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We study the formation of bound states in a one-dimensional, single-component Fermi chain with
attractive interactions. The phase diagram, computed from DMRG (density matrix renormalization
group), shows not only a superfluid of paired fermions (pair phase) and a liquid of three-fermion
bound states (trion phase), but also a phase with two gapless modes. We show that the latter phase
is described by a 2-component Tomonaga-Luttinger liquid (TLL) theory, consisting of one charged
and one neutral mode. We argue based on our numerical data, that the single, pair, and trion
phases are descendants of the 2-component TLL theory. We speculate on the nature of the phase
transitions amongst these phases.

Tomonaga-Luttinger liquid (TLL) theory captures the
physics of many 1-D quantum systems such as spin
chains, spin ladders, nanotubes [1], nanowires [2], and
cold atoms confined to 1-D tubes [3–7]. In higher dimen-
sional systems, TLL is a tool that is often used, e.g. in
edge theory [8] and coupled-wire constructions [9–11].

Recently, there has been significant interest in the
study of 1D systems that cannot be described by the
standard TLL theory [12–18]. In describing 1D inter-
acting fermions, TLL theory naturally arises through
bosonization that maps fermionic modes to bosonic
modes. Nearby phases (i.e., descendants) such as charge
density order appear as instabilities of the parent TLL
theory [19–26]. This approach breaks down at the
weak to strong pairing transition, i.e., the transition to
the p-wave paired liquid. As recently pointed out in
Ref. [27, 28], the p-wave pairing phase cannot be de-
scribed as a descendant phase of a single-mode TLL; in-
stead the transition is described by an emergent mode
theory, with the weak and strong pairing phases being
descendants of this theory. Which raises the question:
what other phases, beyond p-wave pairing, can appear in
one-component interacting fermions and how are these
phases connected to some emergent-mode description?

In this paper, we investigate the formation of multi-
fermion bound states in 1D single-component systems.
We perform DMRG numerics on a lattice model with
finite-range interactions, and find liquids of singles, pairs,
trions, etc. in addition to an extended phase with two
gapless modes (2M phase). We unify these findings by
constructing an effective theory with an emergent mode
that characterizes the 2M phase, the descendants of this
theory describe the liquid phases of single fermions as
well as multi-fermion bound states (i.e. bound states of
2, 3, 4, . . . fermions). Our construction (Eq. (4)) is not
equivalent to the band-bending construction in Ref. [28]
(see supplement [29]) but is similar to Ref. [27] (see dis-
cussion at the end of the paper).

Microscopic Model – We study the lattice Hamiltonian

H =
∑
i

[
−1

2

(
c†i ci+1 + c†i+1ci

)
+

3∑
m=1

Vmnini+m

]
,

(1)

where ci and c†i are the fermion annihilation and creation

operators at lattice site i, ni = c†i ci is the number oper-
ator, and Vm defines the shape of the fermion-fermion
interaction potential. We choose short-ranged attractive
interactions (V1 < 0 and V2 < 0) to promote the for-
mation of pairs and trions, but with V3 > 0 to prevent
phase-separation [27]. To decrease the parameter space
we restrict our attention to the subspace V1 = V2. We
expect that extending the range of attractive interactions
will result in more liquid phases of multi-fermion bound
states. For example, we demonstrate that extending the
attractive interactions to three sites results in a quater-
nion liquid phase [29].

We use iDMRG [30–32] to study the ground state prop-
erties of the Hamiltonian (1) with focus on the 1/5 filling.
The accuracy of iDMRG is controlled by the bond dimen-
sion χ, the result becomes exact as χ→∞ [29]. To iden-
tify the various phases, we use two types of diagnostics:
central charge c and various two-point correlators.

We obtain c as follows. We study the bipartite en-
tanglement entropy S, i.e., the von Neumann entropy of
DMRG ground state traced over either half the system.
Both S and the correlation length ξ are infinite for the
true ground state, but are cut off by finite χ. The man-
ner in which these two variables diverge gives the central
charge: S = c

6 log(ξ) + const [33, 34].

We also compute the single, pair, and trion two-point
correlators

G1(r) =
〈
c†i ci+r

〉
, (2a)

G2(r) =
〈
(cici+1)† ci+rci+r+1

〉
, (2b)

G3(r) =
〈
(cici+1ci+2)† ci+rci+r+1ci+r+2

〉
. (2c)
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FIG. 1. Central charge as a function of interactions in the lat-
tice model (1) computed at filling fraction 1/5. Four phases
labeled are identified with further analysis of correlation func-
tions. We have checked that all the reported phases exist for
V1 = 2V2 and we expect the qualitative features of the phase
diagram to hold for generic values of V1 6= V2 in the vicinity
of V1 = V2.

In the single phase all correlators decay algebraically; in
the pair phase only G2 decays algebraically while G1 and
G3 decay exponentially; in the trion phase G3 is alge-
braic while G1 and G2 are exponential. This behavior
implies that there is a gap to adding a single fermion
into the pair/trion phase but no gap to adding two/three
fermions.

Figure 1 shows c as a function of the interaction pa-
rameters V1 = V2 and V3. The blue regions denote the
single-mode phases with c = 1, we identify these as sin-
gle, pair, and trion phases based on their two-point cor-
relators [Eq. (2)]. While we observe a direct transition
between the pair and single phases [27, 28], we do not find
a direct transition between the pair and trion phases; in-
stead we find an intermediate phase with c ≈ 2 which
we call the 2M (2-mode) phase. The 2M phase neigh-
bors all other phases and indicates a parent theory with
an emergent mode, which enables a unified description
of the multi-fermion bound-state phases and their tran-
sitions.

Our strategy for the remainder of the paper is as fol-
lows. First, we introduce a field theory to describe the
2M phase, writing down its operators and free Hamilto-
nian. Next, we introduce the possible interaction terms,
and examine the descendant phases that result. Finally,
we show that these prediction are consistent with our
numerics, justifying our theoretical model.

Theory of the emergent mode – Motivated by Refs. [27,
28] and our data, we introduce a theory with two modes.
In this theory, the charge-1 operators in the lowest har-

monic are [35]:

ψ
(±)
0,η = e±iθ1eiθ0+iη(φ0+kFx),

ψ
(±)
1,η = eiθ0e±iθ1±iη(φ1+k′x),

(3)

where η = +1/−1 denotes a right/left mover; θµ is
dual field of the compact bosonic field φµ and satisfies
[∂xθµ(x), φν(x′)] = iπδµνδ(x− x′). The charge is carried
by the θ0 mode, while θ1 is neutral, as a result kF is fixed
by the density of electrons while k′ is a free parameter.

The set of local physical operators can be gen-
erated via products of operators from Eq. (3), i.e.,(
ψ+

0,1

)l(
ψ+

0,−1

)m(
ψ−1,1

)n · · · . (Note that the generators
Eq. (3) are over-complete.) As a result, primary opera-
tors of charge q take the form:

c(x)q ∼
∑

q1,r0,r1

ei(qθ0+q1θ1+r0(φ0+kFx)+r1(φ1+k′x)),

where q1 ≡ r0 + r1 ≡ q (mod 2).

(4)

Due to the restrictions on the coefficients q1, r0, and r1

of physical operators, we cannot simply treat this theory
as a product of decoupled θ0/φ0 and θ1/φ1 theories.

The theory must obey charge conservation, and be in-
variant under both parity (φ0,1 → −φ0,1 and x → −x)
and time-reversal (θ0,1 → −θ0,1, i → −i, and t → −t).
The kinetic part of the Hamiltonian takes the form:

HKE =
∑
µ,ν

[
Aµν(∂xθµ)(∂xθν) +Bµν(∂xφµ)(∂xφν)

]
. (5)

HKE describes a 2-mode TLL, which we later demon-
strate to be consistent with the 2M phase found in the
numerics.

Single-mode phases as descendants of the 2M theory –

The single-mode phases (single, pair, trion, ...) are
constructed by introducing locking terms, shown in Ta-
ble I, to the Hamiltonian (5). For a term to appear, it
must be of the form of Eq. (4) with q = 0, and also respect
parity and time-reversal. At large interaction strength,
some of these terms may ‘lock’ [26]; taking an expectation
value and reducing the theory to a 1-component TLL.

Our analysis for the locking terms follows [36]. For an
interaction term to lock it should have no oscillation (i.e.,
x dependence), which places constraints on the Fermi
momenta. For each locking term of the form cos Λ, we
find linear combinations of the θs and φs that commute
with Λ. Among this set we find a conjugate pair which
we denote as θ+ and φ+. The set of gapless operators
are then generated by eiΛ, eiθ+ , and eiφ+ , and must be a
subset of Eq. (4) [37]. We show that the minimal (unit)
charges for these operators are indeed qmin = 1, 2, 3 for
the single, pair, trion phases respectively, from the given
locking terms. We extend our analysis to arbitrary qmin

in the supplement [29].
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Locking term cos(2θ1) cos(2k′x+ 2φ1) cos[(3k′ − kF)x+ 3φ1 − φ0] . . .

Resulting phase single pair trion . . .

Single correlator G1(r)
∑

n

sin[(2n+ 1)kF|r|]
|r|(1/K+(2n+1)2K)/2

Pair correlator G2(r)
∑

n

cos[(2n)kF|r|]
|r|2/K+2n2K

∑
n

cos[(2n) kF
2
|r|]

|r|(1/K+(2n)2K)/2

Trion correlator G3(r)
∑

n

sin[(2n+ 1)kF|r|]
|r|(9/K+(2n+1)2K)/2

∑
n

sin[(2n+ 1) kF
3
|r|]

|r|(1/K+(2n+1)2K)/2

TABLE I. Locking terms and correlators of single-mode phases. The first line lists interaction terms and the second line
shows the corresponding phases when interaction terms get locked. The remaining rows show the algebraic decay form of
correlators G1,2,3; the coefficient of each term is neglected for simplicity. Figure 2 shows the numeric data verifying the
predicted dependence.

We first analyze the locking term cos(2θ1) which
induces the single phase. The gapless mode is de-
scribed by the dual fields θ+ = θ0 and φ+ = φ0.
Thus the gapless operators take the form c(x) ∼∑
eiaθ1eiθ0ei(2n+1)(φ0+kFx) where n is an integer and a an

odd integer. (The dual field φ1 is disordered and cannot
appear here.) As eiθ1 is a constant, c(x) reduces to the
standard bosonization form of a fermion mode [26, 38].

Next, we show that the locking term cos(2φ1 + 2k′x)
induces the pair phase. Notably, for this term to lock we
must enforce k′ = 0. As θ1 is disordered, it cannot ap-
pear in a gapless operator, i.e., q1 = 0. From the parity
relation (4), we see that q must be an even integer and
thus the single and trion correlators decay exponentially.
Letting θ+ = 2θ0 and φ+ = φ0/2, we recover the stan-
dard bosonization expansion of a boson mode [26, 38] for
the pair operator: c(x)2 ∼ b(x) ≈

∑
eiθ+ei(2n)(φ++kBx)

with n ∈ Z and kB = kF/2. We interpret this descen-
dant theory as a TLL of fermion pairs, with the density
of pairs being half of the density of elementary fermions.

Finally, we address the locking term Λ = 3(φ1 +k′x)−
(φ0 + kFx) which yields the trion phase while fixing
k′ = kF/3. As Λ commutes with θ+ = 3θ0 + θ1 and
φ+ = φ1, the gapless operators take the form c(x)q ∼∑
ei(q/3)θ+eia(φ++k′x)+ibL. Mapping the expression to

Eq. (4), we get q1 = q/3, r0 = −b, and r1 = a + 3b; we
determine the consistency conditions q/3, a, b ∈ Z and
a ≡ q (mod 2). Hence for any gapless operator, q must
be a multiple of 3, which implies exponential decay of
G1 and G2. The trion operator expansion reduces to:
c(x)3 ∼

∑
eiθ+ei(2n+1)(φ++k′x), where k′ = kF/3 is the

Fermi wavevector of the trions and n is an integer.
Within the low energy theory for each of the three

single TLL mode phases, c(x)qmin admits a standard
bosonization expansion in terms of θ+ and φ+. The ef-
fective Hamiltonian is thus

H+ =
v+

2π

[
K(∂xθ+)2 +

1

K
(∂xφ+)2

]
, (6)

where K is the Luttinger parameter.
Fourier spectra of the correlators – The long-distance
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FIG. 2. Verification of predicted decay exponents. Left: lead-
ing decay exponent (η2) of pair correlator in pair phase at
V1 = V2 = −0.8, V3 = 1.4. Right: leading decay expo-
nent (η3) of trion correlator in trion phase at V1 = V2 = −1,
V3 = 1.4. The two lines are prediction from TLL theory (cf.
Tab. I), η2 = 1

2K
and η3 = 1

2
(K+ 1

K
). The values of Luttinger

parameter K are extracted from the neutral sector [29]. In
order to cover larger range of K, we use DMRG data from
fillings (left to right) 1

5
, 1

6
, ..., 1

10
.

behavior of the correlation functions of gapless operators
can be written as a sum of algebraically decaying terms
of the form

cos(kosc|r|+ ϕ)

|r|η
. (7)

Our theory puts a restriction on the allowed values of
kosc in the 2M phase and the single-mode phases. Table I
summarizes the long distance behavior of the correlation
functions within the single-mode phases; observe that the
(leading) decay exponents η of all harmonics kosc depend
only on the Luttinger parameter K; this is verified in
Fig. 2.

To connect the effective theory to our microscopic
model, we compare the kosc in correlation functions ob-
tained from field theory and DMRG. We perform Fourier
transforms on the correlation functions G1,2,3(r) and take
the nth derivative, such that terms of the form Eq. (7)
with η < n + 1 will show a divergent peak at kosc. We
then match the set of predicted oscillation wavevectors
to peaks in the Fourier transforms. Figure 3 presents the
correlation functions along cuts at constant V3. Panels
(a–c) show a cut through the trion, 2M and pair phases;
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FIG. 3. Spectra G1, G2 and G3 (from top to bottom) as
a function of wavevector and interaction strength (V1 = V2),
showing agreement of peak locations between DMRG and the-
ory. The data is taken at cuts shown in Fig. 1. Plots (a–c)
taken at V3 = 1.56 show the trion, 2M, and pair phases; plots
(d–f) taken at V3 = 1.3 show the trion and single phases (with
a possible 2M phase in between). Darker (Blue) colors rep-
resent larger values of amplitudes. The peak in the data of
G1, which continuously varying between 0 and kF/3 in the
2M/single phase is identified as k′. The lines added to the
color plot are theoretic predictions with the determined pa-
rameter k′. The solid lines denote several long distance kosc

associated with algebraic-decay; the dotted lines denote sev-
eral exponential-decay “peaks”, which are possibly visible if
the decay-length-scale is large. The parameters for the plots
are explained in the supplement [29].

while panels (d–f) cut from trion to single phase (with a
possible intervening 2M phase).

In the 2M phase, both modes are gapless and the al-
lowed kosc’s are given by the oscillatory part of c(x)q in
Eq. (4):

kosc = r0kF + r1k
′. (8)

For G1 and G3, r0 + r1 is odd, hence the first several
kosc are k′, kF, kF ± 2k′, and 2kF ± k′. For G2, r0 + r1

is even and so kosc = 0, kF ± k′, 2k′, 2kF, etc. These

wavevectors are fitted to numerical data and are marked
by the dotted lines in Fig. 3. As kF is fixed, k′ is the
only fitting parameter at each point of phase space. In
the 2M region of panels (a–c), we observe unambiguous
peaks at the predicted wavevectors. (In the numerics, we
have not resolved peaks at some of the predicted kosc, as
these peaks are too weak or have large exponent η.)

A key feature of the DMRG data in the 2M phase
is that k′ varies continuously between the two limiting
values: k′ = kF/3 on the trion side and k′ = 0 on the
pair side. The variation of this wavevector is a clear sign
of a neutral emergent mode and confirms our effective
two-mode TLL [39].

In the single-mode phases, some of the peaks found for
the 2M phase persist while others are no longer divergent
as modes become gapped out. The trion phase is char-
acterized by the absence of singular behavior in panels
(a,b,d,e) as G1,2 decay exponentially. We observe that
G3 decays algebraically with peaks in Fig. 3(c,f) at odd
multiples of k′ = kF/3. In the pair phase, k′ = 0 and only
G2 shows divergent peaks at multiples of kF, as predicted.
[The features at 0, kF in panel (a) are not divergent and
broadened out due to G1 being gapped. Deep in the
pair phase, they become invisible.] Finally, for the sin-
gle phase all three correlators are algebraically decaying
[Fig. 3(d–f)] with peaks at multiples of kF. Remarkably,
we also observe exponentially decaying features at the
moving k′ which are remnants of the 2M parent theory.
Phase transitions – There are five potential phase tran-

sitions in our phase diagram. The locking mechanisms
give hints about the possible phase transitions, which we
discuss in relation to our data.

• Single-pair transition. The transition is controlled
by the competition between the terms cos(2θ1) and
cos(2φ1), and results in a quantum Ising transi-
tion [27, 28, 40–42]. In the supplement [29], we
provide the definitive evidence that the single-pair
transition is Ising via finite-χ scaling.

• 2M-single transition. This transition is driven
by the term cos(2θ1), and is likely a Berezinskii-
Kosterlitz-Thouless (BKT) transition.

• 2M-pair/trion transition. Both 2M-to-pair and
2M-to-trion transitions are accompanied by k′

reaching a commensurate value. This suggests a
commensurate-incommensurate transition

• Single-trion transition. We are unable to deter-
mine if there is a direct transition between the trion
and single phase, or whether there is an intervening
2M phase which extends down as V3 is decreased.
In both cases, our numerical analysis suggests a
(at least one) first-order transition (see the supple-
ment [29]).

Discussion – In summary we find conclusive evidence
for an emergent mode in a one-dimensional attractive
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fermion chain. This emergent mode results in the forma-
tion of a stable 2M phase with two Fermi surfaces. We
argue that the multi-fermion bound state liquids are not
descendants of the single-mode TLL phase but are rather
descendants of this 2M phase. Here the 2M parent the-
ory is written as a mixture of charged/neutral modes.
Curiously, we can also rewrite the theory in terms of a
mixture of charge-1/charge-2 modes [27], or more gener-
ally charge-n/charge-(n+ 1) modes.

The two ingredients required to realizing the proposed
phenomenology are (1) confining the fermions to one-
dimension and (2) controlling the form of the interaction
potential between the fermions. In the setting of solid
state systems the two ingredients could be realized in
nanowires made of superconducting semiconductors [43–
48]. In ultracold atoms confinement could be provided
by either optical lattices [3, 6, 49], or atom chips [5] and
tunable long-range interaction by the use of dipolar in-
teractions [50, 51], or Rydberg state-mediated interac-
tions [52].

The 1D systems studied here can also be used to
construct higher dimensional topological phases via the
coupled-wire construction [9, 27, 53, 54]. TLL enriched
by emergent mode(s) may give a pathway to a wide range
of new phases in condensed matter.

We acknowledge enlightening discussions with J. Levy.
This work was supported by the Charles E. Kaufman
foundation and NSF PIRE-1743717.
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