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Dirac point in two-dimensional (2D) materials has been a fascinating subject of research. Recently,
it has been theoretically predicted that Dirac point may also be stabilized in 2D magnetic systems.
However, it remains a challenge to identify concrete 2D materials which host such magnetic Dirac
point. Here, based on first-principles calculations and theoretical analysis, we propose a stable 2D
material, the monolayers TaCoTe2, as an antiferromagnetic (AFM) 2D Dirac material. We show
that it has an AFM ground state with an out-of-plane Néel vector. It hosts a pair of 2D AFM Dirac
points on the Fermi level in the absence of spin-orbit coupling (SOC). When the SOC is considered,
a small gap is opened at the original Dirac points. Meanwhile, another pair of Dirac points appear
on the Brillouin zone boundary below the Fermi level, which are robust under SOC and have a
type-II dispersion. Such a type-II AFM Dirac point has not been observed before. We further show
that the location of this Dirac point as well as its dispersion type can be controlled by tuning the
Néel vector orientation.

I. INTRODUCTION

Since the discovery of graphene [1], two-dimensional
(2D) materials have been attracting tremendous interest
in the past decade. Many of the peculiarity properties of
graphene can be ascribed to its peculiar Dirac-cone-type
band structure [2], in which two bands cross at so-called
Dirac points with linear dispersion at the Fermi level.
Around the Dirac points, the low-energy electrons behave
like relativistic massless Dirac fermions in 2D and exhibit
properties distinct from the usual Schrödinger fermions.

Inspired by graphene, there has been a continuing ef-
fort to search for 2D Dirac fermions in new materials and
to predict new variants. A number of 2D materials, such
as silicene [3, 4], germanene [3, 5], graphyne [6], 2D car-
bon and boron allotropes [7–10], and group-Va monolay-
ers [11, 12], have been predicted to host 2D Dirac points,
but these points (including those in graphene) are un-
stable under spin-orbit coupling (SOC). 2D Dirac points
robust against SOC, known as 2D spin-orbit Dirac points,
have been proposed by Young and Kane [13], and have
been revealed in realistic 2D materials such as mono-
layer HfGeTe family [14] and monolayer X3SiTe6 (X=
Ta, Nb) [15]. Recently, such spin-orbit Dirac points have
been directly mapped out in the angle-resolved photoe-
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mission spectroscopy (ARPES) experiment on monolayer
bismuthene with a black phosphorene type structure [16].

Generally, the stability of 2D Dirac points requires
symmetry protection. The magnetic ordering breaks
the time reversal (T ) symmetry and certain crystalline
symmetries, and hence may destroy the Dirac points.
Therefore, most discovered 2D Dirac materials are non-
magnetic. Recently, it has been discovered that Dirac
fermions can be achieved in an antiferromagnetic (AFM)
system, and the concept of 2D AFM Dirac semimetal has
been proposed in theory [17, 18]. A few real materials, in-
cluding monolayer FeSe [18], XFe2As2 (X= Ba, Sr) [19],
and monolayer Zr2Si [20] have been reported to be the
possible candidates. However, the number of candidates
is still very limited, and the proposed materials also have
their own shortcomings. For example, the Dirac points
in monolayer Zr2Si are unstable under SOC [20]. For the
monolayer FeSe, its Dirac point is away from the Fermi
level [18]. As for XFe2As2 (X= Ba, Sr), it actually real-
izes quasi-2D Dirac fermions in a three-dimensional (3D)
material [19], hence lacks the great tunability of 2D ma-
terials. Thus, it is much desired to explore more realistic
materials that can realize 2D magnetic Dirac fermions.

In this work, based on first-principle calculations and
theoretical analysis, we reveal the monolayer TaCoTe2 as
a 2D magnetic Dirac material. Bulk TaCoTe2 is an ex-
isting layered magnetic material. We demonstrate that
TaCoTe2 remains stable in the monolayer form, and the
calculated exfoliation energy is low (less than MoS2),
suggesting that the monolayer can be easily exfoliated
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from the bulk. We find that monolayer TaCoTe2 has an
AFM ground state, with a high Néel temperature about
310 K. In the absence of SOC, it hosts a pair of Dirac
points at the Fermi level in the AFM state, protected
by a glide mirror symmetry. When SOC is included, a
small gap about 60 meV will be opened at the original
Dirac points, and the low-energy electrons become 2D
massive Dirac fermions. Meanwhile, interestingly, there
emerge another pair of magnetic Dirac points below the
Fermi level, which are robust against SOC. Moreover, the
two points exhibit a type-II dispersion, i.e., their Dirac
cones are completely tipped over. To our knowledge,
such type-II magnetic Dirac point has not been observed
before. In addition, we show that the magnetic Dirac
points in TaCoTe2 have an interesting interplay with the
orientation of the Néel vector. Our finding provides a
concrete material platform for the fundamental research
of 2D magnetic Dirac fermions as well as for promising
spintronics applications.

II. CRYSTAL STRUCTURE

The bulk TaCoTe2 belongs to the ternary tellurides
with a layered structure [21] [see Fig. 1(a)]. It has been
synthesized from the component elements at 900 ◦C in
evacuated silica tubes. The crystals of bulk TaCoTe2
are monoclinic with space group P21/c (No. 14) and
the crystal structure have been determined by the X-
ray powder diffraction method (with crystal structure
data a = 7.7945 Å, b = 6.2649 Å, c = 8.1524 Å) [21].
Our calculation shows that the bulk TaCoTe2 is an AFM
semimetal. In the absence of SOC, it hosts a nodal loop
near the Fermi level, as shown in Appendix B.

Because of the layered structure, one expects that the
monolayer TaCoTe2 can be exfoliated from the bulk like
other 2D materials such as graphene and MoS2. The
lattice of the monolayer owns the same space group sym-
metry as the bulk [see Fig. 1(b)], which can be gener-
ated by the following elements: the inversion P and the

glide mirror M̃y : (x, y, z) → (x + 1
2 ,−y + 1

2 , z). The
combination of the two operations leads to a screw axis

C̃y : (x, y, z)→ (−x+ 1
2 , y+ 1

2 ,−z). Here the tilde denotes
a nonsymmorphic operation, which involves a fractional
lattice translation. The fully relaxed monolayer struc-
ture has lattice parameters a = 7.7746 Å and b = 6.3374
Å. The details of our first-principles calculation are pre-
sented in the Appendix A.

To investigate the stability of the monolayer structure,
we perform the phonon spectrum calculation. The ob-
tained phonon spectrum is plotted in Fig. 3(b) One ob-
serves that there is no soft mode in the spectrum, showing
that the structure is dynamically stable.

After confirming the stability of monolayer TaCoTe2,
we calculate its exfoliation energy, which offers an indica-
tion of the easiness to obtain the monolayer from the bulk
material by exfoliation process [see the inset of Fig. 3(c)].
The exfoliation process is simulated by calculating the en-

(a) (b)

a

b

c
Ta       Co       Te

a b

a

b

c

(c)

t

c

a b

c

FIG. 1. (a) Crystal structure of the bulk TaCoTe2. The
primitive cell is shown with the solid line. (b) Side view and
top view of the monolayer TaCoTe2. (c) Illustration of the

screw rotation symmetry C̃y : (x, y, z)→ (−x+ 1
2
, y+ 1

2
,−z).

The blue dashed line shows for the rotation axis, and t =
( 1
2
, 1
2
, 0) is the half translation along the (110) direction. Note

that the red arrows represent the magnetic moments along the
z direction (c axis).

ergy variation (δE) when a monolayer is separated from
the bulk by a distance d. The energy saturates to a value
with increasing d, which corresponds to the exfoliation
energy. As shown in Fig. 3(c), the exfoliation energy
for monolayer TaCoTe2 is about 0.406 J/m2. This value
is comparable to that of graphene (0.37 J/m2) [22] and
MoS2 (0.41 J/m2), and is less than that of Ca2N (1.14
J/m2) [23, 24]. We have also calculated the exfoliation
strength σ, which is defined as the maximum derivative
of δE with respect to the separation d. The obtained
exfoliation strength is about 1.64 GPa, which is less than
that of the graphene (∼2.1 GPa) [23]. These results sug-
gest that monolayer TaCoTe2 should be readily obtained
from its bulk material by mechanical exfoliation.

III. MAGNETIC CONFIGURATION

Because monolayer TaCoTe2 contains the 3d transition
metal element Co which usually exhibits magnetism, we
shall first determine the magnetic ground state for the
material. We consider the ferromagnetic (FM) config-
uration and three antiferromagnetic configurations (de-
noted as AFM1, AFM2, and AFM3), as illustrated in
Figs. 2(a-d). For each of these states, we consider three
orientations for the magnetic moments, namely, the z,
x, and y directions (z is the out-of-plane direction).
Our first-principles calculations with GGA+SOC+U ap-
proach show that the lowest energy is obtained for AFM1
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FIG. 2. The magnetic configurations that we have considered:
(a) is for the ferromagnetic configuration, and (b)-(d) are for
the three kinds of AFM configurations (AFM1-AFM3). The
red arrows represent the direction of the magnetic moments
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FIG. 3. (a) Brillouin zone for the monolayer TaCoTe2. The
high-symmetry points are labeled. (b) Phonon spectrum of
the monolayer TaCoTe2. (c) Exfoliation energy (blue line) for
TaCoTe2 as a function of its separation distance d from the
bulk (as illustrated in the inset). Here the bulk is modeled by
three TaCoTe2 layers in the calculation. The red curve shows
the exfoliation strength σ (i.e., the derivative of exfoliation
energy with respect to d). (d) Variation of the staggered
magnetization Ms with respect to the temperature.

with magnetic moments along the z direction (denoted as
AFM1z). The comparison of the total energies for these
magnetic configurations are shown in Table. I. The rel-
atively large energy difference between the FM and the
AFM1z states indicates the stability of the AFM config-
uration.

We have also estimated the Néel temperature (TN ) for
the AFM1z ground state. The estimation is through the

Monte Carlo (MC) simulation approach based on the ef-
fective spin model [25]:

H = −
∑
i 6=j

JijSi · Sj −
kN
2

∑
i

(Sz
i )

2
, (1)

where i and j represent the Co atomic sites, Jij and
kN are the exchange interaction strength and the mag-
netic anisotropy strength, respectively. The model pa-
rameters can be extracted from the first-principles cal-
culations. The obtained nearest neighbor exchange in-
teraction J1 = −2.974 × 10−20 J and the next nearest
neighbor J2 = 6.469× 10−21 J. The magnetic anisotropy
strength is kN = 3.6× 10−22 J. The Néel temperature is
determined from the variation of mean sublattice magne-
tization with respect to the temperature, which is shown
in Fig. 3(d) from the MC simulation. The estimated
TN value is about 310 K. The relatively high Néel tem-
perature suggests that the monolayer TaCoTe2 can be
suitable for practical spintronics applications.

IV. WITHOUT SOC: TYPE-I AFM DIRAC
SEMIMETAL

In the following, we investigate the electronic band
structure for the ground state of monolayer TaCoTe2
(i.e., with AFM1z configuration).

We first consider the band structure in the absence
of SOC. The band structure and the projected density
of states (PDOS) from our calculation are shown in
Fig. 4. From the PDOS, one can see that the system
is a semimetal: it has zero band gap and the density of
states at the Fermi level vanishes in a linear manner as in
graphene. The low-energy states near the Fermi level are
mainly from the Co (3d), Ta (5d), and Te (5p) orbitals.
In the band structure, one observes that there is a linear
band-crossing point D1 along the Γ-X path exactly at the
Fermi level (There is a pair of D1 points symmetric about
Γ.). In Fig. 4(b), we plot the band dispersion around
this crossing point, which demonstrates that the point
is isolated and has linear dispersion. Therefore, mono-
layer TaCoTe2 in the absence of SOC is a 2D AFM Dirac
semimetal, with massless Dirac fermion excitations.

The Dirac point here is protected by the glide mirror

symmetry M̃y. As shown in Fig. 4(a), the two crossing

bands have opposite M̃y eigenvalues along the Γ-X path.
At Γ and X points, the ordering between the two bands
are switched. Thus, the two bands must linearly cross
without hybridization at a Dirac point D1 on the path.
In Sec.VI, we shall further characterize the low-energy
band structure around D1 by constructing an effective
model.
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TABLE I. Total energy E per unit cell (in eV, relative to that of the AFM1z ground state) and magnetic moment M (in µB)
per Co atom obtained from first-principles calculations for the different magnetic configurations as illustrated in Fig. 2.

FMz AFM1z AFM2z AFM3z FMx AFM1x AFM2x AFM3x FMy AFM1y AFM2y AFM3y

E 0.371 0.000 0.323 0.030 0.367 0.005 0.335 0.035 0.352 0.009 0.330 0.034
M 0.886 1.246 0.958 1.232 0.945 1.238 0.926 1.215 0.992 1.241 0.914 1.234

V. WITH SOC: TYPE-II AFM DIRAC POINT

Next, we turn to the band structure with SOC in-
cluded. The DFT result is plotted in Fig. 5(a). Here,
each band is doubly degenerate because of the existence
of the combined PT symmetry (although the P and T
are individually broken by the magnetic order). One can
observe that original Dirac point D1 is gapped out (with
a small band gap ∼ 60 meV). This is because with SOC,

the spatial symmetry operation also affects spin, and M̃y

is not preserved for the AFM1z state, such that D1 is no
longer protected. As a result, the low-energy electrons
become massive Dirac fermions.

More interestingly, one notes that there emerges a lin-
ear crossing point D2 in the valence band about 0.2
eV below the Fermi level. In Fig. 5(b), we show a
zoom-in plot of the band structure around this cross-
ing point, which confirms that this is an isolated Dirac
point in 2D. Furthermore, this Dirac cone is tipped over,
namely, the slopes of the two crossing bands have the
same sign along the X-M (ky) direction. This kind of
Dirac point is termed as the type-II Dirac point, in anal-
ogy with the similar definition for the Weyl point. It has
been shown that type-II Dirac/Weyl fermions can ex-
hibit unique magnetic, optical, and transport properties
distinct from their type-I counterparts. Previously, type-
II Dirac points have been reported in a few nonmagnetic
systems, such as PtTe2 [26], PtSe2 [27, 28], PdTe2 [29, 30]
and MA3 (M = V, Nb, Ta; A = Al, Ga, In) [31]. To
our knowledge, this is the first time that a type-II Dirac
point is revealed in a 2D magnetic material.

In the following, we clarify the symmetry protection
for this Dirac point D2. It is important to note that
besides PT , the magnetic configuration also preserves

the C̃y symmetry. The path X-M at kx = π (below, wave
vectors are measured in units of the respective inverse

lattice parameter) is an invariant subspace for C̃y, so each
energy eigenstate on this path can also be chosen as an

eigenstate of C̃y. On X-M, we have

C̃2y = T01E = −e−iky , (2)

where T01 denotes a translation along y by a lattice con-
stant, and E denotes the 2π spin rotation. Hence, the

eigenvalues of C̃y are given by s = ±ie−iky/2. Meanwhile,

the commutation relation between C̃y and PT on X-M is
given by

C̃yPT = T11PT C̃y = −e−ikyPT C̃y. (3)

Using Eq. (3), one finds that for any state |u〉 with eigen-
value s, its Kramers partner PT |u〉 satisfies

C̃y(PT |u〉) = s(PT |u〉). (4)

This shows that the degenerate pair |u〉 and PT |u〉 have

the same C̃y eigenvalue s. It follows that if two bands
(each is PT doubly degenerate) have opposite s on X-
M, their crossing point would be a protected Dirac point
with fourfold degeneracy. This is exactly the case for the

point D2 here. Deviating from the X-M path, the C̃y
protection is lost, so D2 must be an isolated Dirac point.

VI. EFFECTIVE MODEL

In the following, we construct effective models to de-
scribe the electronic states around D1 and D2. Following
Tang et al. [32], the effective four-band model around a
band crossing point for a PT symmetric system takes the
general form of

H(k) =d0(k) + d1(k)τx + d2(k)τz + d3(k)τyσx

+ d4(k)τyσy + d5(k)τyσz,
(5)

where τ ’s (σ’s) are Pauli matrices representing the orbital
(spin-related AFM) basis, and di(k) (i = 0, 1, · · · , 5) are
real functions of k. By writing down this form, we have
taken the representation PT = iσyK, where K is the
complex conjugation operator.

Let’s first consider the model for D1. Without SOC,
the d3 and d4 terms in (5) must vanish, because they
correspond to spin-flip processes. The bands cross at D1

on the Γ-X path and they have opposite M̃y eigenvalues

in the absence of SOC. It follows that M̃y = e−ikx/2τz,
and the Dirac model constrained by symmetry around
D1 can be obtained to linear order as

H0
D1(k) = v0kx + v1kxτz + v2kyτx + v3kyτyσz, (6)

where the wave vector k is measured from D1, and the
v’s are real model parameters. Consequently, the band
dispersion around D1 is given by

E(k) = v0kx ±
√
v21k

2
x + (v22 + v23)k2y, (7)

which describes the massless Dirac cone in the absence
of SOC.

When SOC is turned on, there are additional allowed
terms. By treating SOC as a perturbation and keeping
only the leading order terms, we have

HD1(k) = H0
D1 + λ1τyσx + λ2τyσy + λ3τyσz, (8)
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where the λ’s are real parameters. Clearly, the additional
SOC terms open up a gap ∆ = 2

√
λ21 + λ22 + λ23 at D1,

and make the Dirac fermions massive.
Next, we consider the model for the D2 point. As we

have discussed before, on the path X-M, the symmetry

C̃y is preserved. The exact representation of the C̃y is
obtained by noticing

C̃yPT = T11PT C̃y = e−ikxe−ikyPT C̃y. (9)

Thus C̃y = ie−iky/2τz when kx = π. Consequently, in the
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red arrow. (b) 2D band structure around the type-II Dirac
point D2.

presence of SOC, the effective model for D2 is given by

HD2(q) =w0qy + w1qxτx + w2qyτz + w3qxτyσx

+ w4qxτyσy + w5qxτyσz,
(10)

where the energy and the wave vector q is measured from
D2. The first term w0qy represents the tilt term. Since
D2 is a type-II Dirac point, we have |w0| > |w2|, such that
the tilt dominates the dispersion along qy and makes the
Dirac cone tipped over.

VII. CONTROL DIRAC POINT VIA
MAGNETISM

We have discussed the type-II Dirac point which occurs
in the AFM1z ground state, where the Néel vector n is
along the z direction. When SOC is considered, the elec-
tronic band structure will be affected by the orientation
of the Néel vector.

In Fig. 6, we show the results when n is along x and
y directions. One can see that when n is along the x
direction, there still exists a Dirac point on the X-M
path, although the band structure slightly changes from
Fig. 5(a). This can be understood by noticing that this
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configuration shares the same symmetry with AFM1z.
Interestingly, for n along the y direction, although the
Dirac point on X-M disappears, there emerges a Dirac
point on the M-Y path (see Fig. 6(b)), and it is a type-I
Dirac point. This Dirac point is protected by PT and the

M̃y symmetry on this path. The analysis is very similar
to that in Sec.V, so we will not repeat it here.

For n along other directions, one generally does not ex-
pect a stable Dirac point, because a stable Dirac point in
2D must require certain crystalline symmetry protection.

Experimentally, the Néel vector for a AFM can be ro-
tated by applied magnetic field, laser light, and exchange
bias [33]. Therefore, the result here indicates that mag-
netic Dirac points in 2D can be effectively tuned (in-
cluding both location and dispersion) by controlling the
magnetism.

VIII. DISCUSSION AND CONCLUSION

We have revealed monolayer TaCoTe2 as a fertile play-
ground to study magnetic Dirac points in 2D. The low-
energy electrons are 2D Dirac fermions. In the absence
of SOC, they are massless. The SOC effect endows them
with a finite mass. 2D Massive Dirac fermions can ex-
hibit many interesting physics. For example, they can
acquire finite Berry curvature and orbital magnetic mo-
ment, leading to exotic transport and optical properties.
In addition, similar to graphene and 2D transition metal
dichalcogenides, there are two valleys in the band struc-
ture, which may lead to interesting valleytronic applica-
tions.

Notably, the type-II magnetic Dirac point found here
has not been reported before. The type-II dispersion
has Fermi surface topology distinct from type-I, which
in turn results in many distinct physical effects. For ex-
ample, there can be zero-field magnetic breakdown and
peculiar magneto-optical properties for type-II disper-
sion [34]. The tipped-over Dirac cone mimics the case
inside a black hole in general relativity, hence it may give

rise to effects analogous to event horizons and Hawking
radiation [35, 36].

Finally, we comment on the experimental aspect. As
we have discussed, bulk TaCoTe2 has already been syn-
thesized, and the monolayer should be readily obtained
via mechanical exfoliation method. The key Dirac fea-
tures in the band structure can be directly imaged by
current ARPES technique. The type-II Dirac point is
in the valence band and close to Fermi level, which is
very suitable for ARPES detection. In the intrinsic case,
the transport property of monolayer TaCoTe2 should be
dominated by the massive Dirac fermions at the band
edges. To probe the type-II Dirac point in transport ex-
periment, one needs to tune the Fermi level down into
the valence band, which can be achieved by electric or
ionic gating.

In conclusion, we have revealed the monolayer
TaCoTe2 as a 2D AFM Dirac material. Our first-
principles calculation shows that the material is stable
and can be readily obtained from its bulk counterpart.
The ground state is an AFM, and it has a relatively high
Néel temperature. In the absence of SOC, the materials
is an ideal 2D AFM Dirac semimetal, with a pair of mag-
netic Dirac points at the Fermi level. With SOC, the low-
energy Dirac fermions become massive, and meanwhile,
there emerges a pair of type-II magnetic Dirac points
in the valence band close to the Fermi level. We show
that the Dirac points can be tuned by controlling the
orientation of the Néel vector. Our results here offer an
excellent platform for exploring the intriguing physics of
2D magnetic Dirac fermions, which can lead to potential
applications in AFM spintronics.
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Appendix A: First-principles Methods

Our first-principles calculations are based on the den-
sity functional theory (DFT) using the projector aug-
mented wave method as implemented in the Vienna
ab initio simulation package [37–39]. The exchange-
correlation functional was modeled within the generalized
gradient approximation (GGA) with the Perdew-Burke-
Ernzerhof (PBE) realization [40]. The cutoff energy was
set as 400 eV, and a 9×9×1 Γ-centered k-point mesh was
used for the Brillouin zone sampling. The energy and
force convergence criteria were set to be 10−5 eV and
0.01 eV/Å, respectively. A vacuum layer with a thick-
ness of 20 Å was taken to avoid artificial interactions
between periodic images. The phonon spectrum is calcu-
lated using the PHONOPY code through the DFPT ap-
proach [41]. To account for the correlation effects for the
electrons on Co-3d orbitals, the DFT+U method [42, 43]
was used for calculating the band structures. For the re-
sults presented in the main text, the U value was taken
to be 3 eV. The test of other U values is presented in
Appendix C.

Appendix B: Band structure of the bulk TaCoTe2

Our first-principles calculations show that the ground
state of the bulk TaCoTe2 share the same AFM config-
uration (AFM1z) within each monolayer (For the calcu-
lation of the bulk, we adopted the experimental lattice
parameters and a 9×9×8 Γ-centered k-point mesh. The
van der Waals (vdW) corrections have been taken into ac-
count by the approach of Dion et al. [44]). Figure 7 shows
the band structures of the bulk without and with SOC.
In the absence of SOC, there exist linear band-crossing
points along the Γ-X and Z-Γ paths near the Fermi level
[see Fig. 7(b)]. We find that the two points are not iso-
lated and they belong to a nodal loop centered around
the Γ point in the kb = 0 plane, as shown in Fig. 7(c).
When SOC is considered, a gap is opened at the nodal
loop [see Fig. 7(d)].

Appendix C: Band structure results with different
Hubbard U correction values

In order to observe how the band structure of the
monolayer TaCoTe2 vary with the Hubbard U parameter.
We have tested different U values with SOC included.
The representative results are displayed in Fig. 8. We
can see that with small U correction (U = 0 eV), the va-
lence band and conduction band nearly touch and there

is almost no gap at D1 (with SOC included). With large
U values (such as 4 eV), the global gap is reduced and fi-
nally closed, but a local gap still exist. The type-II Dirac
point D2 in the valence band remains robust.
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