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Doping twisted bilayer graphene away from charge neutrality leads to an enormous buildup of
charge inhomogeneities within each Moiré unit cell. Here we show, using unbiased real-space self-
consistent Hartree calculations on a relaxed lattice, that Coulomb interactions smoothen this charge
imbalance by changing the occupation of earlier identified ‘ring’ orbitals in the AB/BA region and
‘center’ orbitals at the AA region. For hole doping, this implies an increase of the energy of the
states at the I" point, leading to a further flattening of the flat bands and a pinning of the Van Hove
singularity at the Fermi level. The charge smoothening will affect the subtle competition between

different possible correlated phases.
I. INTRODUCTION

Studies of twisted bilayer graphene have revealed a
number of striking electronic properties, 1 and recently
culminated in the discovery of a correlated insulator
and superconducting phase22"13 Several new experiments
performed since then™ 2% have revealed new correlated
and topological states, and even more theoretical works
have appeared?!%2, However, there is no consensus yet
on the correct low-energy effective band-structure, let
alone the relevant many-body interactions.

It is well known that at fillings away from charge neu-
trality the electronic charge piles up in the AA regions of
the Moiré unit cell 1'#:28:8500 The Coulomb interaction
will counterbalance the formation of such large charge
inhomogeneities, and is expected to significantly modify
the non-interacting band dispersion. Here we study the
effect of the electronic interactions on AA localization via
an unbiased, self-consistent Hartree calculation.

Starting from a microscopic tight-binding model on
a relaxed twisted bilayer at the magic angle § = 1.08°
at fillings at and below charge neutrality, we show that
the Hartree corrections indeed cause the redistribution of
charges within the unit cell. The resulting charge distri-
bution is much smoother than that found with noninter-
acting theories. The smoothening itself is made possible
by increasing the energy of the states at the I' point
in the Brillouin zone, which causes a further substan-
tial flattening of the (already nearly) flat bands. Our
results are qualitatively similar to earlier results based
on a continuum model ##4Y Given the tight competition
between different possible correlated phases,21/2443 the
charge transfer reported here will almost certainly affect
this subtle competition.

In the remainder of this paper, we first introduce our
model of twisted bilayer graphene and the details of our
calculation. We then present and compare the charge in-
homogeneities before and after the Hartree corrections.
Finally, we discuss the ramifications of our result for fu-
ture theoretical modelling.

II. THE MODEL

Our starting point is a tight-binding model of twisted
bilayer graphene?8 which builds on earlier continuum
models/®! We construct twisted bilayer graphene by start-
ing with an AB stacked bilayer and rotating the top
layer around an AB site. For a commensurate twist an-
gle, we choose two integers mq, mo such that the large
Moiré unit cell has unit vectors G; = mja; + moas
and Go = —mga; + (m1 + meg)ag, where the graphene
lattice unit vectors are a; = % ((—=1)'x++/3y) with
a = 0.246 nm®*4,  The twist angle is now given by
mf+4m1m2+m§
2(m§+m1m2+m§) ’
the number of atoms per unit cell. In the remainder of
this paper we focus on m; = 30, ms = 31, which cor-
responds to the twist angle § = 1.08° and N = 11,164
atoms in the Moiré unit cell. A schematic picture of the
unit cell is shown in Fig. [1} left.

At such small twist angles the atomic positions are
substantially changed when one allows for lattice relax-
ation. To include this effect, we use the relaxed atomic
positions from Ref. [65] ™ Using these atomic positions,
we define a tight-binding hopping model with hopping
between two atoms given by

cosf = with 4(m? + mymsz +m3) being

d—a d—dg

v [im(F) e T v () R (1)

Here ap = 0.142 nm is the intralayer nearest neighbor
atomic distance; V0 = 2.7 eV is the nearest neighbor
intralayer hopping strength; dy = 0.335 nm is the unre-
laxed interlayer distance; d = |J] is the length of vector
that connects the two carbon atoms; rg = 0.045 nm is
the p-orbital decay length; and V) = 0.48 eV is the inter-
layer hopping when two carbon atoms are exactly above
each other 1L,

The electrons are subject to Coulomb interactions,
which depend on the deviation of the electron density
n(r) from the average density n. With dn(r) = n(r) —n



the interaction Hamiltonian reads
1
Hy = 3 Z on(r;)V(r; —r;)on(r;) (2)
ij

where the sum 4, 7 runs over all pairs of atomic positions
r;, rj. We follow estimates for single-layer graphene and
interpolate between an onsite repulsion of V(0) = 9.3

% at large distances. This leads

to the following effective form of the screened Coulomb
interaction in the tight-binding model 68

eV and an unscreened

1.438

Vic,-ri)= ——————
(I‘z I']) 0.116 + |I‘i — I‘j| ¢

G (3)

where the distance between two carbon atoms |r; — r}]
should be measured in nm /™

In the Hartree approximation, the product of two den-
sity operators in Eqn. is replaced by the product of
an operator and its expectation value. The interaction
is now replaced by a site-dependent electric potential ¢;,
that is to be determined self-consistently,

Hy = Z5n(ri)¢i, (4)
b = ZV(ri—rj)<5n(rj)>~ (5)

This provides us with a self-consistent iterative scheme:
using the hopping Hamiltonian — including the Hartree
potential of Eqn. (4) — we compute the band structure,
from which we deduce the electronic density on each
atom, which allows us to compute the electric potentials
¢; using Eqn. . We repeat these steps until we reach
convergence, and the fields no longer change.

The band-structure and Bloch wavefunctions were
computed on a 8 x 8 Monkhorst-Pack momentum grid en-
larged to reflect the sixfold rotational symmetry®Z, which
means in total we have 192 momentum points. At each
momentum point we compute the full band-structure,
and then adjust the chemical potential to find the de-
sired filling. We use mixing of the old and new electric
potential to speed up convergence. After 20 iterations the
electric potential had converged, in all cases, to within an
accuracy of 10~ eV. Note that we explicitly exclude lat-
tice symmetry breaking in our computations, in contrast
to other works that focus for instance on C5 symmetry
breaking 18

We introduce the filling parameter v, which gives the
number of electrons per Moiré unit cell, relative to the
charge neutrality (where the average charge density per
atom is i = 1). Note that v = £4 corresponds to either
completely empty or completely filled flat bands, since
there are 8 of them, taking into account spin and valley
indices. The average density per atom 7 is related to
the filling parameter v via i = 1 + v/N, where N is the
number of atoms in the unit cell. In the remainder, we
will focus on the fillings v = 0,—1, -2, —3 and —4.

{ Schematic Unit Cell /7

FIG. 1: Left: A schematic representation of the Moiré unit
cell in twisted bilayer graphene, with indicated AA, AB and
BA regions (a larger twist angle shown). The unit cell itself is
shown with a blue hexagon. The red dashed square indicates
the region enlarged in the right figure. Right: The relative
electron charge density dn(r) in the AB region of the unit cell
at charge neutrality v = 0 in layer 1 before Hartree correc-
tions. Atoms that lie on top of atoms in the other layer have a
charge deficiency (blue circles) and the remaining atoms have
a charge excess (red circles). The size of the circles indicate
the magnitude of dn, with a maximum of |én| ~ 0.0025 at the
AB point, here shown in the left bottom corner.

III. CHARGE DISTRIBUTION BEFORE
SELF-CONSISTENCY

We will first demonstrate the strong inhomogeneity
of the charge distribution and electric potential aris-
ing in the non-interacting model, without self-consistent
Hartree corrections. Interestingly, we find that the inho-
mogeneity in AB/BA regions is present even at charge
neutrality™ The distribution of charge at v = 0, illus-
trated in Fig. [I] right, reveals a clear charge deficiency
|0n] < 0.0026 on the atoms that lie on top of an atom
from the other layer. Note that such inhomogeneities
exist in untwisted AB stacked bilayers® The AB/BA
regions have no net accumulated charge.

Upon hole doping, a significant charge inhomogeneity
arises between the AA and the AB/BA regions of the unit
cell. This is because of the well-documented fact that the
local density of states is highest at the AA region 2448
The relative charge density is shown in Fig. 2| top row.
Even though the charge density per atom is [dn| < 0.001,
the combined effect of thousands of atoms leads to a
charge accumulation. We can express this by a total ac-
cumulated charge in the AA region, dnaa, obtained by
summing the charge over the N/2 = 5582 atoms clos-
est to the AA center. The values for dnaa are shown in
Table [l

This charge inhomogeneity leads to a very strong elec-
tric potential, illustrated in Fig. [3] left. Small potential
fluctuations arise because of the charge oscillations in the
AB/BA region as shown in Fig. |1l At fillings away from
charge neutrality, however, a major potential difference
arises between the AA center and the AB/BA regions of
the unit cell. For filling v = —4 this difference exceeds 1
eV. A full list of the potential difference A¢ as a function
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FIG. 2: The relative electron charge density dn(r) as a function of distance from the AA center of the unit cell, for five
different fillings ranging from charge neutrality (v = 0) to the band insulator (v = —4). The top row shows the charge density
without Hartree corrections, the bottom row includes the self-consistent Hartree corrections. The blue dots represent all the
atoms in the unit cell. The red line is a moving average, which shows the charge inhomogeneity between the AA center and
the AB/BA regions of the unit cell at v < 0. The Hartree correction significantly smoothens the initial charge inhomogeneity.
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FIG. 3:  The electric potential ¢; before (left) and after

(right) the Hartree corrections as a function of the distance
to the AA center, for various fillings. Note the approximate
factor 10 reduction in electric potential due to the Hartree
corrections.

v OMaA A¢ (meV) Reduction
before after H before ‘ after H factor
0 {/-0.026962|-0.0049907 || 28.8934 | 8.60985 3-5

-1{[-0.318072-0.0285706 || 339.343|30.5505 11

-2| -0.61295 |-0.0515452{|660.412|56.6246 12
-31| -0.87059 [-0.0641868 ||935.592|67.5796 14
-4/ -1.03138 |-0.0850411{|1088.83]91.2731 12

TABLE I: The total accumulated charge in the AA region,
onaa, and the maximum electric potential difference A¢, as
a function of the filling v. We compare the results before, and
after the self-consistent Hartree calculation. Both the electric
potential and the charge inhomogeneity are severely reduced
by the Hartree potential. The reduction factor (before divided
by after) is shown in the last column.

of filling is given in Table[l]

IV. SELF-CONSISTENT RESULTS

As shown in Fig. 3] the electric potential is negative
around the AA regions. The potential therefore tends

[ LDOS (a.u.), after Hartree ]
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FIG. 4: The local density of states measured at the AA
region of the unit cell, in arbitrary units, for fillings v = 0
through v = —4. At charge-neutrality (v = 0) the two Van
Hove singularities are clearly separated. For partial fillings of
the flat band, the Van Hove singularity remains close to the
Fermi level. A similar effect that has been observed in Ref®?.

to pull more electrons there, thus undoing the charge
inhomogeneity. Consequently, the Hartree corrections
will smoothen the charge distribution within each unit
cell. Earlier we qualitatively discussed this phenomenon,
which can be viewed as a charge transfer between AA
and AB/BA regions?® Here we provide a quantitative
analysis and discuss its effect on the band-structure.

We find that the Hartree corrections reduce both the
charge inhomogeneities and the electric potential by an
order of magnitude at fillings other than charge neutral-
ity, as shown in Fig. [2] Fig. 3] and Table[]}

The charge redistribution affects dispersion of the
bands, as well as the local density of states (LDOS).
In Fig. [4] we show the LDOS, measured at the AA re-
gion of the unit cell, for various fillings. At charge neu-
trality there are symmetric peaks representing the Van
Hove singularities (VHS). When partially filling the flat
bands (here the fillings v = —1, —2 and v = —3) the VHS
remains close to the Fermi level, consistent with recent
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FIG. 5: The band structure after Hartree corrections are taken into account, for fillings from v = 0 to v = —4. The thin

grey lines represent the band structure prior to the Hartree corrections. The thick dashed line is the Fermi level at each given
filling. Upon doping away from charge neutrality, the states at I" are clearly pushed upwards, which is a feature of the charge
smoothening. For the flat bands, this implies a reduction of the bandwidth.

findings in a continuum model 42

The change of position of the VHS is a direct con-
sequence of band structure changes. Recall that in the
non-interacting picture the Bloch wavefunctions at the
K point are highly centered at the AA regions of the
unit cell (center orbitals) 848, On the other hand, the
real-space structure of the flat bands at the I" point has a
vanishing weight at the AA centers and instead resembles
a ring occupying the AB/BA regions. Charge smoothen-
ing can be achieved by transferring charge from the center
to the ring orbitals. Consequently, for hole doping away
from charge neutrality (v < 0), the charge smoothening
will push up the energy of the band at the I" point. This
can be clearly seen in Fig. [5, where we show the band
structure after including the Hartree corrections.

The states at the I' point are clearly pushed upwards,
to the point that at v = —4 they are higher in energy
than the states at the K point. This is true both for the
flat bands as well as the bands lower in energy. How-
ever, for the flat bands this upwards push directly causes
an even further flattening, in the form of a reduction of
the bandwidth from 18 meV to roughly 6 meV at its ex-
treme. Especially noteworthy is the filling v = —2, where
the charge smoothening leads to the appearance of an al-
most completely flat band segment between the I' and
M points. It will be interesting to investigate the effect
of this significant flattening on the correlated insulator
state observed at this filling 1214415

V. DISCUSSION

We have shown that Coulomb interactions, as captured
by a fully self-consistent Hartree calculation, smoothen
the charge inhomogeneities in the unit cell. This charge
smoothening is achieved by pushing up the energy of the
states at the I' point, which in turn forces the VHS to

remain close the Fermi level.

Note that in this work we assumed an interac-
tion strength similar to those expected for single-layer
graphene. However, both screening within the bilayer as
well as the dielectric environment? can alter the precise
electron-electron interactions. In this work we did not in-
clude self-consistent screening, because two-dimensional
screening will only quantitatively change our results as its
tendency to smooth out charge inhomogeneities remains.
Similar quantitative changes are expected when one in-
cludes the lattice relaxation response to the Hartree po-
tential. Furthermore, the interaction with the substrate,
such as boron nitride (hBN), can change the bandstruc-
ture. It has been suggested that aligned hBN breaks
sublattice symmetry and leads to the opening of a gap
at the K point ®2'V It would be interesting to investigate
how this sublattice gap influences the observed charge
inhomogeneity.

Both the redistribution of charge and the shift in VHS
position upon doping can, in principle, be observed using
scanning tunnelling microscopy (STM). Indeed, a sharp-
ening of the VHS closest to the Fermi level has been
observed 22 but further many-body effects, not con-
sidered here, make a quantitative comparison between
our results and the observed STM spectra difficult.

Indeed, to quantitatively understand the plethora
of interesting observed phases, ranging from super-
conductivity, correlated insulator states, the quantum
anomalous Hall effect, to ferromagnetism, requires the
inclusion of many-body interactions beyond Hartree
corrections 1272%2443 Thig in turn, demands the compu-
tation of localized Wannier orbitals and their Hubbard,
exchange and Hund couplings. Given the strong band
flattening and charge smoothening the Hartree correc-
tion gives, we argue that any effective low-energy model
should start from a Hartree-renormalized band structure
such as the one shown in Fig.



Note added. Upon finalization of this manuscript, a
related paper appeared#? This work starts from a con-
tinuum model without lattice relaxation, while we start
from a tight-binding model with lattice relaxation. Oth-
erwise, the resulting band-structure and LDOS spec-
tra are qualitatively similar. A major difference with
Ref. [A9] is that we discuss the renormalization of the
band structure in terms of the charge inhomogeneities
and the resulting electric fields, while authors of Ref. [49]
interpret their results in terms of VHS pinning to the
Fermi level.
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