kinv

2d+1)



. (72)

Let us note that, thanks to the simple structure of inver-
sion symmetry, the matrix Ad in Eq. (39), which connects
the symmetry data in real and momentum spaces, satis-
fies the following simple recursion relation.

Ad+1 =
1

2

(
Ad Ad
Ad −Ad

)
, (73)
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which is proved in Appendix. B. Then 2d+1 νW indices
for (d+ 1)D inversion-symmetric insulator are given by

νWi
=

1

2
(νWi

(0) + νWi
(π)),

νW
i+2d

=
1

2
(νWi

(0)− νWi
(π)), (74)

where i = 1, · · · , 2d. Thus, the resulting phase can be
diagnosed by using {νW (0)} and {νW (π)}.

Eq. (74) shows that any fragile TI or atomic insulators
in (d + 1)D can be understood as a pumping process
between fragile TI or atomic insulators. Since all νW
indices for (d + 1)D fragile TI or atomic insulator are
integers, all νWi(0) and νWi(π) are also integers according
to Eq. (74). This means that the parity configurations at
kd+1 = 0 and π correspond to either fragile TIs or atomic
insulators.

In Sec. IV C, it is mentioned that, when nocc = 2,
the fragile TI in higher dimensions can be obtained by
a layer-stacking of 2D fragile TI, and this process can
also be described by a momentum space pumping of
fragile TIs. To illustrate this idea, let us consider a
trivial pumping process in which the parity configura-
tions at kd+1 = 0 and π are identical to each other,
i.e., νWi(0) = νWi(π) for i = 1, · · · , 2d. In this situ-
ation, νW indices for (d + 1)D inversion-symmetric in-
sulator are given by νWi = νWi(0) and νW

i+2d
= 0 for

i = 1, · · · , 2d. This shows that a fragile TI with nocc = 2
in 3D, {νW } = {−1, 1, 1, 1, 0, 0, 0, 0} for example, can be
understood as a trivial pumping process of 2D fragile TI
with {νW (0)} = {νW (π)} = {−1, 1, 1, 1} in the k3 direc-
tion, consistent with the previous description.

B. Hamiltonian mapping

Here we show that an adiabatic pumping between the
dD kth-order TI and the trivial-parity insulator leads to
the (d+ 1)D (k − 1)th-order TI.

(d+ 1)D (k − 1)th-order TI
=

Pumping between a dD kth-order TI and the
trivial-parity insulator

The Hamiltonians for a class A dD kth-order TI and a
(d+ 1)D (k − 1)th-order TI are given by

HA(d,k) =

d∑

i=1

sin kiΓi − (d− λ+

d∑

i=1

cos ki)M, (75)

and

HA(d+1,k−1) =

d+1∑

i=1

sin kiΓi − (d+ 1− λ+

d+1∑

i=1

cos ki)M,

(76)

where the number of Γ matrices is q = d + k = 2n + 1
and their dimension is 2n × 2n. The bulk mass term
M and the inversion symmetry operator I are given by
M = I = Γq. The parity configurations corresponding
to HA(d,k) and HA(d+1,k−1) are BΓ(d, 2n−1) and BΓ(d +

1, 2n−1), respectively. The νW indices for BΓ(d, 2n−1) are
given by

2n−d{1− 2d−1, 1, · · · , 1}, (77)

while those for the trivial parity configuration of 2n−1

bands with only positive parities are

{−2n−1, 0, · · · , 0}. (78)

Thus, the pumping between BΓ(d, 2n−1) and the trivial
parity configuration gives 2d+1 νW indices 2n−d−1{1 −
2d, 1, 1, · · · , 1}, which is exactly the νW indices of BΓ(d+
1, 2n−1).

Also, one can explicitly construct a mapping between
the Hamiltonians given by

ϕ↑[HA(d,k)](k, kd+1, λ)

= HA(d,k)(k, λ− 1 + cos kd+1) + sin kd+1Γd+1, (79)

whereHA(d,k)(k, λ) is the Hamiltonian for a dD kth-order
TI in Eq. (75). The map ϕ↑[H] increases the dimension
of the Hamiltonian H by one, and describes the pump-
ing process of the dD kth-order TI. Here λ is a param-
eter governing the topological phase transition between
the trivial and topological phases. (d + k) should be an
odd integer in order that the dD kth-order and (d+ 1)D
(k − 1)th-order TIs exist. HA(d,k)(k, λ) is in the triv-
ial (topological) phase when λ < 0 (0 < λ < 2). For
any kd+1, the map ϕ↑[HA(d,k)](k, kd+1, λ) = HA(d+1,k−1)

preserves the bulk gap, since

{
ϕ↑[HA(d,k)](k, kd+1, λ)

}2
> 0. (80)

The nontrivial topology of ϕ↑[HA(d,k)] originates from
the band topology of HA(d,k). ϕ↑[HA(d,k)] is in the topo-
logical (trivial) phase of HA(d,k) at kd+1 = 0 (kd+1 = π)
when 0 < λ < 2. Hence, the map ϕ↑[HA(d,k)] describes
the desired pumping process.

One can consider the following examples as an applica-
tion of the pumping picture. For instance, a pumping of
a 1D 2nd-order TI described by the SSH model without
chiral symmetry leads to the 2D 1st-order TI, the Chern
insulator. A pumping of a 2D 3rd-order TI gives a 3D
2nd-order TI, the axion insulator [20]. Finally, a pump-
ing of a 3D 2nd-order TI gives a 4D 1st-order TI, the
4D Chern insulator. In the case of other AZ classes, the
Hamiltonian mapping is more restricted. For instance,
in class AI, a pumping of a 2D 3rd-order TI produces
Z2 monopole nodal line semimetal [82–88]. In the case
of class AII, a pumping of a 2D 3rd-order TI generates
the doubled strong TI characterized by the Z4 symmetry
indicator [11, 41, 43]. Finally, let us mention several re-
lated works discussing the pumping of a 2D 3rd-order TI.
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Refs. [45] and [89] discussed a charge pumping process of
roto-inversion symmetric systems. Ref. [90] discussed a
fractional charge bound to a vortex, which can be under-
stood as a charge pumping process, in the systems with
various crystalline symmetries including inversion sym-
metry. Although the relevant symmetries are different
from ours, all these pumping process are essentially the
pumping of a 2D 3rd-order TI, or 2D 2nd-order TI when
the chiral symmetry is present, to a 3D 2nd-order TI.

VIII. CONCLUSION

In this work, we systematically study the bulk and
boundary properties of fragile TIs protected by inver-
sion symmetry. In particular, we focus on the class A
inversion-symmetric insulators which can be character-
ized by (2d + 1) invariants, nocc and {νW }, defined in
terms of symmetry data in momentum space. Using these
invariants, stable TIs, fragile TIs, and atomic insulators
are distinguished. We propose an efficient method for di-
agnosing fragile topological phases protected by inversion
symmetry, and estimate the number of parity configura-
tions corresponding to atomic insulators, fragile TIs, and
stable TIs, respectively. Considering that the symmetry
indicator cannot distinguish atomic insulators and frag-
ile TIs, our diagnosis method goes beyond the recently
proposed diagnosis schemes.

We have extended the notion of higher-order topology
by generalizing the concept of dD kth-order TI to the
cases with k > d, which is normally defined for k ≤ d.
We show that dD kth-order TIs with k > d have fragile
band topology. In contrast to the case of stable TIs where
the relative topology between a trivial and a topological
insulators can be described by a Dirac Hamiltonian un-
ambiguously, the relative topology between a fragile TI
and an atomic insulator is more subtle. In particular, the
Dirac Hamiltonian approach to the fragile TI is mean-
ingful only when we specify trivial insulator taking into
account the parity of occupied states at all inversion-
invariant momenta. In our case, we define the trivial-
parity insulator having positive parity occupied states at
all inversion-invariant momenta as a reference trivial in-
sulator. Then the band inversion described by the Dirac
Hamiltonian gives a fragile TI unambiguously. In fact,
once we have the full symmetry data at all inversion-
invariant momenta, we can completely analyze the frag-
ile band topology protected by inversion symmetry which
we have demonstrated rigorously.

Moreover, we derive the bulk-boundary correspon-
dence of dD (d + 1)th-order TI, and identify a minimal
fragile phase with the filling anomaly as the dD (d+1)th-
order TI. In other words, a fragile TI corresponding to
the dD (d+ 1)th-order phase can have nontrivial bound-
ary charge. We also explain the topological origin of the
charge accumulation on the boundary. We show that
how the mass winding, the induced current, the filling
anomaly, and corner charges are related to each other

in a unified way. In the case of dD kth-order TIs with
k > (d + 1) although there is no nontrivial charge accu-
mulation, the net parity I, serves as a bulk topological
invariant for for any k > d. In fact, the net parity char-
acterizes the bulk topology of all inversion-symmetric in-
sulators without gapless boundary states. Also, from the
careful study of Wilson loops and nested Wilson loops,
we show that fragile topological phases are characterized
by the relative winding in all possible Wilson loops. Fi-
nally, we discuss the implication of the pumping process
of inversion-symmetric insulators.

We expect that all the concepts developed in this
paper, such as the mass winding, topological induced
currents, the net parity, and the diagnosis of fragile
topology based on symmetry data, can be applied to
other topological crystalline insulators in general. For
example, the mass winding approach can be extended
to fragile topological or atomic phases with rotation
symmetries, considering the recent progress reported in
Ref. 24, 36, 37, and 60. We leave the extension of our
theory to more general cases of fragile TIs protected by
various space groups and magnetic space groups for fu-
ture studies.

Note added—. During the completion of this paper,
we noticed that a paper by Z. Song et al. [25] appeared
on arXiv. They classified all fragile topological phases
indicated by symmetry eigenvalues for the class AII and
230 space groups. For inversion symmetric cases, i.e.,
space group 2, linear inequalities for diagnosing fragile
TIs are proposed in Ref. 25 which is equivalent to our
nonlinear inequality in FIG. 5.
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Appendix A: Derivation of diagnosis criterion

In this Appendix, we derive our criterion
∑
W |νW | >

nocc that distinguishes the fragile topological and atomic
phases. In the following, we adopt two assumptions: i)
the band topology is not stable topological, i.e., it is ei-
ther a fragile topological phase or an atomic phase, and
ii) we consider only the band topology protected by in-
version symmetry, such that inversion parity determines
the band topology exactly.
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Let us first prove that the phases with
∑
W |νW | > nocc

cannot be atomic insulator. Any atomic phase has µW
integer greater than or equal to zero. Then, the following
inequality holds:

nocc =
∑

W

(µW,+ + µW,−)

≥
∑

W

|µW,+ − µW,−| =
∑

W

|νW |. (A1)

Thus, a phase which satisfies
∑
W |νW | > nocc cannot be

atomic phase.

Now, let us prove that insulators satisfying
∑
W |νW | ≤

nocc are atomic insulators. In other words, we can con-
struct an equivalent Wannier state representation with
µW,± ≥ 0. From the nocc occupied states, we first con-
struct

∑
W |νW | Wannier states,

⊕

W,ξ

(sW − ξ
2

)
νWwξ(W ), (A2)

where sW = sgn(νW ). By construction, we have µW,ξ =

( sW−ξ2 )νW = (|νW | − ξνW )/2 ≥ 0. Then, we consider
the remaining nocc −

∑
W |νW | states. Since the Wan-

nier state representation in Eq. (A2) satisfies µW,− −
µW,+ = νW already, adding the remaining states should
not change νW at each W . It can be done by locating
pairs of even- and odd-parity states at the Wyckoff posi-
tions. It is possible to do so because nocc −

∑
W |νW | =∑

W,ξ(1+ξsW )µW,ξ and (1±sW ) are even integers. Thus,

we can locate 1
2 (nocc−

∑
W |νW |) pairs of s and p orbitals

at any W without changing νW .

In conclusion, an insulator satisfying
∑
W |νW | > nocc

is fragile TI, and vice versa.

Appendix B: Properties of Ad and νW

1. Representation of symmetric Wannier state

Let us consider a Wannier state wξ(W ) centered at the
Wyckoff position W in the unit cell labeled by the lattice
vector R. We denote such states as |wξ,R(W )〉. Inversion
symmetry acts on |wξ,R(W )〉 as

I |wξ,R(W )〉 = ξ|wξ,−R−2W (W )〉, (B1)

where ξ = ±1. Then, the corresponding Bloch wavefunc-
tion |ψWξ (k)〉 is

|ψWξ (k)〉 =
1√
Ncell

∑

R

eik·R|wξ,R(W )〉, (B2)

where Ncell is the number of unit cells. Its transformation
property under inversion is inherited from |wξ,R(W )〉,

I|ψWξ (k)〉 =
1√
Ncell

∑

R

eik·RI |wξ,R(W )〉

=
1√
Ncell

∑

R

eik·Rξ|wξ,−R−2W (W )〉

=
1√
Ncell

∑

R′

e−ik·(R
′+2W )ξ|wξ,R′(W )〉

= ξe−2ik·W |ψWξ (−k)〉. (B3)

This means that the Bloch wavefunction |ψWξ (k)〉 con-

structed by wξ(Wi) has parity ξηij at inversion-invariant

momentum kinv
j , where we define ηij ≡ ξe−2ikinv

j ·Wi . In

other words, |wξ,R(Wi)〉 generates n±(kinv
j ) = 1

2 (1±ξηij)
Bloch states with parity ±1 at kinv

j .

2. Properties of ηij

Since kinv
i = 2πWi and 2

πk
inv
i · Wj ∈ Z, ηij =

e−2ikinv
i ·Wj satisfies

ηij = ηji = η−1
ij , (B4)

and

2d∑

i=1

ηij = 2dδ1j ,

2d∑

l=1

ηilηlj = 2dδij . (B5)

Let first us prove
∑2d

i=1 ηij = 2dδ1j . When j = 1,
all ηi1 are equal to 1 because W1 = 0 by definition.

Thus,
∑2d

i=1 ηi1 =
∑2d

i=1 1 = 2d. When j 6= 1, ηij al-
ways has a partner ηi′j = −ηij for some i′. Therefore,
∑2d

i=1 ηij is zero. Combining the above relations, we ob-

tain
∑2d

i=1 ηij = 2dδj1.

In a similar manner, one can prove that
∑2d

l=1 ηilηlj =
∑2d

l=1 e
−2i(kinv

i −kinv
j )·Wl = 2dδij . The proof is trivial when

i = j. When i 6= j, either kinv
i or kinv

j is non-zero. Let us

assume that kinv
i 6= 0 without loss of generality. Then,

ηilηlj = e−2i(kinv
i −kinv

j )·Wl always has a partner ηil′ηl′j =
−ηilηlj for some l′. The summation of ηilηlj over l thus
vanishes.

3. Derivation of the mapping Ad

We derive the matrix Ad that relates the number of
the Wannier sates in real space to the number of occu-
pied states of even- and odd-parity in momentum space.
As we show in the first subsection, |wξ,R(Wi)〉 generates
n±(kinv

j ) = 1
2 (1 ± ξηij) Bloch states with parity ±1 at
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kinv
j , a set of Wannier states

∑
W,ξ µW,ξwξ(W ) produces

n±(kinv
i ) =

2d∑

j=1

∑

ξ=±

1

2
(1± ξηij)µWj ,ξ

=
1

2

2d∑

j=1

∑

ξ=±
µWj ,ξ ±

1

2

2d∑

j=1

ηij
∑

ξ=±
ξµWj ,ξ

=
1

2
nocc ∓

1

2

2d∑

j=1

ηijνWj
. (B6)

Thus, we obtain

n−(kinv
i )− n+(kinv

i ) =

2d∑

j=1

ηijνWj
. (B7)

Equivalently, νWi =
∑2d

j=1 2−dηij
[
n−(kinv

i )− n+(kinv
i )
]

because η−1 = 2−dη in the matrix notation as shown in
Eqs. (B4) and (B5). We introduce a new notation Ad by




νW1

νW2

νW3

...

νW
2d




= Ad




n−(kinv
1 )− n+(kinv

1 )

n−(kinv
2 )− n+(kinv

2 )

n−(kinv
3 )− n+(kinv

3 )
...

n−(kinv
2d )− n+(kinv

2d )




(B8)

where

[
Ad
]
ij

=
1

2d
ηij =

1

2d
exp(2ikinv

i ·Wj). (B9)

From Eqs. (B4) and (B5), one can find that Ad satisfies

A−1
d = 2dAd, ATd = Ad,

2d∑

i=1

[
Ad
]
ij

= δj,1. (B10)

For later use, we write Eq. (B8) in another form,




νW1 + nocc

νW2

νW3

...

νW
2d




= 2Ad




n−(kinv
1 )

n−(kinv
2 )

n−(kinv
3 )

...

n−(kinv
2d )




(B11)

by using n+(kinv
i ) + n−(kinv

i ) = nocc.
Also, Ad+1 and Ad have a recursion relation,

Ad+1 =
1

2

(
Ad Ad
Ad −Ad

)
. (B12)

This can be easily proven by using 1
π (kinv

i+2d − kinv
i ) =

2(Wi+2d −Wi) = (0, · · · , 0, 1) for i = 1, · · · , 2d.

4. Properties of νW

As nξ(k
inv) must be an integer which satisfies 0 ≤

nξ(k
inv) ≤ nocc, {νW } cannot take any values. Most

importantly, {νW } satisfy

∣∣
2d∑

j=1

[Ad]ijνWj

∣∣ =
1

2d
n (B13)

where n is an integer less than or equal to nocc, according
to Eq. (B6). Also, νW indices have the following proper-
ties:

a. 2d−1νWi
∈ Z,

b. 2d−2(νWi
± νWj 6=i) ∈ Z,

c. |νWi
| ≤ nocc,

d. |νWi
± νWj

| ≤ nocc,

e.
∣∣∑

W

νW
∣∣ ≤ nocc (B14)

a. Proof of 2d−1νWi
∈ Z. As n−(kinv) is an integer

greater than or equal to zero and Ad satisfies 2d[Ad]ij =

±1, νWi
=
∑2d

j=1 2[Ad]ijn−(kinv
j ) (mod 1) in Eq. (B11)

implies

2d−1νWi
∈ Z. (B15)

b. Proof of 2d−2(νWi
± νWj

) ∈ Z. From

2d−1 ([Ad]ij ± [Ad]i′j′) = 0 or ±1, it follows that

νWi ± νWi′ =
∑2d

j=1 2 ([Ad]ij ± [Ad]i′j)n−(kinv
j ) for

i, i′ 6= 1, which implies

2d−2(νWi
± νWi′ ) ∈ Z (B16)

when i, i′ 6= 1. Similarly, νW1 ± νWi =∑2d

j=1 2 ([Ad]1j ± [Ad]ij)n−(kinv
j )−nocc for i 6= 1 implies

2d−2(νW1 ± νWi) ∈ Z. (B17)

Thus, we obtain 2d−2(νWi
± νWj

) ∈ Z for i 6= j. This
completes the proof because when i = i′ the property b
reduces to the property a, which we prove above.

c. Proof of |νWi
| ≤ nocc. Let us first prove |νW1

| ≤
nocc. From Eqs. (B10) and (B11), we obtain

|νW1
| =

∣∣∣2
2d∑

j=1

[Ad]1jn−(kinv
j )− nocc

∣∣∣

= |2n−(kinv
1 )− nocc| ≤ nocc. (B18)

Thus, |νW1 | ≤ nocc. We can prove |νWi | ≤ nocc for i 6= 1
in a similar way. For i 6= 1, the number of [Ad]ij = ± 1

2d
is

equal. Let us relabel the j indices such that [Ad]ij = 1
2d

for j = 1, · · · , 2d−1 and − 1
2d

for j = 2d−1 + 1, · · · , 2d.
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Then, we obtain

|νWi | = 2
∣∣∣

2d∑

j=1

[Ad]ijn−(kinv
j )
∣∣∣

= 21−d
2d−1∑

j=1

∣∣∣n−(kinv
j )− n−(kinv

j+2d−1)
∣∣∣

≤ nocc. (B19)

d. Proof of |νWi
± νWj 6=i | ≤ nocc. Let us first

prove |νW1
± νWi6=1

| ≤ nocc. We can relabel the j

indices for given i such that [Ad]ij = ± 1
2d

for j =

1, · · · , 2d−1 and ∓ 1
2d

for j = 2d−1 + 1, · · · , 2d. Then,

2d−1 ([Ad]1j ± [Ad]ij) = 1 for j = 1, · · · , 2d−1 and 0 for
j = 2d−1 + 1, · · · , 2d. Thus,

|νW1
± νWi

| =
∣∣∣2

2d∑

j=1

([Ad]1j ± [Ad]ij)n−(kinv
j )− nocc

∣∣∣

=
∣∣∣22−d

2d−1∑

j=1

n−(kinv
j )− nocc

∣∣∣ ≤ nocc.

(B20)

When i, i′ 6= 1 and i 6= i′, we can relabel the j indices

such that 2d−1
(

[Ad]ij ± [Ad]i′j

)
= 1 for j = 1, · · · , 2d−2,

−1 for j = 2d−2+1, · · · , 2d−1, and 0 for j = 2d−1, · · · , 2d.
The relabeling of j indices is achieved as follows. Since
both kinv

i and kinv
i′ are inversion-invariant momenta, so

is kinv
i′ −kinv

i . Thus, we can write it as kinv
i′ −kinv

i = ∆G
2

where ∆G is a reciprocal lattice vector. Then, ηij ±
ηi′j = ηij(1± exp(i∆G ·Wj)), thus ηij ± ηi′j = 0 for j =
2d−1 + 1, · · · , 2d after the relabeling of j indices. From∑
j ηij ± ηi′j = 0, ηij ± ηi′j = ±1 are equally distributed,

say ηij ± ηi′j = 1 for j = 1, · · · , 2d−2 and −1 for j =
2d−2 + 1, · · · , 2d−1. Finally,

|νWi ± νWi′ | =
∣∣∣2

2d∑

j=1

(
[Ad]ij ± [Ad]i′j

)
n−(kinv

j )
∣∣∣

=
∣∣∣22−d

2d−2∑

j=1

(n−(kinv
j )− n−(kinv

j+2d−2))
∣∣∣

≤ nocc. (B21)

e. Proof of |∑W νW | ≤ nocc. Using Eq. (B10), we
obtain

|
∑

W

νW | =
∣∣∣2

2d∑

i,j=1

[Ad]ijn−(kinv
j )− nocc

∣∣∣

= |2n−(kinv
1 )− nocc| ≤ nocc. (B22)

Appendix C: Relations between νW indices and
symmetry indicator

Symmetry indicators are constructed from symmetry
eigenvalues in momentum space, and these distinguish
stable topological phases from fragile topological and
atomic phases [11]. Here, we relate νW indices with in-
version symmetry indicators.

In d dimensions, one can define the Z2d−1 symmetry
indicator z2d−1 for inversion symmetry,

z2d−1 =
1

2

2d∑

i=1

(
n+(kinv

i )− n−(kinv
i )
)

(mod 2d−1).

(C1)

To see why it is defined modulo 2d−1, we connect it to νW
indices. Let us recall that an atomic orbital localized at
Wi with inversion parity ξ has parity ξ exp(2ikinv

j ·Wi) at

inversion-invariant momentum kinv
j . Therefore, we have

z2d−1 =
1

2

2d∑

i=1

(
n+(kinv

i )− n−(kinv
i )
)

= −1

2

2d∑

i,j=1

ηijνWj

= −2d−1νW1
(mod 2d−1),

where Eqs. (B7) and (B5) are used in the first and second
lines. Since all fragile topological and atomic phases have
νW indices as integers so that they have trivial z2d−1 indi-
cator, z2d−1=0, this indicator is nontrivial only for stable
topological phases.

While only νW1 determines the strong index z2d−1 ,
other νW indices are related to the weak indices
z(w). For example, in two dimensions, νWi ± νWj are
constrained to be integers as shown in Appendix B.
Thus, all stable topological phases detected by νA = 1

2
modulo 1 have νB,C,D as half integers. Thus, νB,C,D
do not form additional symmetry indicators. This
follows from the fact that there is no weak topology
in two dimensions because there is no Wannier ob-
struction coming from the 1D band topology: all 1D
insulators are atomic insulators. On the other hand,
we have three Z2 weak indices in three dimensions,

z
(w)
i=1,2,3 [91]. These generate seven distinct weak

topological phases characterized by (z
(w)
1 , z

(w)
2 , z

(w)
3 ) =

(0, 0, 1), (0, 1, 0), (1, 0, 0), (1, 1, 0), (1, 0, 1), (0, 1, 1), (1, 1, 1).
The weak symmetry indicators,

z
(w)
1 =

1

2

∑

i=2,4,6,8

[
(n+(kinv

i )− n−(kinv
i )
]

(mod 2),

z
(w)
2 =

1

2

∑

i=3,4,7,8

[
(n+(kinv

i )− n−(kinv
i )
]

(mod 2),

z
(w)
3 =

1

2

∑

i=5,6,7,8

[
(n+(kinv

i )− n−(kinv
i )
]

(mod 2). (C2)
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are expressed by νW1
, νW2

, νW3
, and νW5

as follows:

z
(w)
1 = 2(νW1

− νW2
) (mod 2),

z
(w)
2 = 2(νW1 − νW3) (mod 2),

z
(w)
3 = 2(νW1

− νW5
) (mod 2). (C3)

Note that symmetry-indicated stable topological phases
can be either insulators or semimetals [11]. For example,
in three dimensions, the phase is gapless when the strong
indicator z4 is odd [78, 79].

Appendix D: Filling anomaly from inversion of
minimal number of bands corresponding to dD

(d+ 1)th-order Dirac Hamiltonian

In this Appendix, we discuss how an odd number
of band inversions corresponding to dD (d + 1)th-order
Dirac Hamiltonian generates the filling anomaly. Here
we mean a band inversion at inversion-invariant mo-
mentum kinv

i by a change of parity configuration by
∆n−(kinv

i ) = ±2d−1. A change of νW indices due to a
band inversion at kinv

i , Π(kinv
i ), is readily obtained from

Eq. (39).

Πi(k
inv
j ) = Πj(k

inv
i ) = ±ηij = ± exp(2ikinv

i ·Wj). (D1)

Here ± corresponds to ∆n−(kinv
i ) = ±2d−1. For

example, band inversions at kinv
1 and kinv

2 in 3D
correspond to Π(kinv

1 ) = ±{1, 1, 1, 1, 1, 1, 1, 1} and
Π(kinv

2 ) = ±{1,−1, 1,−1, 1,−1, 1,−1}, respectively.
Since Πi(k

inv
j ) = ±1, changes in νWi

for i = 1, · · · , 2d
are odd (even) integers simultaneously when the band
inversions occur odd (even) number of times.

First, let us suppose that we have an insulator with-
out the filling anomaly, i.e., νWi

are even integers for
i = 2, · · · , 2d. After an odd (even) number of band inver-
sions, νWi

become odd (even) integers for i = 2, · · · , 2d
and this implies the presence (absence) of the filling
anomaly. Likewise, an odd (even) number of band inver-
sions implies the absence (presence) of the filling anomaly
when we start from an insulator with the filling anomaly,
i.e., νWi are odd integers for i = 2, · · · , 2d.

Conversely, any inversion-symmetric insulators with
(without) the filling anomaly becomes atomic insulator
without (with) the filling anomaly after an odd (even)
number of band inversions. For example, when nocc = 6,
{νW } = {−1, 1, 3, 1, 1,−1, 1, 1} has the following parity
configuration.

kinv
1 kinv

2 kinv
3 kinv

4 kinv
5 kinv

6 kinv
7 kinv

8

− − + − − − − +

− − + − − − − +

− − + + − + + +

− − + + − + + +

− + + + + + + +

− + + + + + + +

(D2)

We always re-order the energy levels so that odd-parity
states are atop even-parity states. After the band inver-
sions at kinv

1,2,5, νW indices changes by −∑i=1,2,5 Π(kinv
i ),

thus {νW } = {−4, 0, 0, 0, 0, 0, 0, 2}.

kinv
1 kinv

2 kinv
3 kinv

4 kinv
5 kinv

6 kinv
7 kinv

8

− + + − + − − +

− + + − + − − +

+ + + + + + + +

+ + + + + + + +

+ + + + + + + +

+ + + + + + + +

(D3)

Now the parity configuration is equivalent to 4s(W1) ⊕
2p(W8), which is an atomic insulator without the filling
anomaly. Hence, the number of band inversions modulo

2, which is equal to NBI =
∑2d

i=1

⌊
n−(kinv

i )
2d−1

⌋
(mod 2),

determines the filling anomaly, i.e., NBI = 0 (NBI = 1)
for the absence (presence) of the filling anomaly. Here
bxc denotes the greatest integer less than or equal to x.

Appendix E: Layer construction of
inversion-symmetric TIs and TSCs

Inversion-symmetric kth-order TIs/TSCs for k ≤ d in
d dimensions can be constructed by staking first-order
TIs/TSCs in (d − k + 1) dimensions [44]. Based on the
layer construction, higher-order topological phases pro-
tected by inversion symmetry are neatly summarized in
Table. IX, which is reproduced from Ref. 44. On the
other hand, it was pointed out in Ref. 52, 63, and 64 that
topological phases without gapless boundary states are
given by the layer construction starting from 0D states.
In this way, any dD systems are constructed by stacking
0D states. Here, we extended the layer construction in
Ref. 44 to the case for k > d, where no gapless bound-
ary states appear. We focus on the case where inversion
symmetry operator I satisfies the commutation relations
with T and P in the same way as the Hamiltonian, i.e.,
[I, T ] = 0 and {I, P} = 0. When I satisfies commutation
relations different from that of H, only order of k ≤ 2 or
3 can be realized depending on the AZ classes, and we
refer readers to [44, 52] for discussions about such cases.

I

xd+1

d-dim.

I

x(a) (b)

FIG. 14. Layer construction. (a) Stacking 0D systems gives a
1D system. (b) Stacking dD systems gives a (d+ 1)D system.
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TABLE IX. Classification of generic higher-order TIs/TSCs protected by inversion symmetry [44]. Among the ten AZ classes,
class A and AIII belong to complex AZ classes while other eight classes belong to real AZ classes. s labels the AZ classes:
s = 0, 1 for complex AZ classes and s = 0, 1, · · · , 7 for real AZ classes. T , P and S denote time-reversal, particle-hole and
chiral symmetries. T 2 are denoted as 0 when the symmetry is absent. The same notation is adopted for P and S. Inversion
symmetry operator I satisfies [I, T ] = {I, P} = 0. δ is given by dimension d and order k, δ = d− k + 1 (mod 8). Here, k is an
arbitrary positive integer. As for Z2 and “Z2” classifications, Z2 and “Z2” nontrivial classes exhibit gapless boundary states
when k ≤ d. When k = d+ 1, only “Z2” nontrivial classes exhibit the filling anomaly.

AZ class s T 2 P 2 S2 δ = 0 δ = 1 δ = 2 δ = 3 δ = 4 δ = 5 δ = 6 δ = 7

A 0 0 0 0 “Z2” 0 Z2 0 Z2 0 Z2 0

AIII 1 0 0 1 0 Z2 0 Z2 0 Z2 0 Z2

AI 0 1 0 0 “Z2” 0 0 0 Z2 0 Z2 Z2

BDI 1 1 1 1 Z2 Z2 0 0 0 Z2 0 Z2

D 2 0 1 0 Z2 Z2 Z2 0 0 0 Z2 0

DIII 3 −1 1 1 0 Z2 Z2 Z2 0 0 0 Z2

AII 4 −1 0 0 “Z2” 0 Z2 Z2 Z2 0 0 0

CII 5 −1 −1 1 0 Z2 0 Z2 Z2 Z2 0 0

C 6 0 −1 0 0 0 Z2 0 Z2 Z2 Z2 0

CI 7 1 −1 1 0 0 0 Z2 0 Z2 Z2 Z2

The layer construction can be employed to construct
the Hamiltonian for generalized kth-order TIs/TSCs
with k > d as was done for k ≤ d in Ref. 44. Before in-
troducing a dimensional raising mapping of Hamiltonian
based on the layer construction, we adopt the following
convention.

1. H(d,k) and I(d,k) denote the Dirac Hamiltonian
and inversion symmetry operator of dD kth-order
TI/TSC.

2. T(d,k), P(d,k) and S(d,k) denote time-reversal,
particle-hole and chiral symmetry operators for dD
kth-order TI/TSC. These non-spatial symmetries
exists or not according to the AZ class.

3. M(d,k) denotes the bulk mass term and satisfies

[I(d,k),M(d,k)] = 0, [T(d,k),M(d,k)] = 0,

{P(d,k),M(d,k)} = 0, {S(d,k),M(d,k)} = 0. (E1)

Given a Hamiltonian H(d,k), H(d+1,k+1) is obtained by
the dimensional raising mapping,

H(d+1,k+1) = H(d,k) ⊗ τz + kd+1 τx +mk,r τy (E2)

where mk,r = −mk,−r denotes the boundary mass
term. Note that the boundary mass terms, ma,r for
a = 1, · · · , k − 1, in H(d,k) are deformed to be odd un-
der inversion symmetry in (d+ 1)D once the dimensional
raising map Eq. (E2) is done. The symmetry operators
of (d+ 1)D (k + 1)th-order TI/TSC are given by

I(d+1,k+1) = I(d,k) ⊗ τz,
T(d+1,k+1) = T(d,k) ⊗ τz,
P(d+1,k+1) = P(d,k) ⊗ τ0,
S(d+1,k+1) = S(d,k) ⊗ τz, (E3)

thus the dimensional raising mapping Eq. (E2) does not
change the AZ class. Note that Eq. (E2) is understood
as a continuum limit of

H(d+1,k+1) =H(d,k) ⊗ τz − (1− cos kd+1)M(d+1,k+1)

+ sin kd+1 τx (E4)

where M(d+1,k+1) = M(d,k) ⊗ τz. Accordingly, the
Hamiltonian for dD (d + n)th-order TI/TSC, H(d,d+n)

for n > 0 and d ≥ 1, is constructed by a “0D nth-
order” Hamiltonian, H(0,n) by using the dimensional rais-
ing mapping repeatedly.

H(d,d+n) =

d∑

i=1

kiΓi + λM(d,d+n) +

d+n−1∑

a=1

ma,rΓa+d.

(E5)

We define a 0D nth-order Hamiltonian H(0,n),

H(0,n) = λM(0,n) +

n−1∑

a=1

ma,RΓa, (E6)

where R is regarded as a set of auxiliary parameters that
are promoted to r after the construction of H(d,d+n) is
done. Thus, ma,R transforms under the symmetry oper-
ators,

I : ma,R → −ma,R,

T : ma,R → ma,R,

P : ma,R → ma,R,

S : ma,R → ma,R. (E7)

Now, let us regard ma,R as momentum-like variables.
Then, T and P can be regarded as space-time inversion
symmetry and particle-hole symmetry combined with in-
version symmetry. Hence, the 0D Hamiltonian H(0,n)
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is identical to the inversion-symmetric (n − 1)D Dirac
Hamiltonian in the presence/absence of IT , IP and
S [86]. Therefore, n is allowed when n + s = 1 (mod
2) in complex AZ classes, and n + s = 1, 2, 3, 5 (mod 8)
in real AZ classes where s = 0, 1 (mod 2) and s = 0, · · · , 7
(mod 8) label the complex and real AZ classes, respec-
tively. This is summarized in Table. IX, and it is identical
to the classification table for k ≥ d in Ref. 44. There-
fore, our analysis generalizes Table. IX to arbitrary non-
negative integers k and d. Here, the inversion-protected
dD kth-order topology has a Z2 classification, because a
two-copy of dD kth-order TIs is not a dD kth-order TI
anymore. Instead, it has a higher order. In our Dirac
Hamiltonian construction in class A, a two-copy of dD
kth-order TIs gives dD (k + 2)th-order TI. For example
in class AII, a two-copy of dD (d + 1)th-order TIs gives
dD (d+ 5)th-order TI.

Appendix F: Boundary projection

In this Appendix, we review the boundary projection
introduced in Refs. 43, 44, 46, and 52. Consider the Dirac
Hamiltonian in d dimensions, H(r).

H(r) = −i
d∑

i=1

∂iΓi + λ(r)M. (F1)

Here, Γi=1,··· ,d are Gamma matrices andM is bulk mass
term. Gamma matrices Γi and the bulk mass term M
satisfy {Γi,Γj} = 2δij and {Γi,M} = 0. We consider a
system that is in the topological phase. Let us take λ > 0
in the topological phase and λ < 0 in the trivial phase.
Then, λ is positive inside the system while λ is negative
outside the system. We set λ(r) such that it approaches
to +1 as r approaches the center of the system, r = 0,
and it approaches to −1 as r goes to infinity. On the
boundary, λ = 0 because λ changes sign there.

For our analysis of the boundary theory of the Dirac
Hamiltonian, we define (d−1) orthonormal tangent basis
vector er,L=1,··· ,d−1 and the normal vectors nr. On the
tangent space at r, the Dirac Hamiltonian in Eq. (F1) is
expressed as

H⊥(kS , r) = kS · Γ− i(nr · Γ)∂x⊥ + λ(x⊥)M. (F2)

Here, kS denotes the boundary momentum normal to nr,
kS = k− (k ·nr)nr. Also, we use the vector notation for
Gamma matrices, Γ = (Γ1, · · · ,Γd), and x⊥ denotes the
normal coordinate at r on the boundary, δx⊥ = nr · δr.
Note that the kinetic term, the first term in Eq. (F2),
can be expressed in terms of er,L.

kS · Γ =

d−1∑

L=1

(kS)L(er,L · Γ) (F3)

where (kS)L = kS · er,L.

When the system is sufficiently large, H⊥(kS , r) has
eigenstate ψ(kS , r) that is exponentially localized on the
boundary. One can show that the Schrödinger equation,

H⊥(kS , r)ψ(kS , r) = E(kS)ψ(kS , r), (F4)

is solved by the following ansatz,

ψ(kS , r) = e
∫ x⊥ dt λ(t) P+(r)ψ̃(kS), (F5)

where we define projection operators P±(r) = 1
2 (1∓i(nr ·

Γ)M) is projection operator. The choice of projection
operator, P+(r) or P−(r), depends on the profile of λ(r).
In our case, since λ = −1 outside the system, P+(r) is
the proper choice. P±(r) satisfies the following relation:

P±(r)2 = P±(r), P±(r)P∓(r) = 0,

[P±(r), er,L · Γ] = 0, P±(r)M =MP∓(r),

P±(r)(nr · Γ) = (nr · Γ)P∓(r). (F6)

With the help of the ansatz in Eq. (F5) and Eq. (F6), the
eigenvalue problem in Eq. (F4) is reduced to the form,

P+(r)[kS · Γ]P+(r)ψ̃(kS) = E(kS)ψ̃(kS), (F7)

where we define the boundary Hamiltonian h(kS , r) ≡
P+(r)H⊥(kS , r)P+(r).

Now, we consider the kth-order topology, which is
defined by the presence of (k − 1) odd-parity mass
terms ma,rMa with a = 1, · · · , k − 1, where Ma sat-
isfy {Γi,Ma} = 0, {M,Ma} = 0 and {Ma,Mb} = 2δab.
Inversion symmetry under I = M requires that ma,r is
odd under inversion, i.e., ma,r = −ma,−r. Those mass
terms break translation symmetry because of their r de-
pendence, and we assume that they are finite only near
the boundary.

After the boundary mass terms are included, the
boundary Hamiltonian becomes

h(kS , r) = P+(r)
[
kS · Γ +

k−1∑

a=1

ma,rMa

]
P+(r). (F8)

The eigenvalue problem for h(kS , r) can be solved in the
following way. The boundary-projected Gamma matri-
ces and mass matrices Γ̃L and M̃a, are defined by the
projection,

Γ̃L = P+(r)(er,L · Γ)P+(r) = (er,L · Γ)P+(r),

M̃a = P+(r)MaP+(r) = MaP+(r), (F9)

and satisfy {Γ̃L, Γ̃M} = 2δLMP+(r), {M̃a, M̃b} =

2δabP+(r) and {Γ̃L, M̃a} = 0. Hence, energy eigenval-

ues are given by E(kS , r) = ±
√
k2
S +

∑k−1
a=1 m

2
a,r.

So far, the boundary-projected mass terms ma,rM̃a are
generated by the position dependent mass termsma,rMa.

Alternatively, ma,rM̃a can be generated by a constant
perturbation Hpert [46, 52],

Hpert = i

d∑

i=1

k−1∑

a=1

∆i,a ΓiMaM. (F10)
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After the boundary projection, Hpert is reduced to

P+(r)Hpert P+(r) =

d∑

i=1

k−1∑

a=1

∆i,a nr,iM̃a. (F11)

We use this method in numerical calculations.

Appendix G: Induced current

In this Appendix, we derive the induced current Jµd in
Eq. (22). Let us consider the Dirac Hamiltonian coupled
to (d+ 1) slowly varying background scalar fields ma,r,

H(r) = −i
d∑

i=1

∂iΓi +

d+1∑

a=1

ma,rMa, (G1)

where Γ denotes Gamma matrix and Ma = Γa+d.
Gamma matrices satisfy {Γi,Γj} = 2δij and are cho-
sen to be Γ1Γ2 · · ·Γ2d+1 = χd12d where χd = id.
Thus, Tr[Γi1Γi2 · · ·Γi2d+1

] = εi1i2···i2d+1
Tr[χd12d ] =

εi1i2···i2d+1
χd2

d where ε12···2d+1 = 1. The Lagrangian is

given by L = iΨ†∂tΨ− Ψ̄HΨ where Ψ denotes the Dirac
spinor and Ψ̄ = Ψ†γ0:

L = Ψ̄
[
i/∂ −

d∑

a=1

ma,rγ
a+d −md+1,r12d

]
, (G2)

where we use the Feynman slash notation, /A =∑d
µ=0Aµγ

µ, and define new Gamma matrices γ0 =

Γ2d+1 and γi 6=0 = γ0Γi. γµ satisfies {γµ, γν} = −2ηµν

where ηµν = diag(−1, 1, · · · , 1) for µ, ν = 0, 1, · · · , 2d,
and Tr[γµ1γµ2 · · · γµ2d+1 ] = εµ1µ2···µ2d+1χd(−1)d2d,
where ε012···2d = 1.

We calculate the current density 〈jµd (x)〉 by using

〈jµd (x)〉 = 〈Ψ̄(x)γµΨ(x)〉
= − lim

y→x
Tr
[
〈TΨ(x)Ψ̄(y)〉γµ

]

= lim
y→x

Tr
[
iG(x, y)γµ

]
, (G3)

where G(x, y) = i〈TΨ(x)Ψ̄(y)〉 is the propagator. Here,
we denote xµ = (x0,x) as x for simplicity. The propaga-
tor G(x, y) satisfies

[
− i/∂x +

d∑

a=1

ma,xγ
a+d +md+1,x

]
G(x, y) = δ(d+1)(x− y).

(G4)

Regarding G(x, y) as a function of x and (x − y), we
Fourier transform the propagator by [92]

G(x, y) =

∫
dd+1p

(2π)d+1
eip·(x−y)G̃(x, p). (G5)

Note that translation symmetry is broken by ma,r, so
G(x, y) can not be a function of (x − y) only. Then, we

expand G̃(x, p) by its spatial derivative terms:

G̃(x, p) =
1

/p+
∑d
a=1ma,xγa+d +md+1,x − i/∂x

=G̃0(x, p) + G̃0(x, p)i/∂xG̃0(x, p)

+ G̃0(x, p)i/∂xG̃0(x, p)i/∂xG̃0(x, p) + · · ·

=G̃0(x, p)

∞∑

k=0

[
i/∂ G̃0(x, p)

]k
. (G6)

Here, we define G̃0(x, p):

G̃0(x, p) =
1

/p+
∑d
a=1ma,xγa+d +md+1,x

=
1

p2 +m2
x

(md+1,x − /p−
d∑

a=1

ma,xγ
a+d)

=
1

p2 +m2
x

(Mx − /p), (G7)

where m2
x =

∑d+1
a=1m

2
a,x and Mx = md+1,x −∑d

a=1ma,xγ
a+d. The lowest-order contribution comes

from k = d term in Eq. (G6). Up to the lowest-order in
the derivative, we have

〈jµd (x)〉 = id+1

∫
dd+1p

(2π)d+1

1

(p2 +m2
x)d+1

Tr
[
(Mx − /p)/∂Mx/∂Mx · · · /∂Mxγ

µ
]

= id+1

∫
dd+1p

(2π)d+1

1

(p2 +m2
x)d+1

Tr
[
Mx/∂Mx/∂Mx · · · /∂Mxγ

µ
]

(G8)
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From

Tr
[
Mxγ

µ1∂µ1
Mxγ

µ2∂µ2
Mx · · · γµd∂µdMxγ

µ
]

= (−1)d(d+1)/22dχd ε
a1a2···ad+1 εµµ1···µd ma1,x∂µ1

ma2,x · · · ∂µdmad+1,x, (G9)

we obtain

〈jµd (x)〉 = id+1(−1)d(d+1)/22dχd

∫
dd+1p

(2π)d+1

1

(p2 +m2
x)d+1

εa1a2···ad+1 εµµ1···µd ma1,x∂µ1
ma2,x · · · ∂µdmad+1,x

= −id(−1)d(d+1)/2 χd
d!Area(Sd)

εa1a2···ad+1 εµµ1···µd m̂a1,x∂µ1
m̂a2,x · · · ∂µdm̂ad+1,x

= −(−1)d(d−1)/2 1

d!Area(Sd)
εa1a2···ad+1 εµµ1···µd m̂a1,x∂µ1

m̂a2,x · · · ∂µdm̂ad+1,x, (G10)

where m̂a,x =
ma,x
mx

and Area(Sd) = 2π(d+1)/2

Γ( d+1
2 )

. Hence,

the induced current 〈jµd (x)〉 in d dimensions (denoted as
Jµd in the main text) is given by the winding number
density of mass terms ma,r where a = 1, · · · , d.

The induced current density can be calculated either
using the bulk Hamiltonian or the boundary Hamilto-
nian. There is a caveat because the convention for the
Gamma matrices may change by the projection, which
can lead a different choice of χd on the boundary while
we take χd = id in the bulk. Therefore, we need to care-
fully calculate χ̃d−1 ≡ 2−(d−1)Tr[Γ̃1 · · · Γ̃d−1M̃1 · · · M̃d]

on the boundary, where Γ̃ and M̃ are Gamma matrices
and mass matrices projected to boundary defined in Ap-
pendix. F. It turns out that χ̃d−1 = −χd−1 as we show
now.

Now, let us turn to the boundary theory when a do-
main between trivial and topological phases is formed.
The boundary Hamiltonian h(kS , r) is

h(kS , r) = P+(r)
[
kS · Γ +

d∑

a=1

ma,rMa

]
P+(r), (G11)

which is obtained by the projection to the boundary, in-
troduced in Appendix F. Since h(kS , r) has (d−1) kinetic
terms and d mass terms, the induced current 〈jµd−1(x)〉
on the (d−1)D boundary is given by repeating the above
calculation. The minus sign can be traced in the following
way. From the definition of Γ̃L=1,··· ,d−1 = (er,L ·Γ)P+(r)

and M̃a=1,··· ,d = MaP+(r), where er,L are orthonor-

mal bases at r, we show Tr[Γ̃1 · · · Γ̃d−1M̃1 · · · M̃d] =
−2d−1χd−1 explicitly:

Tr
[
Γ̃1 · · · Γ̃d−1M̃1 · · · M̃d

]
= (er,1)µ1

· · · (er,d−1)µd−1
Tr
[
Γµ1

P+(r) · · ·Γµd−1
P+(r)M1P+(r) · · ·MdP+(r)

]

= (er,1)µ1
· · · (er,d−1)µd−1

Tr
[
Γµ1
· · ·Γµd−1

M1 · · ·MdP+(r)
]

= − i
2

(er,1)µ1 · · · (er,d−1)µd−1
Tr
[
Γµ1 · · ·Γµd−1

M1 · · ·Md(er,0 · Γ)Md+1

]

=
i

2
(er,0)µ0

· · · (er,d−1)µd−1
Tr [Γ1 · · ·ΓdM1 · · ·Md+1]

=
i

2
ε01···d−1Det (er) 2dχd

= −2d−1χd−1, (G12)

where we define er,0 ≡ nr in the third line, Det(er) is the determinant of er in the matrix notation.

Finally, let us mention that dD (d+1)th-order phase is
allowed for class A, AI, AII, BDI and D. However, when
the chiral or particle-hole symmetry is exists, the induced
current is zero. Thus, charge accumulation on boundary
occurs only for class A, AI and AII.

Appendix H: Review of the Wilson loop

In this Appendix, we review the Wilson loop and its
symmetry transformation. We closely follow Ref. 67. In
addition, we introduce a more general method which ex-
ploits parallel transport and symmetry transformation of
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Berry connection.

1. Tight-binding notation

In the tight-binding model, Hamiltonian is spanned by
a basis set |Rα〉. We denote R and xα as the unit cell
position and the sublattice position of the orbital α:

Ĥ =
∑

R,R′

∑

α,β

|Rα〉H(R−R′)αβ 〈R′ β|

=
∑

k

∑

α,β

|kα〉H(k)αβ 〈k β|. (H1)

Here, |kα〉 is the Fourier transformation of |Rα〉,

|kα〉 ≡ 1√
Ncell

∑

R

eik·(R+xα) |Rα〉, (H2)

where Ncell is the number of unit cell in the sys-
tem. These basis states are orthonormal: 〈Rα|R′ β〉 =
δR,R′δαβ and 〈kα|k′ β〉 = δk,k′δαβ .

When the orbitals are located at xα 6= 0, |kα〉 is not
periodic in the Brillouin zone.

|k + Gα〉 = eiG·xα |kα〉 = |k β〉V (G)−1
βα, (H3)

where V (k)αβ = e−ik·xαδαβ (note that we take a con-
vention different from the one in Ref. 67). Diagonalizing
H(k)αβ , we obtain energy eigenstates |n,k〉α, where

H(k)αβ |n,k〉β = En(k) |n,k〉α. (H4)

The energy eigenstates |n,k〉 satisfy

〈n,k|m,k〉 = δnm,

ntot∑

n=1

|n,k〉α〈n,k|β = δαβ , (H5)

where ntot is the rank of Hamiltonian H(k)αβ , which
is also the number of orbitals:

∑
α 1 = ntot. Since

H(k + G) = V (G)H(k)V (G)−1, the “periodic gauge”
is defined by

|n,k + G〉 = V (G) |n,k〉. (H6)

2. Symmetry transformation

Consider a symmetry operation σ̂: r → Dσr + d. Dσ

is representation of the point group part of σ̂, which is an
element of orthogonal group, O(d). It acts on the basis
|Rα〉 as follows:

σ̂ |Rα〉 = |R̃ α̃〉U(σ)α̃α, (H7)

where R̃ = Dσ(R + xα) + d − xα̃. Since U(σ) acts
on sublattice degrees of freedom, U(σ) is bijective and
independent of R. Using the fact that k ·x = Dσk ·Dσx

which follows from Dσ ∈ O(d), we obtain the symmetry
transformation of |k, α〉 under σ̂:

σ̂ |kα〉 =
1√
Ncell

∑

R

eik·(R+xα) σ̂ |Rα〉

=
1√
Ncell

∑

R

eiDσk·Dσ(R+xα) |R̃ β〉U(σ)βα

= e−iDσk·d
1√
Ncell

∑

R̃

eiDσk·(R̃+xβ) |R̃ β〉U(σ)βα

= e−iDσk·d |Dσk β〉U(σ)βα

≡ |Dσk β〉Uσ(k)βα, (H8)

where we define Uσ(k) = e−iDσk·d U(σ). From the con-

dition that Ĥ is symmetric under σ̂, Ĥ = σ̂Ĥσ̂−1, we
obtain

H(Dσk) = Uσ(k)H(k)Uσ(k)−1. (H9)

At high-symmetry momenta kinv
σ = Dσk

inv
σ + G(kinv

σ ),
H(kinv

σ ) and V (G(kinv
σ ))U(kinv

σ ) commute,
[
H(kinv

σ ), V (G(kinv
σ ))U(kinv

σ )
]

= 0. (H10)

For inversion symmetry, the inversion-invariant momenta
are given by kinv = −kinv (mod G).

From Eq. (H9), we can find an energy eigenstate at
Dσk, |n,Dσk〉, as a symmetry partner of |n,k〉 up to
unitary transformation Bσ, the sewing matrix:

|n,Dσk〉 = Uσ(k) |m,k〉Bσ(k)mn. (H11)

Bσ appears here because a symmetry transformation can
lead to a linear combination of energy eigenstates when
they are degenerate. It is straightforward to show that
the sewing matrix Bσ(k),

Bσ(k)nm = 〈n,k|Uσ(k)†|m,Dσk〉, (H12)

is a unitary matrix, Bσ(k) ∈ U(nocc), and is periodic in
the Brillouin zone:

nocc∑

p=1

Bσ(k)np[Bσ(k)†]pm = δnm, (H13)

Bσ(k + G) = Bσ(k). (H14)

Now, we investigate the transformation of the non-
Abelian Berry connection [ai(k)]nm defined by the oc-
cupied states |n,k〉:

[ai(k)]nm = 〈n, k| i∇i |m, k〉, (H15)

where ∇i denotes ∂
∂ki

. Note that ai(k) is Hermitian.

[ai(k)]nm = [ai(k)]∗mn. (H16)

The Berry connection transforms under the gauge trans-
formation |n,k〉 → |n,k〉G = |m,k〉G(k)mn of the occu-
pied states as

aGi (k) = G†(k) ai(k)G(k) + iG†(k)∇iG(k). (H17)
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From Eqs. (H11) and (H15), we obtain the symmetry
transformation of ai(k) under σ̂,

[D−1
σ ]ij [aj(Dσk)− dj1]

= [Bσ(k)]† ai(k)Bσ(k) + i [Bσ(k)]†∇iBσ(k), (H18)

where 1 denotes an identity matrix in the occupied sub-
space. The results Eqs. (H17) and (H18) are used to
derive the symmetry transformations of the Wilson loop.

3. Wilson line

Let us consider a line L : ki → kf which is param-
eterized by λ. Start and end points ki,f are given by
ki = k(λ = 0) and kf = k(λ = 1) as shown in Fig. 15.
Then, the Wilson line [WL]nm is defined by the path
ordered exponential of the Berry connection [ai(k)]nm
along the line L,

[WL]nm =
[
P ei

∫
L dk

iai(k)
]
nm
. (H19)

For convenience, we choose a smooth gauge along L.
Along the line L, the covariant derivative Dλ is defined
as

Dλ =
d

dλ
− idki(λ)

dλ
ai(k(λ))

=
d

dλ
− ik̇i(λ) ai(k(λ))

= k̇i(λ)
[
∇i − iai(k(λ))

]
. (H20)

The Wilson line WLλ is the solution of

DλWLλ = 0, (H21)

with the boundary conditions WLλ=0 = 1 and WLλ=1
=

WL. Here, Lλ : ki → k(λ) and Lλ=1 = L. With the
help of Eqs. (H20) and (H21), various properties of the
Wilson line are derived.

First, WL is unitary: W †L = W−1
L . Also note that

W †L = WLR where WLR is the “reversed” Wilson loop

kⁱ

k! "σ kⁱ

"σ k!

ℒ

σℒ

FIG. 15. Paths L and σL in which the Wilson lines WL and
WσL are defined, respectively. ki (kf ) is the start (end) point
of L. σL is given by the symmetry transformation of L under
σ̂.

which is defined along the path-reversed line LR : kf →
ki.

Second, the gauge transformation of the Wilson line
WG
Lλ is derived from Eq. (H17). From Eq. (H21) for

WG
Lλ ,

d

dλ
WG
Lλ =ik̇i(λ) aGi (k(λ))WG

Lλ

=ik̇i(λ)
[
G†(k(λ)) ai(k(λ))G(k(λ))

+ iG†(k(λ))∇iG(k(λ))
]
WG
Lλ . (H22)

Hence,

d

dλ
[G(kλ)WG

Lλ ] = ik̇µλ aµ(kλ)
[
G(kλ)WG

Lλ
]
. (H23)

The solution of the above equation is given by

WG
Lλ = G†(k(λ))WLλ G(k1), (H24)

with the boundary condition WLλ=0
= 1.

Finally, we obtain the Wilson line WσLλ , which is the
symmetry transformation of WLλ under σ̂, where σLλ :
Dσk

i → Dσk
f as shown in Fig. 15. From Eqs. (H18)

and (H21), we derive

WσLλ = e
i
∫
Lλ

dki [D−1
σ d]i [Bσ(k(λ))]†WLλ Bσ(k1),

(H25)

in a similar manner to the one used for deriving the gauge
transformation. For completeness, we derive the Wilson
line WΘL, which is the symmetry transformation of the
Wilson line WLλ under antiunitary symmetry Θ̂ = σ̂K,

where K denotes the complex conjugation operator. Θ̂
acts on r and k as Θ̂ : r → Dσr + d and k → −Dσk.
Thus, ΘL : −Dσk

i → −Dσk
f is a line with a start point

−Dσk
i and an end point −Dσk

f . The Wilson line WΘL
is given by

WΘLλ = e
−i

∫
Lλ

dki [D−1
σ d]i [BΘ(k(λ))]†W ∗Lλ BΘ(k1),

(H26)

where BΘ(k) is sewing matrix for Θ̂:

[BΘ(k)]†nm = 〈n,−Dσk|Θ(k)|m,k〉K, (H27)

and Θ̂|kα〉 = |−Dσk β〉Θ(k)βα.

4. Wilson Loop

From Eq. (H24), we conclude that the spectrum of
WL is gauge invariant when ki = kf (mod G). In the
Brillouin zone, consider a non-contractible loop L : k0 →
k0 + G. For numerical calculations, we implement the
discretized form,

[
Wk0+G←k0

]
nm

= lim
N→∞

〈n,k0 + G|
[N−1∏

i=1

P (ki)
]
|m,k0〉,

(H28)
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where ki = k0 + i
NG and P (k) =

∑nocc

n=1|n,k〉〈n,k| is the
projector for the occupied states. However, we stick to
formulate the Wilson loop in the continuum form

[WL]nm =
[
P ei

∫
L dk

iai(k)
]
nm
, (H29)

to exploit the covariant derivative Dλ and symmetry
transformation of the Berry connection a(k). The eigen-
states |θ(k0)〉 of the Wilson loop Wk0+G←k0

are given
by Wk0+G←k0

|θ(k0)〉 = eiθ(k0)|θ(k0)〉. Because of the
periodic gauge, the Wilson loop is periodic,

Wk0+G+G′←k0+G′ = Wk0+G←k0 , (H30)

for any reciprocal vector G′. Also, the Wilson loop spec-
trum {θ(k0)} is independent of the start point k0,

Wk′0+G←k′0 = Wk′0+G←k0+GWk0+G←k0
W †k′0←k0

= Wk′0←k0
Wk0+G←k0W

†
k′0←k0

, (H31)

where k0,k
′
0 ∈ L : k0 → k0 + G.

Now, let us discuss a consequence of symmetry σ̂ on
the Wilson loop. Although Eqs. (H25) and (H26) ap-
plies to arbitrary symmetries and lines, we restrict our
attention to inversion I and k1-directed loop L1 in three
dimensions, L1 : (k1,0, k2, k3)→ (k1,0 +2π, k2, k3) for the
discussion relevant to this paper. Since inversion sym-
metry is symmorphic, one can find a coordinate system
with d = 0. Applying Eq. (H25),

WIL1
= [BI(k

(1)
0 )]†WL1

BI(k
(1)
0 ), (H32)

where k
(1)
0 = (k1,0, k2, k3). With help of Eqs. (H30)

and (H31), WIL1
satisfies WIL1

= W−1
L1

and its spectrum

is {−θa1(−k(1)
0 )}. Also, Eq. (H32) means that the spec-

trum of WIL1
, {−θa1(−k(1)

0 )}, is identical to that of WL1
,

{θa1(k
(1)
0 )}. Thus, |θa1(k

(1)
0 )〉 and |−θa′1 (−k(1)

0 )〉 are paired

by inversion symmetry, where |θa1(k
(1)
0 )〉 is an eigenstate

of WL1
with an eigenvalue eiθ

a
1 (k

(1)
0 ):

|−θa′1 (−k(1)
0 )〉 = [BI(k

(1)
0 )]†|θa1(k

(1)
0 )〉. (H33)

This can be viewed as an unitary analogy of particle-hole

symmetry. We define the sewing matrix B
(1)
I (k

(1)
0 ) as

B
(1)
I (k

(1)
0 )ab = 〈−θa1(−k(1)

0 )|[BI(k(1)
0 )]†|θb1(k

(1)
0 )〉.

(H34)

Now, we define eigenstates |ua1(k
(1)
0 )〉 of ŴL1

=

|n,k(1)
0 〉WL1〈n,k(1)

0 | with eigenvalue eiθ
a
1 (k

(1)
0 ), where

|ua1(k
(1)
0 )〉 =

nocc∑

n=1

|θa1(k
(1)
0 )〉n|n,k(1)

0 〉. (H35)
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FIG. 16. Inversion-symmetric Wilson loop spectrum. The

spectrum is particle-hole symmetric, i.e., {θ1(−k(1)
0 )} =

{−θ1(k
(1)
0 )}. Hence, the projector P̃ (1) for the nested Wil-

son loop must include pairs of particle-hole symmetric Wilson
bands marked by the same colors.

5. Nested Wilson loop

When the Wilson bands are gapped, a nested Wilson
loop can be defined [36, 37]. We first choose an inversion-
symmetric subset of the Wilson bands by defining a pro-
jector P̃ (1) preserving inversion symmetry as shown in

Fig. 16. The Wilson bands |θa1(k
(1)
0 )〉 selected by P̃ (1)

are labeled by a = 1, · · · , nP̃ (1) . To define the nested
Wilson loop, we choose the loop L2 along the k2 direc-
tion: L2 : (k1,0, k2,0, k3)→ (k1,0, k2,0 + 2π, k3). In terms

of the Berry connection [a
(1)
i (k)]ab,

[a
(1)
i (k)]ab = 〈ua1(k)| i∇i |ub1(k)〉, (H36)

the nested Wilson loop is defined by

[W
(1)
L2

]ab =
[
P e

i
∫
L2

dkia
(1)
i (k)

]
ab
. (H37)

Repeating the derivation of the symmetry transformation
of the Wilson loop, we obtain

W
(1)
IL2

= [B
(1)
I (k

(2)
0 )]†W (1)

L2
B

(1)
I (k

(2)
0 ). (H38)

where k
(2)
0 = (k1,0, k2,0, k3). Thus, |θA2←1(k

(2)
0 )〉

and |−θA′2←1(−k(2)
0 )〉 are paired by inversion symmetry

where |θA2←1(k
(2)
0 )〉 is eigenstate of W

(1)
L2

with eigenvalue

eiθ
A
2←1(k

(2)
0 ):

|−θA′2←1(−k(2)
0 )〉 = [B

(2)
I (k

(2)
0 )]†|θA2←1(k

(2)
0 )〉 (H39)

Thus, sewing matrix is defined as

B
(2)
I (k

(2)
0 )AB = 〈−θA2←1(−k(2)

0 )|[B(1)
I (k

(2)
0 )]†|θB2←1(k

(2)
0 )〉.

(H40)

As for the nested Wilson loop, we define eigenstates

|uA2←1(k
(2)
0 )〉 of Ŵ

(1)
L2

= |n,k(2)
0 〉W

(1)
L2
〈n,k(2)

0 | with eigen-
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value eiθ
A
2←1(k

(2)
0 ), where

|uA2←1(k
(2)
0 )〉 =

nocc∑

n=1

n
P̃ (1)∑

a=1

|θA2←1(k
(2)
0 )〉a|θa1(k

(1)
0 )〉n|n,k(2)

0 〉.

(H41)

When the nested Wilson bands are gapped, the doubly
nested Wilson loop can be defined after we project the
nested Wilson bands with an inversion-symmetric projec-

tor P̃ (2). The nested Wilson bands |θA2←1(k
(2)
0 )〉 selected

by P̃ (2) are labeled by A = 1, · · · , nP̃ (2) . For the dou-
bly nested Wilson loop, the loop L3 is chosen to be k3-
directed line, L3 : (k1,0, k2,0, k3,0)→ (k1,0, k2,0, k3,0+2π).

If we define a Berry connection [a
(2)
i (k

(2)
0 )]AB ,

[a
(2)
i (k

(2)
0 )]AB = 〈uA2←1(k

(2)
0 )| i∇i |uB2←1(k

(2)
0 )〉, (H42)

the doubly nested Wilson loop can be defined by

[W
(2)
L3

]AB =
[
P e

i
∫
L3

dkia
(2)
i (k(2))

]
AB
. (H43)

Repeating this procedure, the lth nested Wilson loop

W
(l)
L can be defined for an integer.

6. Mapping between inversion parities and Wilson
loop spectrum

Here, we review the mapping between parity configura-
tion of the occupied states and the Wilson loop spectrum.
We recommend to refer [66] for the comprehensive study
of the mapping. The mapping takes two steps.

a. Step 1: Mapping from parity configuration to Wil-
son loop spectrum. Without loss of generality, we can
focus on the (k1, k2) plane in dD Brillouin zone. In this
plane, inversion symmetry in two dimensions, (k1, k2)→
(−k1,−k2), is induced by inversion symmetry in d di-
mensions. Then, we can define the number of occupied
states at (k̄1, k̄2) = −(k̄1, k̄2) with parity ξ, nξ(k̄1, k̄2).
At k̄2 = 0 or π, one can define the fewest number ns(k̄2)
among {nξ(0, k̄2), nξ(π, k̄2)}. When ns(ks) = nξs(ks, k̄2),
the mapping from {nξ(k̄1, k̄2)} to the Wilson loop spec-
trum {θ1(k̄2)} is given by the following rules:

nWπ
2 (1+ξs)

(k̄2) = n+(ks + π, k̄2)− ns(k̄2),

nWπ
2 (1−ξs)(k̄2) = n−(ks + π, k̄2)− ns(k̄2),

nWc (k̄2) = 2ns(k̄2), (H44)

where nW0 (k̄2), nWπ (k̄2) and nWc (k̄2) are the number of
Wilson loop spectrum {θ1(k̄2)} with eigenvalues θ1(k̄2) =
0, π and (−θ0, θ0), respectively. Here, we denote θ0 as a
generic value not equal to 0 or π.

b. Step 2: Mapping from Wilson loop spec-
trum to relative winding number. With {nWθ (k̄2)} =

(nWξs (k̄2), nW−ξs(k̄2), nWc (k̄2)) for a given Wilson loop spec-
trum, Nd is defined as

Nd = max(nWπ (0)− nWπ (π)− nWc (π),

nWπ (π)− nWπ (0)− nWc (0)). (H45)

When |C| < Nd where C is the Chern number defined in
the (k1, k2) plane, Nd is given by Nd = 2NW + |C|. If
|C| ≥ Nd, the relative winding number NW is zero. Also
note that the Chern number C and Nd satisfies

C = Nd = nWπ (π)− nWπ (0) (mod 2). (H46)

Since a non-zero Chern number implies the stable band
topology, let us assume that C = 0. Then, the Wilson
loop is unwound if Nd ≤ 0. Otherwise, Nd > 0, the
relative winding number NW is given by NW = 1

2Nd.

Appendix I: Characterization of fragile band
topology in the nested Wilson loop spectrum

In this Appendix, we provide the proof for the claim
that the nested Wilson loop spectrum characterized by a
positive even integer Nd,nest, which is defined as

Nd,nest =max(nWnest
π (0)− nWnest

π (π)− nWnest
c (π),

nWnest
π (π)− nWnest

π (0)− nWnest
c (0)), (I1)

implies the fragile band topology. Here, nWnest
π (k̄3) and

nWnest
c (k̄3) are the number of eigenvalues θ2←1(k̄3), which

is equal to π and takes a generic value, respectively, in
the nested Wilson loop spectrum at k̄3 = 0 and π.

Before proving the claim, we note that the nested
Wilson loop spectrum satisfies similar relations dis-
cussed in Appendix H 6 since the Wilson loop and
the nested Wilson loop spectra are constrained by
the inversion symmetry in the same way. First, we
can assign an inversion-parity to each Wilson loop
eigenstate at inversion-invariant momenta kinv. At
kinv, |θ1(kinv)〉 is an inversion-eigenstate with definite
parity when θ1(kinv) = 0 and π. On the other hand,
|θ1(kinv)〉 and | − θ1(kinv)〉 are paired by inversion
symmetry when θ1(kinv) is a generic value. This pair
form inversion-eigenstates with even and odd parities.
The parities of the Wilson loop eigenstates at kinv are

encoded in the sewing matrix B
(1)
I (kinv) in Eq. (H34).

By repeating Step 1 in Appendix H 6, we obtain an
eigenvalue configuration in the nested Wilson loop spec-
trum {nWnest

θ (k̄3)} = (nWnest
0 (k̄3), nWnest

π (k̄3), nWnest
c (k̄3))

at k̄3 = 0 and π. This configuration uniquely determines
Nd,nest in Eq. (I1). Second, the nested Chern number
Cnest, the nested relative winding number NW,nest and
Nd,nest satisfy relations similar to ones for the Chern
number C, the relative winding number NW and Nd
presented in Step 2 in Appendix H 6.

We begin our proof by showing that a band crossing
between the Wilson bands does not change Nd,nest while
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it changes the nested Chern number Cnest only by an
even integer. When a gap closing and reopening in the
Wilson loop spectrum happens at a generic momentum,
it does not change the parity configuration of the Wil-
son loop eigenstates. As the parity configuration deter-
mines an eigenvalue configuration in the nested Wilson
loop spectrum, Nd,nest is invariant. If the Wilson bands
are inverted at an inversion-invariant momentum kinv,
only pairs of Wilson bands |θ1(kinv)〉 and | − θ1(kinv)〉
are involved in the Wilson band inversion. Thus, there
is no net exchange of inversion-parities, and Nd,nest is
invariant. Consequently, the Wilson band crossing does
not change Nd,nest. On the other hand, the Wilson band
crossing can change Cnest by an even integer since it al-
ways happens pairwise due to inversion symmetry [20].

For an integer-valued Nd,nest, there are three cases to
be considered: Nd,nest is equal to i) an odd integer, ii) a
positive even integer and iii) a negative even integer or
0.

i) When Nd,nest is an odd integer, Eq. (H46) implies
that Cnest is also an odd integer. Since a Wilson
band crossing cannot change an odd Cnest to zero,
the nested Wilson loop spectrum indicates the stable
band topology.

ii) When Nd,nest is a positive even integer, Eq. (H46)
implies that Cnest is also an even integer. For even
Cnest, a Wilson band crossing can change Cnest to
zero. However, the nested Wilson loop spectrum
cannot be gapped and it shows the relative wind-
ing since Nd,nest = 2NW,nest + |Cnest| holds when
|Cnest| < Nd,nest.

iii) When Nd,nest is a negative even integer or zero, the
nested relative winding number NW,nest is always
zero. This is because the relative winding exists only
when |Cnest| < Nd,nest. Thus, the nested Wilson loop
spectrum can be gapped when a Wilson band cross-
ing happens.

Appendix J: Numerical details of the Wilson loop
calculation

In this Appendix, we summarized the numerical details
in Sec. VI.

1. 2D 3rd-order TI

The tight-binding Hamiltonian of 2D 3rd-order TI is
given by

HA(2,3)(k) =

2∑

i=1

sin kiΓi − (2− λ−
2∑

i=1

cos ki)Γ5

+ i

2∑

i=1

4∑

a=3

∆i,a ΓiΓaΓ5, (J1)

where {Γ1, · · · ,Γ5} = {τxσx, τxσy, τxσz, τyσ0, τzσ0} and
Γ5 = −Γ1 · · ·Γ4. For numerical calculations, ∆1,3 =
0.240, ∆1,4 = −0.196, ∆2,3 = −0.259 and ∆2,4 =
−0.204 are used. HA(2,3)(k) is inversion symmetric, i.e.,

I0HA(2,3)(k)I0
−1 = HA(2,3)(−k), with inversion symme-

try operator I0,

I0 = τzσ0 =

(
12

−12

)
. (J2)

The energy bands of HA(2,3)(k) are shown in Fig. 17(b).

a. 2D 3rd-order TI + s(A)

Now, we add an s orbital localized at the Wyckoff po-
sition A = (0, 0). On-site energy h1 and an interaction
Hamiltonian between the original four bands and s or-
bital are chosen as

h1 = −4.5, h2 = 0.1× (4, 6, 0, 0)T . (J3)

Thus, the perturbation Hamiltonian Hc is given by

Hc =

(
04 h2

hT2 h1

)
, (J4)

where 04 denotes 4× 4 null matrix.
Hence, Hamiltonian H+s(A) and inversion symmetry

operator I for the five bands are given by

H+s(A) = HA(2,3) +Hc,

I =

(
I0 0

0 1

)
, (J5)

and I H+s(A)(k) I−1 = H+s(A)(−k). The energy bands
of H+s(A)(k) are shown in Fig. 17(c).

b. 2D 3rd-order TI + p(A)

We add a p orbital localized at the Wyckoff position
A = (0, 0). On-site energy h1 and an interaction Hamil-
tonian between the original four bands and p orbital are
chosen as

h1 = −4.5, h2 = 0.1× (0, 0, 6,−8)T . (J6)

Thus, the perturbation Hamiltonian Hc is given by

Hc =

(
04 h2

hT2 h1

)
. (J7)

Hence, Hamiltonian H+p(A) and inversion symmetry
operator I for the five bands are given by

H+p(A) = HA(2,3) +Hc,

I =

(
I0 0

0 −1

)
, (J8)

and I H+p(A)(k) I−1 = H+p(A)(−k). The energy bands
of H+p(A)(k) are shown in Fig. 17(d).



39

(a)

-6

-4

-2

0

2

4

Γ X YM MΓ
-6

-4

-2

0

2

4

Γ X YM MΓ

PP

k!

k"
Γ X

Y M
(b)

-6

-4

-2

0

2

4

Γ X YM MΓ

(c) (d)

s(A) p(A)

FIG. 17. Band structure of the tight-binding model in Eq. (J1). (a) 2D Brillouin zone. High-symmetry lines are shown as red
lines. (b) Energy bands along the high-symmetry lines. (c) Energy bands after adding a s(A) orbital. (d) Energy bands after
adding a p(A) orbital.
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FIG. 18. Band structure of the tight-binding model in Eq. (J9). (a) 3D Brillouin zone. High-symmetry lines are shown as red
lines. (b) Energy bands along the high-symmetry lines. (c) Energy bands after adding three s(A) and three p(A) orbitals. (c)
P4,5,6,7 denote the projector for the Wilson loop.

2. 3D 4th-order TI

The tight-binding Hamiltonian of 3D 4th-order TI is
given by

HA(3,4)(k) =

3∑

i=1

sin kiΓ̌i − (3− λ−
3∑

i=1

cos ki)Γ̌7

+ i

3∑

i=1

6∑

a=4

∆̌i,a Γ̌iΓ̌aΓ̌7. (J9)

where {Γ̌1, · · · , Γ̌7} = {µxτxσx, µxτxσy, µxτxσz, µxτyσ0,

µxτzσ0, µyτ0σ0, µzτ0σ0} and Γ̌7 = iΓ̌1 · · · Γ̌6. For nu-

merical calculations, ∆̌1,4 = −0.25, ∆̌1,5 = 0.05,

∆̌1,6 = 0.10, ∆̌2,4 = −0.05, ∆̌2,5 = 0.30, ∆̌2,6 =

−0.10, ∆̌3,4 = 0.05, ∆̌3,5 = −0.05 and ∆̌3,6 =
0.35 are used. HA(3,4)(k) is inversion symmetric, i.e.,

I0HA(3,4)(k)I0
−1 = HA(3,4)(−k), with inversion symme-

try operator I0,

I0 = µzτ0σ0 =

(
14

−14

)
. (J10)

Energy bands of HA(3,4)(k) are shown in Fig. 18(b).

a. 3D 4th-order TI + 3p(A)

Now, we add three p orbitals localized at the Wyckoff
position A = (0, 0, 0). For this, we add six orbitals at

generic Wyckoff positions x9,··· ,14.

x9 = −x10 = (−0.4,−0.4,−0.4),

x11 = −x12 = (−0.2,−0.2,−0.2),

x13 = −x14 = (−0.1, 0.1,−0.1). (J11)

Note that the original eight orbitals are localized at
x1,··· ,8 = (0, 0, 0). The Hamiltonian for the additional
six bands is chosen to be

h1 =




−19 −5 0 0 0 0

−5 −19 0 0 0 0

0 0 −20 −4 0 0

0 0 −4 −20 0 0

0 0 0 0 −21 −3

0 0 0 0 −3 −21



, (J12)

and it is invariant under the inversion symmetry operator
Ic,

Ic =




0 1 0 0 0 0

1 0 0 0 0 0

0 0 0 1 0 0

0 0 1 0 0 0

0 0 0 0 0 1

0 0 0 0 1 0



. (J13)

Diagonalizing h1 we obtain three s and three p orbitals
localized at A. Three s orbitals are degenerate with an
energy eigenvalue −24, and three p orbitals have energy
eigenvalues −14, −16 and −18, respectively. Now, we
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FIG. 19. Wilson bands with a projector P6 for: (a) Hc1 = Hc(q = 1). (b) Hc2 = Hc(q = 0). (c) Hc(q = 0.49). The Wilson
band transition occurs at (k2, k3, θ1(k2, k3)) = (1.054π, 0.0099π,−0.0117π) (blue circle) and −(1.054π, 0.0099π,−0.0117π). (d)
The band crossing between Wilson bands at (1.054π, 0.0099π,−0.0117π) (blue circle in (c)).

couple the additional six bands to the original eight bands
according to hc,

h2 = 0.05×




11 11 −7 −7 −2 −2

−3 −3 −1 −1 −1 −1

−9 −9 −10 −10 7 7

2 2 10 10 17 17

−1 1 −9 9 7 −7

−3 3 −2 2 −17 17

−8 8 4 −4 −5 5

−15 15 3 −3 13 −13




. (J14)

Thus, the perturbation Hamiltonian Hc1 is given by

Hc1 =

(
08 h2

hT2 h1

)
. (J15)

To sum up, the Hamiltonian H and inversion symme-
try operator I for the fourteen bands are given by

H = HA(3,4) +Hc1,

I =

(
I0 0

0 Ic

)
, (J16)

and I H(k) I−1 = H(−k). The energy bands of H(k)
are shown in Fig. 18(c). In order to study the effect of
adding p orbitals, we define projectors P5, P6, and P7 as
the projections to the occupied states with an additional
p(A) orbital, additional two p(A) orbitals, and additional
three p(A) orbitals, respectively [See Fig. 18(c) for the
definition of P5,6,7].

b. Wilson band transition

The nested Wilson loop spectrum depends on the
topology of Wilson bands. Thus, a bulk-gap-preserving
perturbation can change the topology of the nested Wil-
son loop through a band crossing between Wilson bands,
which we call a Wilson band transition. To investigate
how the nested Wilson loop spectrum changes after Wil-
son band transition systematically, we choose a new cou-
pling Hamiltonian h2

′ as

h2
′ = 0.05×




18 18 4 4 19 19

−5 −5 −1 −1 5 5

−10 −10 6 6 4 4

6 6 15 15 −4 −4

−8 8 −15 15 −4 4

−9 9 3 −3 −1 1

−4 4 6 −6 3 −3

−2 2 4 −4 5 −5




. (J17)

Thus, new perturbation Hamiltonian Hc2 is given by

Hc2 =

(
08 h2

′

(h2
′)T h1

)
. (J18)

Now, we define an interpolating Hamiltonian Hc(q) and
H(k, q) as

Hc(q) = qHc1 + (1− q)Hc2,

H(k, q) = HA(3,4) +Hc(q), (J19)

and find critical values qc where the Wilson bands close
the gap. The Wilson bands with the projector P6 close
the gap at qc = 0.49 and the band crossing points
are (k2, k3, θ1(k2, k3)) ' ±(1.054π, 0.0099π,−0.0117π) as
shown in Figs. 19(c) and 19(d). For Wilson bands with
the projector P7, the Wilson band transition occurs at
qc = 0.52 and the gap closes at (k2, k3, θ1(k2, k3)) '
±(1.040π, 0.0083π,−0.0114π). After the Wilson band
transition, the nested Chern number changes from ±2
to 0 as shown in Fig. 13.
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