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The charge transport of a (Tomonaga-)Luttinger liquid with tunnel barriers exhibits universal scaling: the
current-voltage curves measured at various temperatures collapse into a single curve upon rescaling. The expo-
nent characterizing this single curve can be used to extract the strength of electron-electron interaction. Moti-
vated by a recent experiment on InAs nanowires [Sato et al., Phys. Rev. B 99, 155304 (2019)], we theoretically
investigate the analogous behavior of a spin-orbit-coupled Luttinger liquid. We find that the scaling exponent
differs for different impurity strengths, being weak (disorder potential) or strong (tunnel barriers), and their po-
sitions, either in the bulk or near the edge of the wire. For each case we quantify the exponent of the universal
scaling and its modification due to the spin-orbit coupling. Our findings serve as a guide in the determination
of the interaction strength of quasi-one-dimensional spin-orbit-coupled quantum wires from transport measure-
ments.

I. INTRODUCTION

One-dimensional interacting electron systems, in con-
trast to their higher-dimensional counterparts, invalidate the
Fermi-liquid description. Instead, they can be described as
(Tomonaga-)Luttinger liquids [1–6]. Among other interest-
ing features, the theory predicts unusual transport properties
of the Luttinger liquid. Namely, a clean Luttinger liquid con-
nected to Fermi-liquid leads has an interaction-independent
conductance [7–9]. However, defects and impurities (in the
form of either tunnel barriers or weak potential disorder) alter
the conductance, which becomes dependent on the interaction
strength [10–16]. The predicted conductance therefore allows
one to confirm the Luttinger-liquid nature of the system and
to deduce its interaction strength through transport measure-
ments.

A typical realization of Luttinger liquids is provided by
nanowires [6, 17], in which electrons are confined in two
spatial dimensions and are free to move along the third di-
mension. Here, the spin-orbit coupling1 is an important in-
gredient for exploiting nanowires as elements in spintronics
devices [18–22], including, more recently, topological states
of matter [23–29]. In the latter examples, an external mag-
netic field induces Majorana bound states at the ends of a
spin-orbit-coupled nanowire in proximity of a superconduc-
tor. Even though most theoretical works on these Majorana
nanowires use the single-particle picture in which electron-
electron interaction is ignored, nanowires with both strong
electron-electron interaction and strong spin-orbit coupling
might have substantial advantages: it has been suggested that
they are capable of hosting Majorana Kramers pairs [30–
34] and computationally more powerful parafermions [35–38]

1 Throughout this article, we use “interaction” for electron-electron interac-
tion and “coupling” for spin-orbit coupling (with very few exceptions), to
discriminate the two terms more easily for the readers.

without applying magnetic fields. In these proposals, suffi-
ciently strong electron-electron interaction is required to es-
tablish topological states. Namely, nonlocal pairing should
dominate over local pairing, or, equivalently, the Cooper pair
splitting efficiency should exceed unity. While such high
splitting efficiency has been observed in a Josephson junction
made of InAs double nanowires [39], the interaction strength
of that device remains undetermined. Since most of the pro-
posals employ the Tomonaga-Luttinger model, it is crucial
to establish a reliable experimental approach to characterize
nanowires with strong spin-orbit coupling within this formal-
ism.

Recently, Ref. [40] attempted to determine the interaction
strength in nanowires made of InAs. There, it was found that
the current-bias curves fit well to the universal scaling formula
of a Luttinger liquid [16, 41] for charge density spanning an
appreciable range. Accordingly, the universal scaling formula
was used to deduce the interaction strength in these nanowires.
Since it is well established that the spin-orbit coupling of InAs
nanowires is considerably strong [20, 42–45], it is necessary
to clarify whether and how the universal scaling formula is
affected by it.

In Ref. [40], we listed some of the results which we derive
here, namely those that were needed to interpret the data of,
and in the parameter limits appropriate for, that experiment.
In a nutshell, in Ref. [40], we used the formulas for wires
with zero spin-orbit coupling. Here, we provide the theory for
wires with arbitrary spin-orbit coupling strength. Specifically,
we give the derivations of the formulas, analyze their general
trends, and focus on the changes induced by the finite value of
the spin-orbit coupling.

With this motivation, we investigate theoretically the trans-
port properties of a spin-orbit-coupled Luttinger liquid. De-
spite the fact that, in a purely one-dimensional system, the
spin-orbit coupling can be removed by a gauge transforma-
tion [46–48], in realistic nanowires the presence of transverse
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degrees of freedom makes the removal argument invalid.2

As a result, the spin-orbit coupling can cause band distor-
tion [49, 50]. In the bosonization formalism, it translates into
an additional term breaking the charge-spin separation in the
Hamiltonian [51, 52]. Our goal is to analyze how this charge-
spin mixing affects the transport properties.

Here it is in order to comment on theoretical works tak-
ing into account the backscattering process of the electron-
electron interaction (referred to as g1 term). It was shown
to be irrelevant in the renormalization-group (RG) sense in
Ref. [52]. Among the subsequent works, Refs. [48, 53] con-
cluded that the spin-orbit coupling combined with the g1 term
can induce a gap in the energy spectrum and thus destabilize
the Luttinger liquid phase, whereas Ref. [54] arrived at the op-
posite conclusion. Including external magnetic fields [55–58],
intersubband spin-orbit coupling with the chemical potential
close to the subband crossing point [47], or spin-umklapp
scattering [59, 60] can also lead to anti-crossings or partial
gaps in the spectrum.3 Instead of entering this debate, we take
a pragmatic approach. Our theory is supposed to provide in-
terpretation for experiments which show no sign of a gap, such
as Ref. [40]. Therefore, we adopt the model in Refs. [51, 52],
incorporating the spin-orbit coupling as a band distortion.

We further note works on signatures of the spin-orbit
coupling in the correlation functions of the Luttinger liq-
uid [51, 52, 61]. In contrast to those, we investigate the in-
fluence of spin-orbit coupling on charge transport properties.
Specifically, we calculate the temperature and bias-voltage de-
pendence of the tunnel current and/or the (differential) con-
ductance of a Luttinger liquid containing impurities in the
following scenarios: (i) when the impurities are strong and
treated as tunnel barriers located either (ia) near the bound-
ary (wire end) or (ib) in the bulk of the wire; (ii) when they
are weak, treated as potential disorder, (iii) when both types
(i) and (ii) are present. These impurity types are illustrated in
Fig. 1. In addition to the universal scaling behavior of the tun-
nel current in scenario (i), we find the differential conductance
as a power law of the temperature and bias voltage in the high-
temperature and high-bias limits, respectively, in the above
scenarios. One of our main conclusions is that, for realistic
strengths of the spin-orbit coupling, the current-voltage curve
follows the universal scaling relation of a standard4 Luttinger
liquid with modified parameters. The interaction strength can
be therefore obtained reliably from the universal scaling be-
havior, upon fitting the power law. Further, in the strong-
interaction regime the modifications due to the spin-orbit cou-
pling are negligible. Nevertheless, in general the effects of
spin-orbit coupling enter, and the charge transport is addition-
ally complicated by the character of impurities in the wires.
Our analysis incorporating various impurity types and loca-
tions resolves these complications.

2 In addition to a strictly one-dimensional system, the removal requires both
zero external magnetic field and linear-in-momentum spin-orbit coupling.

3 Recently a partial gap in the lowest subband of an InAs nanowire was ob-
served in the absence of magnetic fields [45].

4 That is, the one without any spin-orbit coupling effects.
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FIG. 1. Illustrations of investigated impurity types: (a) a boundary
barrier, (b) a bulk barrier, and (c) a weak backscattering center. In
all the panels, we mark a single impurity as ×, and assume that it is
located at the origin x = 0. In Panel (a), a strong impurity is located
between a Fermi-liquid lead (FL lead, plotted as dashed line) and a
Luttinger-liquid wire (LL wire, plotted as solid wavy line), which
are tunnel coupled with the tunnel amplitude ttun. In Panel (b), a
strong impurity breaks the Luttinger-liquid wire into two segments.
In Panel (c), a weak impurity acts as a backscattering center with the
potential strength V0.

The paper is organized as follows. In Sec. II we intro-
duce our model. We review the properties of a quasi-one-
dimensional spin-orbit-coupled wire in Sec. II A, and present
our bosonized model, incorporating the effects of the spin-
orbit coupling and the quasi-one dimensionality in Sec. II B.
In Sec. III we consider various types of impurities. For the
strong-impurity scenario considered in Sec. III A, we calcu-
late the universal scaling formula for the tunnel current in the
case of (a) boundary barriers and (b) bulk barriers. Through
the RG analysis, we compute also the conductance in the
high-temperature and high-bias regimes, and show consis-
tency with the tunnel current calculation. In Sec. III B we
compute the conductance in the high-temperature and high-
bias regimes for the weak-impurity scenario and propose an
interpolation formula for arbitrary temperature and bias. Fi-
nally, in Sec. III C, we consider the scenario in which both
strong and weak impurities are present, and reveal a transi-
tion between different power-laws upon varying the interac-
tion strength. We discuss generalization of our calculation
and robustness of the transport signatures for a Luttinger liq-
uid in Sec. IV. In Sec. V, we summarize our main results
in Table I. Appendix A gives the details on the derivation
of single-particle correlation function. In Appendix B we
present the derivation of the universal scaling relation of the
current-voltage curve, and its asymptotic behavior in the high-
temperature and high-bias limits. In Appendix C, we dis-
cuss the density of states of a bosonized model proposed in
Ref. [62]. In Appendix D we discuss an alternative approach
for the analysis in the weak-impurity regime.
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FIG. 2. Energy spectrum (Ek) of a quasi-one-dimensional spin-orbit-
coupled wire for ksolw = 0.45. The horizontal axis labels the mo-
mentum k along the wire (multiplied by the wire width lw), and the
vertical axis is scaled with Eg ≡ ~2/(ml2w). When the chemical po-
tential µ (dotted line) intersects with the lowest transverse subband
(solid curves) but not the upper subband (dashed curves), there exist
four distinct branches, which we label as LA, LB , RB , and RA, ac-
cording to their Fermi velocities. The color in the background shows
the value of the spinor overlap PAB [see Eq. (2)].

II. HAMILTONIAN OF A CLEAN SYSTEM

A. Energy spectrum and spin orientation

Owing to their potential application in spintronics and
topological matter, the spectral properties of semiconductor
nanowires with spin-orbit coupling have been widely stud-
ied in the literature [46–52, 62, 63]. Here we review the ba-
sic properties of a quasi-one-dimensional spin-orbit-coupled
wire [49–52, 62] that are essential for our analysis. We as-
sume that the wire lies along x direction, and its transverse di-
rections (y and z) are subject to confinement potentials, taken
as anisotropic harmonic for specificity. The y-axis confine-
ment is assumed to be much softer than z direction, so the z
transverse degrees of freedom can be neglected. The confine-
ment energy scale Eg is thus determined by the wire width
lw along y direction. It is known that in the presence of a
relatively weak transverse confinement (meaning that Eg is
not very large), the spin-orbit coupling can cause apprecia-
ble band distortion [49]. More precisely, the Rashba spin-
orbit coupling mixes the opposite spin states of the neighbor-
ing transverse subbands, making the energy spectrum spin-
dependent and distorting its originally quadratic dispersion.

Aiming at a quantitative description, we take the two-
subband model introduced in Refs. [50, 62]. The energy
spectrum depends on the dimensionless parameter ksolw, with
kso ≡ m|αR|/~2 being determined by the Rashba coefficient
αR and effective mass m of the material. For the parameter
values |αR| = 100–200 meVÅ, m = 0.023 me with the elec-
tron mass me, and lw = 100 nm, we obtain ksolw =0.3–0.6.
For illustration, Fig. 2 shows the spectrum for ksolw = 0.45.
We label the outer (inner) branch of the energy dispersion
as A (B) and the right- (left-)moving electron as R (L) for
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FIG. 3. Chemical potential (µ) dependence of the spin expectation
value 〈Sy〉 (left axis, in unit of ~/2) of the eigenstates in the lowest
subband, as well as the band distortion parameter δv/vF (right axis).
For µ < µ∗, the spins of RA and RB are of opposite signs, so do the
spins of LA and LB . The adopted parameters are the same as those
used in Fig. 2.

the chemical potential µ located within the lowest-subband
regime, as indicated in Fig. 2. Due to the band distortion in-
duced by the spin-orbit coupling, the Fermi velocities of the
branches A and B are different. We define the band distortion
parameter as the ratio δv/vF with

δv ≡ vA − vB , (1a)
vF ≡ (vA + vB)/2, (1b)

where vA (vB) is the Fermi velocity of the branch A (B).
The band distortion parameter is plotted as a function of µ
in Fig. 3. For parameters relevant to Ref. [40], we obtain
δv/vF > 0.1 in the strong-interaction regime (that is, close
to the bottom of the lowest subband).

In addition to the band distortion, the spin orientation of the
electrons is also affected by the spin-orbit coupling. Whereas
the spins of the right- and left-moving electrons of the same
branch (either A or B) must be opposite due to the time-
reversal symmetry, there is in general no relation between the
spins of electrons moving in the same direction (namely, be-
tween RA and RB , or, equivalently, between LA and LB).
In the literature, Moroz et al. assigned the electron spins of
the same direction of motion as antiparallel [51, 52], while
Governale and Zülicke assigned them as parallel [50, 62]. In
fact, due to the spin-orbit mixing, the spins of RA and RB
are in general neither exactly parallel nor exactly antiparal-
lel. The relative orientation between these two spins depends
on the strengths of the spin-orbit coupling and the transverse
confinement, as well as the chemical potential.

To demonstrate it, in Fig. 3 we plot the µ dependence of
the spin expectation values 〈Sy〉 with respect to the transverse
wave functions of the four labeled branches. Similar to the
band distortion, the spin orientation also shows strong µ de-
pendence. Upon increasing µ, the spins of RA and RB evolve
from nearly antiparallel close to the bottom of the lowest sub-
band, to not very well aligned when approaching the bottom of
the upper subband. The crossover between these two regimes
occurs at µ∗, where the expectation values 〈RB |Sy|RB〉 and
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〈LB |Sy|LB〉 vanish. As a result, the two sets of seemingly
contradicting references (Refs. [51, 52] and Refs. [50, 62]) can
be reconciled–whether the former or the latter gives a better
description depends on which parameter regime we are look-
ing at. Therefore, to investigate the strong-interaction regime
in Ref. [40], which corresponds to the low-µ regime in Fig. 2,
it is more appropriate to consider the scenario described in
Refs. [51, 52].

After examining the parameter dependence of the spin ori-
entation, we discuss the implication of the distinct spin-state
assignments in Refs. [50–52, 62] on our analysis. To proceed,
we denote the spin states of the time-reversal pairsRA andLA
as σ =↑ and ↓, respectively. Similarly, the other pairs RB and
LB can be labeled as σ′ =↑′ and ↓′, respectively. As men-
tioned above, there is in general no relation between σ and
σ′. Concerning transport properties, backscattering on charge
impurities is feasible only between counter-propagating elec-
trons with nonzero spinor overlap. Since the spin assignment
σ = σ′ in Refs. [50, 62] corresponds to a helical channel,
it is immune against elastic single-particle backscattering on
charge impurities. To facilitate backscattering of electrons
in a helical channel, an alternative mechanism has to be in-
volved, which may arise from broken time-reversal symmetry,
higher-order scattering, or inelastic process (for example, see
Refs. [64, 65] and references therein). In the present work,
however, since we consider charge impurities as the dominat-
ing mechanism responsible for the transport, only backscat-
tering processes between two non-orthogonal states (that is,
RA ↔ LB and RB ↔ LA) can cause finite resistance. In
consequence, it is more appropriate to consider the spin-state
assignment σ = −σ′ suggested in Refs. [51, 52] for our analy-
sis.5 To further quantify the backscattering strength, we com-
pute the scalar product of two non-orthogonal states in differ-
ent branches for a fixed µ,

PAB ≡ |〈RA|LB〉| = |〈RB |LA〉|, (2)

which is shown in the background color of Fig. 2. In spite of
the misaligned spins, the strength of backscattering between
branches decreases only modestly when the chemical poten-
tial is increased.

Based on the above consideration, we are motivated to in-
troduce the following fermion operators for the four branches,

LA → ψL↓, LB → ψL↑, RB → ψR↓, RA → ψR↑, (3)

where we have removed the redundant prime for branch B.
With this electron spin assignment, the energy spectrum can
be linearized and the fields ψrσ can be bosonized in the stan-
dard way [see Eq. (7) below]. The strength of the impurity-
induced backscattering is affected by the spin misalignment,
which influences the prefactors of the conductance and cur-
rent. In our calculation, it can be incorporated through renor-
malized coupling constants by replacing the tunnel amplitude

5 Nonetheless, one may be interested in the spin-orbit effect on the bosonized
model of the helical channel presented in Ref. [62]. In Appendix C, we
analyze the power-law density of states of that model, which turns out to
be weakly dependent on the band distortion.

ttun in Eq. (18) with (assuming that PAB is well above zero)

t2tun → t2tun

(1 + P 2
AB

2

)
, (4)

and the backscattering strength V0 in Eq. (39) with

V 2
0 → V 2

0 P
2
AB . (5)

Nevertheless, the spin misalignment does not affect the uni-
versal scaling exponents that we aim to determine.

In consequence, the distinct Fermi velocities of the two spin
branches are symptomatic for the spin-orbit-induced band dis-
tortion discussed here, with the ratio δv/vF depending on the
specific model used to compute the spectrum. In order to keep
our analysis general, from now on we take δv/vF as a phe-
nomenological parameter quantifying the band distortion ef-
fect. In the bosonized Hamiltonian, this band distortion leads
to a charge-spin mixing term [51, 52], which we present in the
next subsection.

B. Bosonized Hamiltonian

We now present our model based on the bosonization for-
malism [6]. We introduce the Hamiltonian H = H0 + Hso
as a model of a clean spin-orbit-coupled wire. We postpone
the discussion of additional terms induced by impurities to
Sec. III. The first term, H0, describes a standard, spinful Lut-
tinger liquid6

H0 =
∑
ν

∫
~dx
2π

{
uνgν [∂xθν(x)]

2
+
uν
gν

[∂xφν(x)]
2

}
.

(6)

Here, gν is the interaction parameter in the ν sector (with the
index ν ∈ {c, s} referring to the charge and spin sectors, re-
spectively) and uν = vF /gν is the corresponding renormal-
ized velocity with vF defined in Eq. (1). The boson fields
(φν , θν) are connected to the fermion fields through the stan-
dard bosonization formula,

ψrσ(x) =
1√
2πa

eirkF xe
− i√

2
[rφc(x)−θc(x)+rσφs(x)−σθs(x)].

(7)

Here, the Klein factor is omitted, a is the short-distance cut-
off, kF is the Fermi wave vector,7 and the index r ∈ {R ≡
+1, L ≡ −1} refers to the fermion operator describing the

6 Here we assume the wire length to be much longer than any other length
scale, such as Fermi wavelength, thermal length, and average impurity sep-
aration, so that the wire can be regarded as a Luttinger liquid extending over
the entire space. Moreover, in such a long wire the g1 backscattering term
is renormalized to a vanishing contribution to the effective action for any
repulsive interaction [52], so we neglect the g1 term here.

7 Similar to the definition of vF , the parameter kF becomes the average
of the Fermi wave vectors in the two spin branches when the spin-orbit
coupling is included.
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right- and left-moving particle, respectively. The boson fields
satisfy the following commutation relation [6],

[φν(x), θν′(x
′)] = i

π

2
sign(x′ − x)δνν′ . (8)

Equation (6) itself describes a system in which the spin-orbit-
induced band distortion is absent, and reveals the separation
of the charge and spin sectors, the hallmark of the standard
Luttinger liquid. Throughout this article, we will constantly
compare the known formula derived from Eq. (6) with our
results including the influence of the band distortion.

The term Hso incorporates the band distortion induced by
the spin-orbit coupling [49, 51, 52]

Hso =δv

∫
~dx
2π

{
[∂xφc(x)] [∂xθs(x)]

+ [∂xφs(x)] [∂xθc(x)]
}
, (9)

as a mixing between the charge and spin sectors. As demon-
strated in Fig. 3, the typical values of δv are small compared
to the averaged Fermi velocity vF .

Since the Hamiltonian H0 + Hso is quadratic in the boson
fields, it can be diagonalized by using new boson fields,(

φ′s(x)
θ′c(x)

)
=

(
cos θ −g0 sin θ
1
g0

sin θ cos θ

)(
φs(x)
θc(x)

)
, (10a)(

φ′c(x)
θ′s(x)

)
=

(
cos θ g0 sin θ
− 1
g0

sin θ cos θ

)(
φc(x)
θs(x)

)
,(10b)

with the parameters

g0 =

√
2gcgs√
g2c + g2s

, (11a)

θ =
1

2
arctan

(
δv

vF

√
2gcgs

√
g2c + g2s

g2s − g2c

)
. (11b)

It can be checked that these new boson fields satisfy the com-
mutation relation (8) upon replacing the fields (φν , θν) →
(φ′ν , θ

′
ν). In terms of the new fields, the Hamiltonian reads

H =
∑
ν

∫
~dx
2π

{
u′νg
′
ν [∂xθ

′
ν(x)]

2
+
u′ν
g′ν

[∂xφ
′
ν(x)]

2
}
,

(12)

where the modified interaction parameters and velocities by
the spin-orbit coupling are given by

g′c =
gcg0
gs

[
g2s − (g20 + g2s) sin2 θ

g20 − (g20 + g2c ) sin2 θ

]1/2
, (13a)

g′s =
gsg0
gc

[
g2c − (g20 + g2c ) sin2 θ

g20 − (g20 + g2s) sin2 θ

]1/2
, (13b)

and

u′c =
uc

g0gs cos(2θ)

[
g20 − (g20 + g2c ) sin2 θ

]1/2
×
[
g2s − (g20 + g2s) sin2 θ

]1/2
, (13c)

u′s =
us

g0gc cos(2θ)

[
g20 − (g20 + g2s) sin2 θ

]1/2
×
[
g2c − (g20 + g2c ) sin2 θ

]1/2
, (13d)

respectively. In the absence of spin-orbit coupling (that is,
when δv, θ → 0), we recover the limit (g′c, g

′
s, u
′
c, u
′
s) →

(gc, gs, uc, us), as expected. The above formulas quantify the
effects of the band distortion, Eq. (9), on the interaction pa-
rameters and velocities. For fixed δv, the parameters θ and
g0 decrease with a decreasing gc. Therefore, g′ν approaches
its value at zero spin-orbit coupling (gν) when gc approaches
zero. As a result, the modification of the interaction parame-
ters by the band distortion is smaller for more strongly inter-
acting wires.

For a moderate strength of the interaction, since the modi-
fied interaction parameters enter the exponents of the correla-
tion functions, we expect to see influence on observable quan-
tities. In particular, we are interested in the charge transport of
a spin-orbit-coupled wire for arbitrary strength of interaction.
Since the ballistic conductance of a clean spin-orbit-coupled
system displays no signature for a Luttinger liquid [52], as
originally found for systems without spin-orbit coupling [7–
9], in the following we seek for signatures in the presence of
impurities.

III. TRANSPORT PROPERTIES IN THE PRESENCE OF
VARIOUS IMPURITIES

We aim at finding out how the charge-spin mixing term in
Eq. (9) influences the transport properties of the system. To
this end, we compute the current and/or the differential con-
ductance of the system described by Eq. (12) in the presence
of various types of impurities illustrated in Fig. 1. We consider
a wire adiabatically connected to the leads, a common as-
sumption as in, e.g., Refs. [8, 14, 15, 66, 67]; for the effect of
an abrupt contact in a microscopic model, see Refs. [68, 69].

A. Strong impurities–tunnel barriers

We begin with an isolated strong impurity and model it as
a weak tunnel barrier. Assuming that the barrier is located at
the origin, the two sides of the barrier are described by

H1 =
∑
ν

∫ 0

−∞

~u′1νdx
2π

{
g′1ν [∂xθ

′
1ν(x)]

2
+

[∂xφ
′
1ν(x)]

2

g′1ν

}
,

(14a)

H2 =
∑
ν

∫ ∞
0

~u′2νdx
2π

{
g′2ν [∂xθ

′
2ν(x)]

2
+

[∂xφ
′
2ν(x)]

2

g′2ν

}
,

(14b)

obtained by generalizing Eq. (12) to possibly different pa-
rameters on the two sides. We include an additional index
j ∈ {1, 2} to label the semi-infinite subsystem on the left and
right side of the barrier, respectively. The two subsystems are
connected through a tunneling process described by

Htun = −ttun
∑
σ

c†1σc2σ + H.c., (15)
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where ttun is the tunnel amplitude and cjσ is the fermion op-
erator with spin σ ∈ {↑, ↓} at x = 0 in the left (j = 1) or
right (j = 2) side. It is related to the right- and left-movers in
Eq. (7) by

cjσ = ψjRσ(0) + ψjLσ(0), (16)

where we generalize the field in Eq. (7) to ψjrσ by including
the subsystem index j.

The tunnel current through the barrier depends on whether
the barrier is located near the boundary8 or in the bulk of the
wire. When it is near the boundary, the barrier corresponds

to a junction between a Luttinger liquid wire and a Fermi-
liquid lead. In this case, one side of the barrier (say, for x <
0) is described by the parameters of a lead with negligible
interaction9 such that (g′1c, g

′
1s) = (1, 1), whereas on the

other side (for x > 0) the wire parameters are (g′2c, g
′
2s) =

(g′c, g
′
s). When the barrier is in the bulk of the wire, on the

other hand, the barrier corresponds to a junction between two
Luttinger liquids. Therefore, bothH1 andH2 have parameters
(g′1c, g

′
1s) = (g′2c, g

′
2s) = (g′c, g

′
s). In the following, we first

keep general parameters for the two subsystems j, and specify
them later.

To the leading order, the tunnel current through the barrier
is given by [70, 71]

I =
et2tun
~2

∑
σ

∫ ∞
0

dt
{
e−ieV t/~

〈[
c†1σ(t)c2σ(t), c†2σ(0)c1σ(0)

]〉
− eieV t/~

〈[
c†2σ(t)c1σ(t), c†1σ(0)c2σ(0)

]〉}
, (17)

with the elementary charge e, the reduced Planck constant ~,
and the voltage difference V between the two sides of the bar-
rier. Here, the notation [· · · , · · · ] is the commutator and 〈· · · 〉
is the average with respect to the unperturbed action [before
introducing Eq. (15)]. It is convenient to write Eq. (17) as

I =− 2et2tun
~2

∑
σ

Im
[
χret
σ (−eV/~)

]
, (18)

with Im[· · · ] being the imaginary part and the following cor-
relation functions,

χret
σ (ω) ≡ −i

∫ ∞
0

dt eiωt
[
χσ(t)− χσ(−t)

]
, (19a)

χσ(t) ≡
〈
c†1σ(t)c1σ(0)

〉
1

〈
c2σ(t)c†2σ(0)

〉
2
, (19b)

where 〈· · · 〉j is the average corresponding to Hj in Eq. (14).
The single-particle equal-space correlation function in the

above formula is defined at the boundary of the Luttinger liq-
uid. To take the boundary into account properly, we treated
it along the lines of Ref. [6], as presented in Appendix A. At
finite temperature T , the single-particle correlation function is〈
c†jσ(t)cjσ(0)

〉
j

=
1

2πa

∑
r=±

[ πkBT/∆a

i sinh(πkBTt/~)

]βjrσ+1

,

(20)

with the Boltzmann constant kB and the bandwidth ∆a ≡
~vF /a. The exponent βjrσ, given in Eq. (B1), corresponds to

8 We stress that the “boundary (end) barrier” may be located close to, but not
necessarily precisely at, the wire end, as discussed in Refs. [16, 40].

9 For (g1c, g1s) = (1, 1), we get (g′1c, g
′
1s) = (1, 1) for arbitrary value

of spin-orbit coupling. Our results therefore include the possibility that the
strength of spin-orbit coupling is different in the wire and in the Fermi-
liquid lead.

the density of states at the boundary of the subsystem j. Plug-
ging the above formula into Eq. (19), with some algebra and
approximations presented in Appendix B, we get the current-
voltage curve at finite temperature as

I ∝ Tα+1 sinh

(
eV

2kBT

) ∣∣∣∣Γ(1 +
α

2
+ i

eV

2πkBT

)∣∣∣∣2 ,
(21)

with the gamma function Γ(x). The current-voltage relation
has the same form as in Ref. [16] except for a parameter mod-
ified by the spin-orbit coupling,

α = α1 + α2. (22)

The explicit form of αj depends on the density of states on
the two sides of the barrier and thus the location of the barrier,
which will be specified later.

So far we have considered a wire with a single barrier which
causes a voltage drop V . As discussed in Ref. [41], assuming
that there are Nb independent barriers10 in the wire, each of
which causes a similar voltage drop with V being the bias
voltage across the entire wire, Eq. (21) is valid upon replacing
V → V/Nb. Here, the barrier number Nb corresponds to the
parameter γ = 1/Nb in Refs. [40, 41]. As a result, it is possi-
ble to experimentally determine the number of the barriers in
the wire through the current-voltage characteristics.

Before specifying the barrier type to obtain the exponent
in Eq. (22) in terms of the parameters in Eqs. (11) and (13),
we make four remarks on Eqs. (21)–(22). First, the current-
voltage curve exhibits a universal scaling behavior, analogous
to the zero spin-orbit coupling case [16]. Namely, the rescaled
current, I/Tα+1, is a function of the ratio V/T . Therefore,

10 See, however, Ref. [72] for calculations beyond this assumption.
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the curves I/Tα+1 plotted versus V/T for various bias volt-
ages and temperatures collapse onto a single curve.

Second, in addition to the full dependence on the tem-
perature and bias voltage, the asymptotic behavior of the
(differential) conductance11 G ≡ dI/dV may be of inter-
est. In the eV � kBT regime, Eq. (21) gives the linear-
response conductance with a power-law temperature depen-
dence, whereas in the opposite limit we find a nonlinear
current-voltage curve; the detailed discussions on the asymp-
totic behavior of Eq. (21) are presented in Appendix B. The
behavior in these limits can be summarized as

G ≡ dI

dV
∝
{
Tα, for eV � kBT,
V α, for eV � kBT,

(23)

that is, a power-law conductance with the identical exponent
α in the high-temperature and high-bias regimes.

Third, the value of α, which parametrizes the universal scal-
ing relation Eq. (21), depends on the interaction parameters,
so that the current-voltage curve can be used to extract the
strength of the electron-electron interaction in the wire. Such
characterization, however, strongly depends on the location of
the barrier, as discussed below.

Finally, it may be tempting to guess the parameter α in
Eq. (22) using the corresponding form in the absence of
the spin-orbit coupling. Namely, one may naively replace
(gc, gs)→ (g′c, g

′
s) in the following expressions [11–13]

αend(δv = 0) =
1

2gc
+

1

2gs
− 1, (24a)

αbulk(δv = 0) =
1

gc
+

1

gs
− 2, (24b)

for boundary and bulk barriers, respectively. Such a replace-
ment would, however, have given an incorrect result. The rea-
son can be traced back to the fact that the tunnel Hamiltonian
is written with the original fermions. When expressing these
fermions in terms of the new fields φ′ν and θ′ν , additional co-
efficients arise from the transformation from the fields φν and
θν into the new ones using Eq. (10). As a result, α as a func-
tion of g′c and g′s has a different functional than Eqs. (24), as
we now demonstrate.

Let us consider the boundary barrier, so that there is a non-
interacting lead to the left (j = 1) and a spin-orbit-coupled
Luttinger liquid to the right (j = 2) of the barrier, as illus-
trated in Fig. 1(a). With the exponent of the single-particle
correlation function αj derived in Appendix B, we obtain the
current-voltage curve Eq. (21), with α given by

αend =
1

2

(
1

g′c
+

1

g′s

)(
cos2 θ + g20 sin2 θ

)
− 1. (25)

It goes over to Eq. (24) in the limit of δv, θ → 0.

11 In the presence of the strong impurities (tunnel barriers), the resistance con-
tribution from the barriers dominates over the contact resistance between
the lead and the wire. We therefore neglect the latter and evaluate the wire
conductance as the derivative of Eq. (21).

We now turn to the case in which the tunnel barrier is lo-
cated in the bulk of the wire. The tunneling process corre-
sponds to a particle transiting from the boundary of a Lut-
tinger liquid into the boundary of the other, as illustrated in
Fig. 1(b). It gives rise to a current-voltage curve of the form
of Eq. (21) again, but with a different exponent,12 namely

αbulk =

(
1

g′c
+

1

g′s

)(
cos2 θ + g20 sin2 θ

)
− 2. (26)

Again, Eq. (24) follows for δv, θ → 0. Comparing to Eq. (25),
we see that αbulk is twice of αend. The exponent can be ex-
panded in series of sin θ. In the leading order, the spin-orbit-
induced change is

αbulk − αbulk(δv = 0) ≈ − (gc + gs) sin2 θ

4g2cg
2
s(g2c + g2s)

×
[
(g2c − g2s)2 + 4gcgs

(
g2c + g2s − 2g2cg

2
s

)]
. (27)

For gc not close to gs, we can further express it in terms of the
intrinsic interaction and band distortion parameters. We get,
up to second order in δv/vF ,

αbulk − αbulk(δv = 0)

≈ −δv
2(gc + gs)

8v2F

[
1 +

4gcgs
(g2c − g2s)2

(
g2c + g2s − 2g2cg

2
s

)]
.

(28)

For gc close to gs (including the noninteracting limit), on the
other hand, the coefficient of the above expression diverges, so
the approximation is inaccurate close to this limit. Nonethe-
less, Eq. (28) is a good approximation when the electron-
electron interaction is sufficiently strong, say for gc > 0.7
and gs = 1.

To demonstrate how Eqs. (25) and (26) depend on the band
distortion, we plot in Fig. 4 the gc dependence of the δv-
induced change ∆αbulk ≡ αbulk − αbulk(δv = 0) for sev-
eral values of δv/vF , as well as the zero-spin-orbit value of
the exponent αbulk.13 As shown in Fig. 4(a), the parameter
αbulk(δv = 0) [see Eq. (24)] increases with a decreasing gc.
In other words, the suppression of the power-law conductance
at low energies is stronger for systems with stronger interac-
tion, a feature of the standard Luttinger liquid [11, 12]. For
a nonzero δv, there is a non-monotonic change in αbulk, as
shown in Fig. 4(b). For parameters of Ref. [40], the small
value of δv/vF > 0.1 leads to negligible changes ∆αbulk.
We include also larger values of δv/vF , which are relevant
for nanowires with weaker transverse confinement or stronger
spin-orbit coupling. However, even with an exaggerated value
of δv/vF = 0.6, one can see that the change ∆αbulk for small

12 Not to be confused with the exponent corresponding to the wire bulk den-
sity of states, relevant for tunneling into the bulk of the Luttinger liquid,
considered in some references, such as Ref. [41].

13 The discussion in this paragraph is valid for αend too, since αbulk =
2αend for any value of δv including zero.
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FIG. 4. (a) Interaction parameter (gc) dependence of the bulk pa-
rameter (αbulk) for gs = 1 and δv = 0. The parameter αbulk or
αend characterizes the current-voltage curve Eq. (21) and the power-
law conductance given in Eq. (23) for a bulk or end barrier, where
the subscripts specify the barrier types illustrated in the inset, corre-
sponding to Panels (a) and (b) of Fig. 1. The associated parameter
αend (αbulk) is given in Eq. (25) [Eq. (26)]. These two are related
to each other by αbulk = 2αend. (b) Interaction parameter (gc) de-
pendence of the change (∆αbulk) due to the spin-orbit-induced band
distortion δv/vF for gs = 1. The inverse of αbulk from Panel (a), is
plotted in gray.

gc is small compared to its zero-spin-orbit value [the oppo-
site value of αbulk(δv = 0) is plotted in Fig. 4(b) for com-
parison]. It means that in the strong-interaction regime even
very strong band distortion leads to negligible effects on the
current-voltage curves. On the other hand, in the moderate-
interaction regime where the band distortion does modify the
parameters, αbulk decreases (rather than increases) upon in-
creasing the degree of the band distortion. These features
were the main argument for our conclusion in Ref. [40] that
the large extracted α values from the experimental data in-
deed reflect the strong electron-electron interaction in the sys-
tem, instead of arising from strong spin-orbit coupling of InAs
nanowires.

Here, we additionally point out that, in general, the change
∆α of the parameter can be sizable compared to its zero-spin-
orbit value α(δv = 0). As an example, for δv/vF = 0.1 and
gc = 0.9 we obtain ∆α/α(δv = 0) ≈ −27 %, which could
be observable. As displayed in Fig. 4, for gc even closer to

unity, the magnitude of the correction can be comparable with
the zero-spin-orbit value, resulting in a vanishing exponent.
This feature implies that, for weakly interacting systems, the
spin-orbit coupling can quench the transport signature for a
Luttinger liquid subject to tunnel barriers. Overall, we expect
that the band-distortion effects found here become most sig-
nificant in the moderate-interaction regime or even weak-(but
finite-)interaction regime.

We now employ an alternative, renormalization-group
(RG), approach [6, 11, 12] to compute the conductance. To
this end, we derive the RG flow equation for the tunnel ampli-
tude, which is related to the scaling dimension of the equal-
space correlation function at the origin. Following a similar
procedure as presented in Appendixes A and B, we get

dt̃(`)

d`
= −1

2

(
α1 + α2

)
t̃(`), (29)

with the dimensionless tunnel amplitude t̃(`) ≡
ttun(`)/∆a(`) and dimensionless length scale defined
through a(`) = a(0)e`. Since for repulsive interaction
the parameter α1 + α2 is positive, the tunnel amplitude
flows to zero, implying an insulating phase at low energies.
However, to get the relevant solution, the RG flow equations
should be stopped at a scale `∗ associated with the shorter of
ln[∆a/(kBT )] and ln[∆a/(eV )]. The conductance through
the tunnel barrier is obtained by integrating the RG flow up to
the scale `∗, leading to

G ∝ 2e2

h

[
t̃(`∗)

]2 ∝ [Max(eV, kBT )
]α1+α2

, (30)

which holds for both types of barriers.
We now specify the barrier type. For a boundary barrier,

the conductance is given by

Gend(T, V ) ∝
{
Tαend , for eV � kBT,
V αend , for eV � kBT,

(31)

which is consistent with both the high-temperature and the
high-bias behavior of Eq. (21). Similarly, for a tunnel barrier
in the bulk, we get

Gbulk(T, V ) ∝
{
Tαbulk , for eV � kBT,
V αbulk , for eV � kBT,

(32)

again consistent with the tunnel current. The result that the
RG approach gives the same power-law conductance as the
tunnel current approach should not be surprising: both of them
are essentially calculating the density of states at both sides of
a barrier. Compared to the tunnel current, the RG approach
gives only the asymptotic behavior of the conductance (in cer-
tain limits and without prefactors). On the other hand, it can
be used to compute the conductance in the case of weak im-
purities, where the other method is not feasible.

B. Weak impurities–potential disorder

We now consider the transport properties in the presence
of weak impurities, each of which acts as a backscattering
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center. Accordingly, we retain Eq. (12) for the entire wire.
Let us consider first one of such impurities at the origin, as
illustrated in Fig. 1(c). We model it as generating a delta-like
potential

Vimp(x) = V0δ(x), (33)

with the strength V0 and the Dirac delta function δ(x). By
coupling to the charge density, it leads to the following term,

Himp =
∑
rr′σ

∫
dx Vimp(x)

[
ψ†rσ(x)ψr′σ(x)

]
≈ 2V0

πa
cos[
√

2φc(0)] cos[
√

2φs(0)], (34)

where in the second line we keep only the backscattering term,
as the forward scattering does not affect the conductance. The
above term contributes to the second-order terms of the effec-
tive action in V0 [6, 11, 12], from which we derive the RG
flow equation for the backscattering strength,

dṼ0(`)

d`
=
αimp

2
Ṽ0(`). (35)

In the above, we introduce the dimensionless coupling con-
stant Ṽ0(`) ≡ V0(`)/∆a(`) and the parameter

αimp = 2−
[
cos2 θ(g′c + g′s) + g20 sin2 θ

(
1

g′c
+

1

g′s

)]
.

(36)

In the absence of spin-orbit coupling, it becomes αimp(δv =
0) = 2− gc− gs, consistent with Refs. [11, 12, 14]. Up to the
second order in sin θ, we get

αimp − αimp(δv = 0)

≈ − sin2 θ(gc + gs)(gc − gs)4

4g2cg
2
s(g2c + g2s)

(
g2c + g2s + 3gcgs

)
. (37)

In terms of the intrinsic parameters, we derive the following
approximate formulas for the change of αimp,

αimp(δv)− αimp(0) ≈ − δv
2

8v2F

(gs − gc)2

gc + gs

(
g2c + g2s + 3gcgs

)
.

(38)
In contrast to Eq. (28), the divergence upon expanding
sin2 θ ∝ (gc − gs)−2 is eliminated by the factor (gc − gs)4 in
Eq. (37). As a result, the above approximation holds also for
gc ≈ gs, including the noninteracting limit.

We now comment on the RG flow equation (35). For repul-
sive interaction we have αimp > 0, so that the backscattering
strength grows under the RG flow. Therefore, a single weak
impurity gives rise to the conductance correction δG1, with

δG1

G0
∝ −Ṽ 2

0 (`∗) ∼ −Ṽ 2
0 (0)e`

∗αimp , (39)

with the conductance quantum G0 = 2e2/h. The scale `∗,
again, depends on other parameters, which we specify later.

Before moving on to the discussion of the many-impurity
case, we have a few comments on the above result. First, with

the RG approach we construct two flow equations–one for the
tunnel amplitude t̃ derived for a tunnel barrier and the other
for the backscattering strength Ṽ0 derived for a weak impu-
rity. For repulsive interaction, the former equation [Eq. (29)]
indicates that the tunnel amplitude is RG irrelevant and flows
toward zero, so the two semi-infinite Luttinger liquids become
isolated at low energies. The same conclusion follows from
Eq. (35), where the backscattering strength increases under
the RG flow, so that the conductance is suppressed by repul-
sive interaction.14 As a consequence, the RG approach pro-
vides consistent results for the two complementary limits of
impurities, as in the absence of the spin-orbit coupling [4, 6].

Second, in contrast to a standard Luttinger liquid, the pres-
ence of the spin-orbit coupling defies the duality mapping be-
tween a bulk barrier and a weak impurity. Namely, in the ab-
sence of the spin-orbit coupling, the corresponding RG flow
equations [see Eqs. (29) and (35)] can be mapped into each
other upon swapping the parameters gν ↔ 1/gν [12]. In a
spin-orbit-coupled wire, however, such a duality mapping is
absent.

We now demonstrate how a power-law conductance can
arise in the scenario of many weak impurities, relevant for a
wire much longer than the average impurity separation. We
assume that these impurities can be treated as independent
(see Appendix D for a discussion of this assumption) and each
of them causes a conductance correction as computed above.
Namely, the RG flow for Ṽ0 is integrated up to the scale `∗,
leading to the wire conductance in the presence of a single
weak impurity

G0 + δG1 = G0 − c1G0

[ ∆a

Max(kBT, eV )

]αimp

, (40)

with a dimensionless constant c1 independent of temperature
and voltage. From Eq. (40), we obtain the resistance induced
by a single impurity,

δR1 ≈ −
δG1

G2
0

∝
[
Max(kBT, eV )

]−αimp
. (41)

If there are Nimp impurities in the wire, adding their resis-
tances in series gives the total resistance as 1/G0 +NimpδR1

with the lead-wire contact resistance 1/G0. For large Nimp,
the total resistance (defined as 1/Gimp) is dominated by the
contribution from the impurities (so that the contact resistance
is negligible), leading to

Gimp(T, V ) ∝
{
Tαimp , for eV � kBT,
V αimp , for eV � kBT,

(42)

14 A related calculation was done in Ref. [52], which studied the conduc-
tance correction due to a single weak impurity for a spin-orbit-coupled
wire. There, it was found that the conductance correction can always be
neglected because their corresponding αimp is negative. The discrepancy
comes from a different form of the electron-electron interaction considered
there (see the discussion in Ref. [52] and also in Appendix A). In contrast,
here we find that V0 is a relevant perturbation for repulsive interaction. We
note that, in the limit of zero spin-orbit coupling, our results recover those
in Refs. [6, 11, 12].
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FIG. 5. (a) Interaction parameter (gc) dependence of the parameter
(αimp) for gs = 1 and δv = 0. The inset illustrates a weak impu-
rity corresponding to Fig. 1(c). Many such weak impurities cause a
power-law conductance [see Eq. (42)] with the exponent αimp de-
fined in Eq. (36). (b) Interaction parameter (gc) dependence of the
change (∆αimp, multiplied by 100 for clarity) of the exponent αimp

with respect to its value for δv = 0 for gs = 1 and several values of
δv/vF .

which is a power law with the same exponent in the high-
temperature and high-bias regimes.15

Importantly, the two power laws in the opposite limits with
the same exponent can be grasped by a single function using
Eq. (21) upon replacing the parameter α by αimp. In other
words, we take Eq. (21) as an interpolation formula valid for
arbitrary bias and temperature. It can be then used as the fit-
ting curve of data displaying universal scaling. In this many-
weak-impurity scenario, the variable V denotes the bias volt-
age across the entire wire. In contrast to the tunnel barrier sce-
nario, where the replacement V → V/Nb in Eq. (21) is nec-

15 We note that the same power-law conductance can be obtained by start-
ing with many impurities which are not independent, as discussed in Ap-
pendix D. Such extended disorder generates random backscattering po-
tential and causes resistance, which can be calculated upon applying the
replica method. However, assuming that the renormalization of the inter-
action parameters due to the extended disorder is negligible, the power-law
resistance will be the same as the isolated impurities considered here [6].

FIG. 6. Transition of the power-law conductance. The main panel
shows the difference (αend − αimp) as a function of the interaction
parameter (gc) for gs = 1 and δv/vF = 0.2. The exponents αend

and αimp are given in Eqs. (25) and (36), respectively. The point at
which αend = αimp (denoted as g∗c ) indicates a transition between
the regimes with different power-law conductance. For gc < g∗c
(blue shaded region), the power-law conductance is characterized by
αend, whereas for gc > g∗c it is characterized by αimp. The inset
shows the dependence of g∗c value on δv/vF .

essary for multiple barriers, here Eq. (21) remains unchanged
regardless of the number of weak impurities.

In Fig. 5, we plot the exponent αimp at zero spin-orbit cou-
pling and its change ∆αimp for several values of δv/vF as
functions of gc. Similar to Fig. 4, the exponent αimp for
δv = 0 [see Fig. 5(a)] increases with a larger strength of the
interaction (that is, a smaller gc value), and the band distor-
tion can only reduce αimp [see Fig. 5(b)]. In comparison with
Fig. 4, on the other hand, the effect of the band distortion on
the exponent αimp is quantitatively much weaker. Moreover,
in contrast to Fig. 4, where αend and αbulk are unbounded
in the strong-interaction regime, the corresponding parameter
for weak impurities is bounded in the range αimp ∈ [0, 1].
Therefore, it is possible to rule out weak impurities as the
dominant resistance contribution if the α value extracted from
the current-voltage measurements exceeds unity. Further, if
both types of impurities are present, the resistance due to tun-
nel barriers dominates weak impurities for strong interaction,
while the relation is opposite for weak interaction. Therefore,
we predict a transition of the power-law conductance by vary-
ing electron-electron interaction, as discussed below.

C. Coexisting strong and weak impurities

Here we discuss the scenario in which impurities of all the
types are present. Provided that the effects of the tunnel bar-
riers and weak impurities on the resistance do not interfere
each other so that each resistance source can be treated sep-
arately as in Secs. III A and III B, their contributions can be
added into the total resistance of the entire wire. In general,
the three resistance sources [corresponding to Eqs. (31), (32),
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and (42)] enter the total resistance as

Rtot ∝
h

2e2

∑
n

cn
[ ∆a

Max(eV, kBT )

]αn
, (43)

where n ∈ {end, bulk, imp} indicates the resistance source.
In the above, cn’s are the corresponding prefactors. Since in
typical experiments we have ∆a � eV, kBT , the total re-
sistance of a wire is dominated by the contribution with the
largest exponent. Therefore, for any repulsive interaction, as
long as there exists a tunnel barrier in the bulk of the wire, the
charge transport of the wire is characterized by the current-
voltage curve and the dc conductance with αbulk.

Interestingly, if there exist both boundary barriers and weak
impurities, but no bulk barriers, the dominant exponent de-
pends on the strength of the electron-electron interaction. In
Fig. 6, we plot the difference between the exponents repre-
senting the boundary barrier and the weak impurity as a func-
tion of the interaction parameter gc for the value of δv/vF =
0.2. The sign of the difference (αend − αimp) then indicates
whether the boundary barriers or the weak impurities domi-
nate. The transition happens at a point denoted as g∗c . In the
strong-interaction (gc < g∗c ) regime, the current-voltage curve
and the dc conductance are characterized by αend, whereas
in the weak-interaction (gc > g∗c ) regime, they are charac-
terized by αimp. The value of g∗c weakly depends on the
strength of the spin-orbit coupling (see the figure inset). For
δv/vF = 0.2, we find g∗c ≈ 0.49, very close to g∗c = 1/2
for δv/vF = 0. Concluding, the transport properties of a Lut-
tinger liquid strongly depend on the types and locations of the
impurities.

IV. DISCUSSION

A. Effects of multiple subbands

Having analyzed wires with a single occupied subband, we
now look at the case with the Fermi energy intersecting mul-
tiple transverse subbands. In the absence of spin-orbit cou-
pling, the corresponding problems were solved for tunnel bar-
riers [13] and weak impurities [15]. Instead of repeating sim-
ilar calculations, here we discuss what we expect for a spin-
orbit-coupled system.

In the tunneling regime, the current through a barrier de-
pends on the density of states on the two sides of the barrier.
For each subband, the power-law density of states is character-
ized by an effective exponent, which can be obtained by solv-
ing an eigenvalue problem as in Ref. [13]. The tunneling cur-
rent through a multi-subband wire is determined by the sum
of the currents through each subband. As a result, the total
current is dominated by the subband with the largest conduc-
tance, or, equivalently, the smallest effective exponent among
the subbands. In the absence of the spin-orbit coupling, the
smallest exponent corresponds to the lowest transverse sub-
band [13]. Since, based on our single-subband results, we ex-
pect that the spin-orbit coupling leads to small modifications
of the exponents, we expect that the total tunnel current will

show universal scaling with an exponent corresponding to the
lowest subband.

Weak impurities, on the other hand, induce backscattering
in the highest occupied subband [15]. It leads to a conduc-
tance correction with an exponent, which can be computed
as in Ref. [15]. Again, based on our single-subband results,
we expect little effects of the spin-orbit coupling on this ex-
ponent. Provided that there are many weak impurities, their
resistance contributions dominate the contact resistance with
the leads, leading to a power-law conductance characterized
by the same exponent.

For both tunneling and disorder regimes, we expect that the
effective exponents reduce to zero when the subband number
becomes infinity, thereby recovering the Fermi-liquid behav-
ior in higher dimensions. As pointed out in Ref. [15], we ex-
pect that the Luttinger liquid behavior can be observable for
wires in which not many subbands are populated.

B. Transport signatures for a Luttinger liquid

Here, we comment on the robustness of the Luttinger-liquid
behavior displayed in the charge transport of quantum wires.
The power-law resistances induced by various types of im-
purities, which we obtain from the RG analysis, allows us to
determine the dominant contribution from their corresponding
exponents, assuming these resistance sources are independent.
As discussed above, when there are multiple resistances due
to barriers or impurities in series, the current and power-law
conductance of the wire are characterized by the largest ex-
ponent α among the constituent resistance sources. On the
other hand, when there are multiple subbands or wires in par-
allel, the total current and power-law conductance are charac-
terized by the smallest α. In any case, the universal scaling
behavior can be observed even for wires in few-transverse-
mode regime [40] and nanotube bundles [41]. Consequently,
the universal scaling behavior persists in rather general sit-
uations [with or without spin-orbit coupling, with (single or
multiple) barriers or disorder potential, in the single- or multi-
mode regime, in a single or multiple wires], providing quite
robust signatures for a Luttinger liquid.

Such signatures provide a useful tool to characterize the
interacting one-dimensional electron systems through their
transport properties. In addition to the effects of spin-orbit
coupling, our work points out that extracting the interaction
strength is complicated by the impurity character in the sys-
tem. In order to make sensible extraction of the interaction
strength, it requires assumptions on the impurity type and lo-
cation. Similar complication has been discussed in the context
of the edge conductance of a two-dimensional topological in-
sulator [73, 74], where both an isolated strong magnetic impu-
rity and many weak magnetic impurities can cause power-law
conductance, though with distinct exponents [64, 65, 73, 75].

Nonetheless, here we find two ways to overcome such com-
plications. First, we point out that the exponent of the power-
law conductance due to weak impurities is bounded, so an
experimental value exceeding this bounded value can rule out
weak impurities as the dominant resistance source. Second,
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TABLE I. Parameters α characterizing the current-voltage curve and the power-law (differential) conductance of a spin-orbit-coupled Luttinger
liquida subject to various types of impurities. The first and second columns give the impurity type and their illustration, respectively. The third
(fourth) column gives the notation (expression) of the corresponding parameter. The fifth (sixth) column gives the corresponding equation
(figure) number. The parameters g′c, g′s, g0, and θ are given in Eqs. (11) and (13).

impurity or defect type illustration notation expression Eq. Fig.

strong impurity (tunnel barrier) near the wire end Fig. 1(a) αend
1
2

(
1
g′c

+ 1
g′s

) (
cos2 θ + g20 sin2 θ

)
− 1 Eq. (25) Fig. 4

strong impurity (tunnel barrier) within the wire Fig. 1(b) αbulk

(
1
g′c

+ 1
g′s

) (
cos2 θ + g20 sin2 θ

)
− 2 Eq. (26) Fig. 4

many weak impurities (potential disorder) Fig. 1(c) αimp 2−
[
cos2 θ(g′c + g′s) + g20 sin2 θ

(
1
g′c

+ 1
g′s

)]
Eq. (36) Fig. 5

a See Table II in Ref. [40] for a summary of the corresponding parameters of various Luttinger liquids without spin-orbit coupling.

by making use of the full current-voltage curve, one can ex-
tract also the barrier number, which can serve as an indicator
of the dominant resistance source. For concreteness, let us
assume that there are two boundary barriers and many weak
impurities coexisting in a wire with δv/vF = 0.2. Even
though both resistance sources lead to Eq. (21) upon replacing
V → V/N , the corresponding curves are quantitatively dis-
tinguishable, with (α,N) → (αend, 2) for boundary barriers
and (α,N) → (αimp, 1) for weak impurities. In addition, as
demonstrated in Fig. 6, the relative strength of their contribu-
tion to resistance changes with the interaction strength, which
can be varied by applying gate voltage. It leads to a transition
of the power-law conductance at the point g∗c ≈ 1/2 (corre-
sponding to α∗ ≈ 1/2). Across the transition point, the expo-
nent changes from αend (for α ? α∗) to αimp (for α > α∗),
whereas the N value changes from two to one at the same
point α∗. Remarkably, such behavior was indeed observed
in Ref. [40]. In conclusion, by fitting the full current-voltage
curve, the extracted barrier number can indicate the dominant
resistance source and can be used for an independent check.

V. SUMMARY

In summary, we theoretically investigate the transport prop-
erties of a spin-orbit-coupled Luttinger liquid in a quasi-one-
dimensional confinement. We calculate the temperature and
bias-voltage dependence of the tunnel current and conduc-
tance subject to various types of impurities. Our main conclu-
sion is that, for realistic strengths of the spin-orbit coupling,
the current-voltage curves follow the universal scaling relation
of a non-spin-orbit-coupled Luttinger liquid with a modified
parameter α. For convenience, we summarize these results in
Table I. Importantly, the spin-orbit coupling leads to mostly
negligible modifications if the electron-electron interaction is
strong. Our findings can be applied to characterize spin-orbit-
coupled quantum wires such as InAs and InSb in order to de-
sign devices for spintronics and topological matter.
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Appendix A: Single-particle correlation function

In this appendix we calculate the single-particle equal-
space correlation function at the origin x = 0,

Grσ(0, t) ≡
〈
ψ†rσ(0, t)ψrσ(0, 0)

〉
, (A1)

where the subscripts r and σ label the right-/left-movers and
up-/down-spins, respectively, and the argument (x, t) is given
by the spatial and real-time coordinates. In terms of the boson
fields [see Eg. (7)], the correlator reads

Grσ(0, t) =
1

2πa

〈
e
i√
2
[rδφc−δθc+rσδφs−σδθs]

〉
, (A2)

where, since we are interested in the equal-space correlator,
we define the following notations for simplicity,

δφν ≡ φν(0, t)− φν(0, 0),

δθν ≡ θν(0, t)− θν(0, 0).
(A3)

Transforming into the diagonalized basis [see Eq. (10)], the
bracket in Eq. (A2) becomes



13〈
Exp

{ i√
2

[
(r cos θ − σ

g0
sin θ)δφ′c + (rσg0 sin θ − cos θ)δθ′c − (rg0 sin θ + σ cos θ)δθ′s + (rσ cos θ +

1

g0
sin θ)δφ′s

]}〉
.

(A4)

The correlator depends on whether we are looking at the
boundary or at the bulk of the wire. The correlator at the
wire boundary behaves differently from the one in the bulk
and needs more caution [6, 11]. On the other hand, it is
straightforward to compute the correlator in the bulk using
Eq. (12), which allows us to obtain the density of states
ρbulkrσ (ε) ∝ εβ

bulk
rσ in the bulk. For a given set of (r, σ), the

exponent is

βbulk
rσ =

g′c
4

(
cos θ − rσ

g0
sin θ

)2

+
(cos θ − rσg0 sin θ)

2

4g′c

+
g′s
4

(
cos θ +

rσ

g0
sin θ

)2

+
(cos θ + rσg0 sin θ)

2

4g′s
− 1.

(A5)

It becomes (gc + gs + 1/gc + 1/gs)/4 − 1 in the absence of
spin-orbit coupling. The bulk density of states ρbulkrσ (ε) can be
probed by scanning tunneling spectroscopy [11, 16, 51, 61].
Before continuing, let us comment on the difference of the
exponent for the single-particle correlation function obtained
here and those in Refs. [51, 52]. The discrepancy arises
from the different form of the electron-electron interaction.
Namely, here we follow Refs. [6, 11], and keep gs = 1 in
the limit of zero spin-orbit coupling. On the other hand, in
Refs. [51, 52] the interaction parameters in the charge and spin
sectors gc and gs are dependent (see the discussion in Sec. IV
there for details [52]), such that they have gs > 1 even in
the absence of spin-orbit coupling. In consequence, these dif-
ferent choices result in distinct exponents of the correlation
functions.

Next, we consider the correlator at the boundary of the wire
by assuming that the Luttinger liquid given by Eq. (12) ex-
tends over semi-infinite space (x > 0) and terminates at the
origin x = 0. To proceed, we use the trick from Ref. [6],
which makes use of chiral boson fields to map the semi-
infinite system onto an infinite system. Specifically, we ex-
press the boson fields in the sector ν as

φ′ν(x, t) =

√
g′ν
2

[
φLν (x, t)− φRν (x, t)

]
, (A6a)

θ′ν(x, t) =
1

2
√
g′ν

[
φLν (x, t) + φRν (x, t)

]
, (A6b)

where φR/Lν are right-/left-moving chiral boson fields. In the
above, we rescaled the fields by the interaction parameters
g′ν such that φR/Lν represent free chiral bosons. These chiral
fields allow us to define

φRν (x, t)→ φ̃∞ν (x, t), (A7a)

φLν (x, t)→ φ̃∞ν (−x, t), (A7b)

where φ̃∞ν is a free chiral boson field defined in a system ex-
tending over the entire one-dimensional space. Finally, we
can reexpress the chiral fields as

φ̃∞ν (x, t)→ θ∞ν (x, t)− φ∞ν (x, t), (A8)

where the fields φ∞ν and θ∞ν are analogous to φ′ν and θ′ν except
that they are free and defined in an infinite space.

Performing the transformations (A6)–(A8), we rewrite the
correlation function as

Grσ(0, t) =
1

2πa

〈
Exp

{ i√
2

[ (rσg0 sin θ − cos θ)√
g′c

(δθ∞c − δφ∞c )− (rg0 sin θ + σ cos θ)√
g′s

(δθ∞s − δφ∞s )
]}〉

, (A9)

where we have introduced the notations δφ∞ν and δθ∞ν analogous to Eq. (A3). Since in the above formula the fields φ∞ν and θ∞ν
are free and defined in an infinite space, their correlation functions can be computed directly, leading to the finite-temperature
correlation function

Grσ(0, t) =
1

2πa

 πakBT/(~vF )

i sinh
(
πkBTt/~

)
(cos θ−rσg0 sin θ)2/(2g′c)

 πakBT/(~vF )

i sinh
(
πkBTt/~

)
(cos θ+rσg0 sin θ)2/(2g′s)

. (A10)

The expression simplifies to

Grσ(0, t) =
1

2πa

 πkBT/∆a

i sinh
(
πkBTt/~

)
βrσ+1

, (A11)

with ∆a ≡ ~vF /a denoting the bandwidth associated with
the short-distance cutoff. The parameter in the exponent is

βrσ =
(cos θ − rσg0 sin θ)

2

2g′c
+

(cos θ + rσg0 sin θ)
2

2g′s
− 1,

(A12)
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which becomes (1/gc + 1/gs)/2 − 1 in the absence of spin-
orbit coupling.

The correlation function at the boundary of the wire,
Eq. (A11), is directly related to the current through a tunnel
barrier, as presented in Sec. III A. In addition, Eq. (A11) al-
lows us to get the density of states at the boundary of the wire
ρendrσ (ε) ∝ εβrσ for a given set of (r, σ), which can be probed
using scanning tunneling spectroscopy [11, 16, 51, 61]. In Ap-
pendix C, the zero-spin-orbit values of the bulk and boundary
exponents [see Eqs. (A5) and (A12)] are plotted in Fig. 7. The
exponent Eq. (A12) is used to derive the RG flow equation for
the tunnel amplitude, as discussed in Sec. III A.

Appendix B: Correlation function and current-voltage
characteristics

In this appendix we present the calculation of the correla-
tion function χret

σ (ω) given in Eq. (19a), which is used to com-
pute the current-voltage characteristics for a wire with a tunnel
barrier. We follow the procedure presented in Appendix A to
obtain two single-particle correlation functions, each of which
corresponds to one of the subsystems in Eq. (14). The result is
given by Eq. (A11), with the exponent Eq. (A12) generalized
in order to incorporate the two subsystems on the two sides of
the barrier. Namely, let us define the exponent corresponding
to the subsystem j,

βjrσ ≡αj + rσδαj , (B1a)

αj ≡

(
1

2g′jc
+

1

2g′js

)(
cos2 θj + g2j0 sin2 θj

)
− 1, (B1b)

δαj ≡

(
− 1

2g′jc
+

1

2g′js

)
gj0 sin(2θj), (B1c)

with the parameters g′jc, g
′
js, gj0, and θj corresponding to

the subsystem j defined in Eq. (14). Introducing the above
notations in Eqs. (A11)–(A12) and plugging the latter into
Eq. (19), we get the sum of four terms (for a given σ). Each
of the four terms can be written as

χret
σ (ω) =

sin(απ/2)

2π2a2

(πkBT
∆a

)α+2

×
∫ ∞
0

dt eiωt
∣∣∣ sinh

(πkBTt
~

)∣∣∣−α−2, (B2)

with the parameter α given by one of the following,

α ∈
{
α1 + α2 + σ(δα1 + δα2), α1 + α2 − σ(δα1 + δα2),

α1 + α2 + σ(δα1 − δα2), α1 + α2 − σ(δα1 − δα2)
}
.

(B3)

These four terms with different α’s can be computed sepa-
rately and then summed up. The integral over time in the sec-
ond line of Eq. (B2) gives the beta function, which can be con-
verted into the gamma function with the relation B(x, y) =

Γ(x)Γ(y)/Γ(x+ y). It gives

Γ(−α− 1)Γ
(

1 + α
2 −

i~ω
2πkBT

)
2Γ
(
− α

2 −
i~ω

2πkBT

) . (B4)

Applying Euler’s reflection formula Γ(1 − z)Γ(z) =
π/ sin(πz) for non-integer z and taking the imaginary part,
we get, for a given α in Eq. (B3),

Im
[
χret
σ (ω)

]
= − 1

8π3a2
~

kBT

(2πkBT

∆a

)α+2

sinh
( ~ω

2kBT

)
× 1

Γ(α+ 2)

∣∣∣∣Γ(1 +
α

2
+

i~ω
2πkBT

)∣∣∣∣2 . (B5)

While the sum of the contributions with distinct α’s does not
produce a single curve, we note that, for realistic values of
δv/vF > 0.1, the deviations δα’s in Eq. (B3) are negligible.
In addition, since both the terms with α + δα and α − δα
contribute to the sum, the leading-order correction in current
caused by the small parameter δα here will be δI(δα) ∝ δα2.
In contrast, the band-distortion-induced change ∆α in the
main text results in the first-order correction δI(∆α) ∝ ∆α.
Since for typical parameters we have δα2 � |∆α|, it allows
us to neglect δα and to approximate α as α1 + α2. As a re-
sult, we can write the sum as Eq. (B5) multiplied by a factor
of 4, with α given in Eq. (22). Finally, inserting Eq. (B5) into
Eq. (18) gives Eq. (21) in the main text. We remark that the ap-
proximation on negligible δα is justified for the experiment in
Ref. [40], which clearly observed the universal scaling behav-
ior of the current-voltage characteristics in InAs nanowires in
spite of presumably strong spin-orbit coupling of the material.

Finally, we demonstrate that the asymptotic behavior of
Eq. (21) in the high-temperature and high-bias regimes are
indeed consistent with the power-law conductance obtained
from the RG approach. In the high-temperature (kBT � eV )
regime, we expand Eq. (21) in powers of V and retain the
leading-order term, resulting in the linear response I ∝ V Tα.
In the high-bias (eV � kBT ) regime, on the other hand,
the following asymptotic form of the gamma function can be
used [76]

lim
|y|→∞

∣∣∣Γ(x+ iy)
∣∣∣ =
√

2π|y|x− 1
2 e−π|y|/2, (B6)

which leads to I ∝ V α+1. We note that there is a factor of π
in the exponential on the right-hand side, which is crucial for
the cancellation of the gamma function and hyperbolic sine
function with different arguments. In summary, the asymp-
totic behavior of Eq. (21) gives the conductance Eq. (23), so
the current-voltage characteristics obtained by computing the
tunnel current is consistent with the conductance derived from
the RG approach.

Appendix C: Density of states of the Governale-Zülicke model

In this appendix we discuss the density of states of the
bosonized model proposed by Governale and Zülicke. We as-
sume that the system parameters are (fine-)tuned to the regime
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in which the electrons have the spin orientation described in
Refs. [50, 62]: In our notation, the spins of RA and LB are
antiparallel and the overlap PAB is zero. In this configura-
tion the wire is helical and immune against backscattering on
charge impurities. Within our model, the Luttinger liquid has
no resistance. Nevertheless, one can inspect the effects of the
spin-orbit coupling on other physical quantities. Here we look
at the density of states.

Upon bosonization using Eq. (7), we get H ′ ≡ H0 + H ′so,
where H0 retains the same form as Eq. (6), with the index
ν ∈ {c, s} now meaning the symmetric and anti-symmetric
combination of the fields involving branch A and B, respec-
tively. In other words, instead of real spin, the pseudospin
index σ now indicates the branch σ ∈ {A,B}. In contrast
to Refs. [51, 52], the charge-spin mixing term now takes the
following form,

H ′so =δv

∫
~dx
2π

[(∂xφc)(∂xφs) + (∂xθc)(∂xθs)] , (C1)

where the coordinates of the fields are suppressed for simplic-
ity.

Diagonalizing the Hamiltonian H ′, we get

H ′ =
∑
ν

∫
~dx
2π

[
u′′νg

′′
ν (∂xθ

′′
ν )

2
+
u′′ν
g′′ν

(∂xφ
′′
ν)

2
]
, (C2)

where the new fields are(
φ′′c
φ′′s

)
=

(
cos θ′ g′0 sin θ′

− 1
g′0

sin θ′ cos θ′

)(
φc
φs

)
, (C3a)(

θ′′c
θ′′s

)
=

(
cos θ′ 1

g′0
sin θ′

−g′0 sin θ′ cos θ′

)(
θc
θs

)
, (C3b)

with the parameters

g′0 =
gc
gs

√
1 + g2s
1 + g2c

, (C4a)

θ′ =
1

2
arctan

(
δv

vF

gcgs
√

(1 + g2s)(1 + g2c )

g2s − g2c

)
. (C4b)

The modified interaction parameters and velocities are related
to the original parameters through

u′′c
g′′c

=
uc
gc

cos2 θ′ +
us

gs(g′0)2
sin2 θ′ +

δv

2g′0
sin(2θ′), (C5a)

u′′s
g′′s

=
us
gs

cos2 θ′ +
uc(g

′
0)2

gc
sin2 θ′ − δvg′0

2
sin(2θ′),

(C5b)

u′′c g
′′
c = ucgc cos2 θ′ + usgs(g

′
0)2 sin2 θ′ +

δvg′0
2

sin(2θ′),

(C5c)

u′′sg
′′
s = usgs cos2 θ′ +

ucgc
(g′0)2

sin2 θ′ − δv

2g′0
sin(2θ′). (C5d)

Following the same procedure as in Appendix A, we compute
the density of states in the bulk and at the end of the wire. For
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FIG. 7. (a) Exponents of the density of states as a function of the
interaction parameter (gc) for gs = 1 and δv = 0. The black (gray)
curve corresponds to the boundary (bulk) exponent β′σ (β′ bulkσ ) given
in Eq. (C7) [Eq. (C6)]. Since we are plotting the zero-spin-orbit
value, these curves are identical to those given in Eqs. (A5) and (A12)
and do not depend on the species r or σ. We therefore neglect the
superscript and the subscript. (b) Interaction parameter (gc) depen-
dence of the change of the boundary exponent (multiplied by 100
for clarity) with respect to its zero-spin-orbit value for gs = 1 and
several values of δv/vF . The curves correspond to the boundary ex-
ponent β′σ given in Eq. (C7), upon taking average over σ = 1 and
σ = −1.

a given σ, the former is given by ρbulkσ (ε) ∝ εβ
′bulk
σ with the

exponent,

β′bulkσ =
g′′c
4

(
cos θ′ +

σ

g′0
sin θ′

)2

+
(cos θ′ + σg′0 sin θ′)

2

4g′′c

+
g′′s
4

(cos θ′ − σg′0 sin θ′)
2

+

(
cos θ′ − σ

g′0
sin θ′

)2
4g′′s

− 1.

(C6)

On the other hand, at the end of the wire, the density of states
becomes ρendσ (ε) ∝ εβ′σ with

β′σ =
(cos θ′ + σg′0 sin θ′)

2

2g′′c
+

(
cos θ′ − σ

g′0
sin θ′

)2
2g′′s

− 1.

(C7)
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The exponents in Eqs. (C6)–(C7) are analogous to Eqs. (A5)
and (A12) of the bosonized model introduced in Refs. [51,
52]. The exponents can be extracted through the density of
states measurement using scanning tunneling spectroscopy.
Their behavior is displayed in Fig. 7. Similar to the stan-
dard Luttinger liquid [11, 16], the suppression of the density
of states is stronger at the end than in the bulk of the wire.
In contrast to the strong dependence on the position of the
probe [see Fig. 7(a)], the spin-orbit-induced change is negli-
gible [see Fig. 7(b)].

Appendix D: An alternative approach for the weak-impurity
analysis

Here we discuss an alternative approach for the analysis in
the weak-impurity regime. In Sec. III B we start our analysis
by treating a weak impurity as an isolated object (referred to
as weak barrier in Ref. [11]), such that it creates a potential
which is nonzero only near x = 0 with the strength V0. Fol-
lowing Ref. [11] to construct the RG flow equation for Ṽ0, we
obtain the exponent αimp of the conductance correction due
to a single impurity. Then, as discussed in Ref. [6], assuming
that the contributions from multiple impurities are additive,

many weak impurities lead to a power-law conductance char-
acterized by the parameter αimp.

Alternatively, one can start with random backscattering po-
tential generated by impurities which are not isolated, as in
Ref. [6]. In that reference, such disorder is named “extended
disorder” or “uniform disorder” and assumed to be of Gaus-
sian type. Then, one can apply the replica method to aver-
age over the disorder and then perform the RG analysis. In
this case, there would be additional RG flow equations for
the interaction parameters gc and gs and velocities, depending
on the disorder strength. The additional RG flow equations
arise because in this case impurities can affect bulk quanti-
ties, in contrast to isolated impurities, which cannot. Impor-
tantly for us, the renormalization of gc, gs due to weak dis-
order is typically negligible, which would lead to the same
power-law conductance in the high-T or high-V regimes as
in the isolated-impurities scenario. As a result, there would
be no significant difference for the power-law conductance,
which is the main focus of this work. We note that, if other
phenomena such as localization are concerned, the “extended
disorder” scenario would better describe the physical picture,
as discussed in Ref. [6]. Nevertheless, to give a better connec-
tion between the strong- and weak-impurity cases, we adopt
the isolated-impurity picture for our discussion throughout the
article.
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lenkamp, J. Schubert, D. Grützmacher, B. Trauzettel, and
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