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Photo-induced force microscopy (PiFM) measures changes in the force between an atomically
sharp tip and the sample under the influence of applied radiation. Several mechanisms contribute
to the overall force, including forces introduced due to thermal heating of the sample and the
tip. In this contribution we study the effect of laser heating of the retracted tip under illumination
conditions relevant to PiFM and how it affects the mechanical resonance properties of the cantilever.
Using a gold-coated silicon cantilever with its tip irradiated by a tightly focused 532 nm laser beam,
we find that the tip temperature increases linearly at 7.5 K/mW of average laser power, irrespective
of whether the laser is pulsed or continuous wave. The temperature rise gives rise to a decrease of
the cantilever’s spring constant and an increase of the damping coefficient. We demonstrate that
for retracted tips, these thermally-induced changes to the mechanical resonance only moderately
impact the measured photo-induced force, as the measured scattering force is at least an order
of magnitude stronger than the effective force introduced by laser heating under experimentally
relevant conditions.

I. INTRODUCTION

Photo-induced force microscopy (PiFM) is a nanospec-
troscopic imaging technique which measures the electro-
magnetic force exerted by the optical field on an atom-
ically sharp tip. The PiFM approach has been used to
map optical fields confined to the nanoscale1–4, as well as
to map forces between induced dipoles in the tip and the
sample through the gradient force, thus allowing spectro-
scopic contrast5. In spectroscopic mode, PiFM proved
capable of visualizing molecular samples based on linear
electronic6,7 and vibrational absorption8, as well as ex-
cited state absorption9 and vibrational transitions driven
by stimulated Raman scattering10.

Although the PiFM technique aims to probe the mu-
tual electromagnetic force between the induced polar-
ization densities in the tip and in the sample (induced
dipole force), thermal heating near the tip/sample junc-
tion may introduce additional effects that can sometimes
dominate the measurement. Energy contained in the
light field is inevitably absorbed by both the tip and
sample materials, producing a local rise in temperature
and a subsequent expansion of the materials. Expansion-
related forces have been suggested to constitute a signif-
icant contribution to PiFM measurements, especially in
mid-infrared absorption measurements where the gradi-
ent force has been predicted to be weaker than expan-
sion forces11,12. Several scan probe techniques, including
photothermal-induced resonance microscopy (PTIR)13,14

and peak force infrared microscopy (PFIR)15, make use
of thermal expansion to probe molecular absorption at
the nanoscale. Beyond measuring sample expansion di-
rectly, photo-induced force measurements are also sensi-
tive to the gradient of the (attractive) thermally modu-
lated interaction force, which can dominate the PiFM sig-
nal even in non-contact mode16. Other work has specifi-
cally focused on laser heating of the tip, and how the re-
sulting thermal radiation emanating from the tip’s apex
can be used for near-field microscopy in the thermal in-

frared range17.
In this work, we study the effect of tip heating in PiFM.

In order to discriminate the effects of sample heating from
heating of the tip-cantilever system, we focus here on the
limit of large tip/sample distances, implying that the ef-
fect of sample expansion and tip/sample interactions can
be excluded. This limit allows us to study how heating of
the tip affects the mechanical properties of the cantilever
and how the thermally induced changes in turn affect
the measurement of the photo-induced scattering force.
Whereas previous work has focused on laser heating of
the tip to several hundreds of degrees Celsius18, here we
are interested in the limit of low laser powers (∼ 1 mW
or less) that are relevant to PiFM. In Section II, we de-
velop a model for the measured photo-induced force in
the presence of thermally induced changes to the can-
tilever’s spring constant and damping coefficient. In Sec-
tion III, we simulate the heat transfer in the tip-cantilever
system and study how it affects the resonance properties
of the cantilever beam. We perform measurements of the
cantilever’s resonance frequency and quality factor un-
der the influence of laser heating at the tip in Section
IV, and connect these measurements to the simulations
to obtain an estimate of the tip temperature. Lastly, in
Section V, we determine the effect of laser heating and
thermal gradients in the cantilever on the measurement
of the scattering force.

II. PHOTO-INDUCED FORCES PROBED BY

HEATED TIPS

In this Section, we consider a simple analytical model
for describing the effect of laser heating of the tip-
cantilever system on photo-induced force microscopy ex-
periments. Our goal is to find an expression for the mea-
sured optical force that includes the impacts of thermal
heating of the oscillating cantilever beam.
We first consider the cantilever dynamics in the pres-
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ence of an optical force, where we allow the beam param-
eters to change due to thermal loading by the laser beam.
The cantilever motion can be modeled as a sinusoidally
driven damped oscillation along a generalized coordinate
ε, which is aligned along the z-direction and describes the
time-dependent displacement of the tip. The displace-
ment εi contributed by a given eigenmode i is described
by:

mε̈i + (bi +∆bi)ε̇i + (ki +∆ki)εi = F i
dcosωdt+F i

opt(z, t)
(1)

where m is the effective mass of the cantilever, ki and
bi are the spring constant and damping coefficient of the
i-th eigenmode, respectively. ∆ki and ∆bi represent the
change of the spring constant and damping coefficient of
the i-th eigenmode due to laser heating. F i

d and ωd are
the mechanical driving force acting on mode i and the an-
gular frequency of the mechanically driven motion. F i

opt

represents the contribution of the photo-induced force
Fopt acting on mode i. The optical force depends on
the tip-sample distance z. In the long distance limit,
we only need to consider the interaction between light
and tip in Eq. 1, while the interactions between the tip
and the sample surface, which include the van der Waals
forces19, hydration forces20, and gradient forces21, can
be ignored. In the PiFM experiment, the laser illumina-
tion is modulated as a square wave by an acoustic optic
modulator (AOM), which produces a periodically varying
optical force Fopt that can be described as:

Fopt(z, t) = Fopt(z)

[

1

2
+

2

π

∑

n=odd

sin(nωmt)

n

]

(2)

where ωm is the laser modulation frequency. Fopt(z) can
be expanded into a Taylor series as follows:

Fopt(z) ≈ Fopt(z0) +
∂Fopt(z)

∂z

∣

∣

∣

z0

(z − z0) + · · · . (3)

Due to the modulated light intensity, the thermal loading
is also modulated, which implies that ∆ki and ∆bi are,
in principle, time-varying parameters as well. However,
in this work, we will consider only the time-averaged ef-
fect of laser heating on the tip-cantilever system. Under
these conditions, we may assume that ∆ki and ∆bi are
constants for a given intensity of the laser beam.
In the PiFM experiment, the cantilever is mechani-

cally driven by ωd and optically modulated by ωm. The
cantilever response is enhanced when tuning the driving
frequencies close to an eigen frequency of the cantilever,
in particular the first (ω01) and second eigen (angular)
frequencies (ω02) of the cantilever beam. Here we will
consider the case that the cantilever dynamics is com-
prised of two oscillatory motions, one at ω1, near the
first eigen frequency, and one at ω2, near the second eigen
frequency. We may thus write:

ε ≡ ε1 + ε2 = A1sin(ω1t+ θ1) +A2sin(ω2t+ θ2) (4)

where Ai is the amplitude and θi is the phase shift of
the oscillation. Note that ω1 and ω2 are the frequencies
driven near the eigen frequency, and are not required to
be exact eigen frequencies. From here, we set ωd = ω2,
i.e. the mechanical driving frequency is near the second
eigen frequency of the cantilever. When ωm is set to
ω1, the PiFM measurement is directly sensitive to the
optical force. This configuration is called direct mode (or
homodyne) detection5. On the other hand, if ωm is set
to ω2 ± ω1, the measurement is sensitive to the gradient
of the optical force, also known as sideband mode (or
heterodyne) detection22,23.
For direct mode detection, an identification of the

terms at angular frequency ω1 yields the following equa-
tion:

mε̈1+b′1ε̇1+k′1ε1 =
2Fopt

π
sin(ω1t)−

koptA1

2
sin(ω1t+θ1)

(5)
where b′i = bi+∆bi, k

′

i = ki+∆ki, and kopt = −∂Fopt/∂z.
Since |koptA1| < 0.1 pN in practical experiments, the
last term on the right hand side of Eq. (5) can be safely
ignored22. A similar operation yields an expression for
the motion probed in the side band detection mode:

mε̈1 + b′1ε̇1 + k′1ε1 =
−koptA2

π
cos(ω1t+ θ2) (6)

Here ε has been set to (z − z0). In this derivation, we
neglected cross terms related to the motions at ω1 and
ω2. For cantilevers, the second resonance frequency is
about 6 times higher than the first resonance frequency,
producing cross terms that are much smaller than the
magnitude of the motion along the fundamental frequen-
cies. The resulting equations (5) and (6) correspond to
the well known equations of motion for a sinusoidally
driven damped oscillator. The solution to this equation
yields expressions for the oscillation amplitude A1(ω1)
for both the direct and sideband detection modes:

A1 =
B

√

m2(ω′2
01 − ω2

1)
2 + b′1

2ω2
1

(7)

where ω′2
01 = k′1/m, and B = 2|Fopt|/π for the direct

mode and B = |kopt|A2/π for the sideband mode.
Equation (7) implicitly includes the effect of laser heat-

ing through k′1 and b′1, which depend on ∆k1 and ∆b1,
respectively. These terms can be extracted from indepen-
dent measurements of the frequency fi and the quality
factor Qi of the mechanical resonance:

fi =
1

2π

√

ki +∆ki
m

, (8)

Qi =
ki +∆ki

2πfi(bi +∆bi)
. (9)

Because ∆ki and ∆bi change with temperature, ther-
mal loading of the tip/cantilever system will produce a
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frequency shift and a change in the quality factor of the
resonance. By measuring these changes directly, ∆ki and
∆bi can be retrieved, and their effect on PiFM can be
then determined through Eq. (7). We will employ this
approach in Section IV.

However, while instructive, such independent measure-
ments are not always practical during actual PiFM mea-
surements. Therefore, it is helpful to use an alternative
metric that can be directly retrieved from PiFM mea-
surements. Since PiFM measurements are typically per-
formed by recording the cantilever response in both ω1

and ω2 channels, we may use the A2 amplitude variations
to inform the measurement of A1. By multiplying both
sides of Eq. (1) with sin(ω2t+θ2) or cos(ω2t+θ2), respec-
tively, and then integrating over an oscillation period, we
obtain the following expressions for ∆k2 and ∆b2:

∆k2 =
Fd

A2

sinθ2 − (k2 −mω2
2), (10)

∆b2 =
Fd

A2ω2

cosθ2 − b2, (11)

The changes in spring constant and damping of the sec-
ond resonance can be related to the changes of the first
resonance through ∆k1 = α∆k2 and ∆b1 = β∆b2, where
α and β are cantilever-specific scaling factors that need
to be determined experimentally. In Section V, we will
show that this linear relation between the physical pa-
rameters of the first and second mode is justified and
that this approach also leads to an accurate estimation
of the effects of laser heating of the tip.

Finally, once ∆k1 and ∆b1 are retrieved from the mea-
surement, the effect of laser heating on the optically in-
duced force can be studied. In the direct detection mode,
|Fopt| can be obtained through Eq. (7) as

|Fopt|
2 = (π2/4)(A2

1[m
2(ω2

01 − ω2
1)

2 + b21ω
2
1]

+ A2
1(∆k21 +∆b21ω

2
1)

+ A2
1[2∆k1m(ω2

01 − ω2
1) + 2b1∆b1ω

2
1 ]) , (12)

where ω2
01 = k1/m. The first term in Eq.(12) is the same

as Eq.(26) in Ref. (5) when Fint is ignored, i.e., the tip-
sample interaction is not considered. We see that the first
term on the right hand side of Eq. (12) corresponds to
the square of the scattering force Fscat, while the second
term is entirely related to laser heating effect. We can in-
terpret the second term as the square of an effective force
due to heating, i.e. Fheat. The last term of Eq.(12) is a
cross term that depends on both Fscat and Fheat. In stan-
dard PiFM measurements, we expect that the measured
force is dominated by Fscat in the absence of tip-sample
interactions. One of the objectives of this work is to de-
termine to what extent Fheat-related contributions affect
such measurements.

III. SIMILATION OF HEATED CANTILEVER

Before discussing experiments, we wish to obtain a
quantitative prediction of the effects of tip heating on the
mechanical resonances of the cantilever. For this reason,
we perform finite element method (FEM) simulations of
the tip/cantilever system under the condition of thermal
loading at the illuminated tip apex.

FIG. 1. FEM simulation of the tip/cantilever system in the
presence of a thermal load. (a) Dimensions of the ACL type
cantilever with tetrahedral blocks chosen as the finite ele-
ments. (b) Temperature distribution of cantilever in the sta-
tionary state. The surface temperatures of A and B are fixed
and form the boundary conditions in the simulation. The in-
set graph shows the temperature gradient in the cantilever
beam. (c) Simulated first and (d) second eigen modes of the
cantilever.

The cantilever motions and eigenfrequencies are sim-
ulated with three-dimensional FEM using the COM-
SOL MULTIPHYSICS 5.0 software package, utilizing the
Structural Mechanics and Heat Transfer modules. The
relevant geometry is depicted in Figure 1(a), which is
based on an ACL type cantilever. The dimensions of the
cantilever are based on the cantilever used in the exper-
iments (Section IV). The simulation is carried out in
two steps. In the first step, the stationary state tem-
perature distribution of the cantilever is calculated using
heat transfer simulations in the Heat Transer module. In
the simulation, the temperature is fixed at the end of the
tip (A in figure 1 (b)) and at cantilever body (B in Fig-
ure 1(b)). The surface of the white cone A is set at a
fixed value, ranging between 300.0 K to 420.0 K, for each
simulation. Surface B, which is connected to the much
larger body of the scan head, is fixed at room tempera-
ture (300.0 K). Note that the effect of heat loss into the
surrounding medium (air) is assumed to be small and has
been ignored in the present simulations.

As an initial condition, the body of the cantilever is
set to 300.0 K. Simulations are then run with three kinds
of diameters (D = 0.6, 0.8 and 1.0 µm, see also Fig. 2)
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for the base of the cone A. These diameters correspond
to the spatial extent over which the focused laser spot
couples to the tip apex. The Heat Transfer module uses
the heat diffusion equation

ρCp

∂T

∂t
−∇ · (k∇T ) = Θ (13)

where ρ, Cp, T , t, k and Θ are the density, heat capac-
ity, temperature, evolution time, thermal conductivity
and heat source in the cantilever body, respectively. In
the simulation, we only consider the temperature distri-
bution of the fully equilibrated, stationary state, imply-
ing that the time dependence of the temperature disap-
pears (∂T/∂t = 0) in Eq. 13. In addition, there is no
heat source in the cantilever body (Θ = 0). Therefore,
the stationary state should satisfy the Laplace equation
(∇2T = 0), which is independent of the heat capacity
and thermal conductivity. Figure 1(b) shows the tem-
perature distribution of the cantilever in the stationary
state.
In the second step, the eigen frequencies of the can-

tilever are found using the Solid Mechanics module. We
use the temperature dependent physical properties for sil-
icon, namely the density24, the Young’s modulus25 and
the thermal expansion coefficient26. A Poisson’s ratio of
the value 0.22 is used27. In the region or interest, the
Poisson’s ratio is found to change by less than 1 % due
to temperature changes28.

FIG. 2. Simulation of the relative resonance frequencies of
the first and second eigen mode of the tip/cantilever system
as a function the tip temperature. Cantilever dimensions are
based on the cantilever used in the experiments. Results are
shown for different diameters D of the base of the apex cone.

Figure 2 shows the relative shift of the resonance fre-
quency as the temperature at the tip apex is increased.
It is observed that both the first and second eigen fre-
quencies decrease linearly with temperature, with a more
rapid decrease for the second mode. Below 350 K, the
simulations show that the variation with radius D is rel-
atively minor. The simulation results can be be fitted

with the following equation:

f

f 0

= C(T − 300) + 1 (14)

where C is a constant. The fit yields values C = 2.4 µK−1

and C = 6.8 µK−1 for the first and second mode, respec-
tively. We will use the relation between temperature and
frequency shift in Section IV to estimate the temperature
of the tip apex during laser illumination experiments. We
note that the although addition of a 40 nm gold layer to
the cantilever beam reduces the absolute resonance fre-
quencies of both the first and second mechanical reso-
nances by as much as 3%, it does not affect the tempera-
ture dependence of the relative frequency shift displayed
in Figure 2 within the accuracy of the simulation.

IV. RESONANCE FREQUENCY SHIFT

In this Section, we experimentally measure the can-
tilever resonance properties under the condition that the
tip is illuminated with a focused laser beam. For these
measurements, we use either a continuous wave (cw) laser
(Crystalase) at λ = 532 nm or a pulsed laser tuned to
a center wavelength of 532 nm. The pulsed light source
consists of a Ti:sapphire-pumped optical parametric os-
cillator (Inspire OPO, Radiantis), delivering 200 fs pulses
at 80 MHz. The beam is modulated by an acoustic optic
modulator at frequency fm. The modulated laser beam is
directed to a scan probe microscope (Vistascope, Molecu-
lar Vista), which includes an objective lens ( NA = 0.95,
Olympus) mounted in an inverted microscope configu-
ration. The laser beam is focused onto a borosilicate
glass slide (0.17 mm thickness), and the tip of a gold-
coated silicon cantilever (ACLGG, Applied NanoStruc-
tures) is placed in the laser focus. The cantilever used
in the experiments has its first (f01) and second (f02)
resonance frequencies at 149 kHz and 922 kHz, respec-
tively. The quality factors are 393 and 554 for the first
and second resonance, respectively. The measurements
are performed under ambient conditions.
We are first interested in characterizing the spatial ex-

tent over which the light interacts with the tip apex. For
this purpose, we perform PiFM measurements by keep-
ing the focused laser beam fixed in space and scanning
the tip laterally across the focal spot. In these measure-
ments, the PiFM signal is detected in the sideband mode,
with fm tuned to f01 + f02

22. The cantilever is demod-
ulated at f01 for detecting the PiFM signal while it is
mechanically driven at f02 for AFM feedback. For the
tapping mode measurements, the average tip-substrate
distance is set to 15 nm with an oscillation amplitude of
13 nm.
Figures 3(a) and (b) show the measured spot sizes for

the focused cw and pulsed laser beams, respectively. Pan-
els 3(c) and (d) depict the corresponding one-dimensional
cross sections. Using a Gaussian fit, we find full-width
half maximum diameters of 0.710 µm and 0.885 µm for
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FIG. 3. Spot size measurement in PiFM when the tip is illu-
minated by (a) cw laser, and (b) pulsed laser. White arrows
in each panel show the position where cross sections are taken,
displayed in (c) and (d).

the CW and pulsed laser spots, respectively. The ob-
served differences between the cw and pulsed modes are
due mainly to the beam quality rather than the tempo-
ral nature of the photon flux. We will use the measured
diameters as estimates for the diameter D used in the
simulations.

We next focus on the changes to the mechanical reso-
nance properties of the tip/cantilever system as the light
is coupled to the tip at various average laser powers. For
these measurements, the tip is placed in the center of the
focal spot, at a distance of 70 nm from the glass slide.
Under these conditions, we record the resonance curve
by sweeping the driving frequency through the cantilever
resonance. Figure 4 presents the relative resonance curve
shift of the first and second eigen mode of the cantilever,
measured in both the cw and pulsed illumination modes.
The general trend observed from the measurements is
that the mechanical resonance shifts toward lower fre-
quencies as the laser power is increased, both for the
first and the second eigen mode, in either cw or pulsed
illumination.

From these measurements, it is possible to extract the
resonance frequencies and quality factors by fitting the
resonance curves with the spectral response function of a
sinusoidally driven damped oscillator. The results of the
fitting procedure are shown in Figure 5. Panel 5(a) shows
the relative frequency shift f/f0 of the resonance, where
f0 is the resonance frequency in the absence of the laser
beam, as a function of the average laser power. Both
the first (black) and second (red) eigen modes show a
linear decrease with increasing laser power, corroborat-
ing the trend observed in the simulations. Again, the
differences between measurements using cw (solid sym-
bols) or pulsed (open symbols) laser illumination are rel-

FIG. 4. Resonance curves as a function of average laser power.
(a) First and (b) second eigen mode of the cantilever while il-
luminated by the cw laser. Laser powers in focus are 0.00 mW
(red squares), 0.32 mW (orange circles), 0.63 mW (yellow tri-
angles), 0.95 mW (green triangles), 1.26 mW (blue triangles)
and 1.58 mW (purple triangles). (c) First and (d) second
eigen mode of the cantilever while illuminated by the pulsed
laser. Laser powers in focus are 0.00 mW (red squares), 0.18
mW (orange circles), 0.35 mW (green triangles), 0.70 mW
(blue triangles) and 1.12 mW (purple triangles).

atively small, underlining that the interaction between
the light field and the tip is governed by the average
intensity and not by the peak intensities. Energy ex-
change between the light field and the material raises
the temperature of the material, changing the physical
properties of the cantilever, including the density24, the
Young’s modulus25, the Poisson’s ratio28, and the ther-
mal expansion coefficient26. The lowering of the reso-
nance frequency can be attributed to the softening of the
material as the temperature is raised18,29,30. In addition,
a rise in temperature and a temperature gradient in the
material also leads to a decrease in the Q-factor31–33. The
extracted change in the quality factor (Q/Q0) is shown
in Panel 5(b), revealing the expected linear decrease with
laser power for both eigenmodes of the cantilever.

Using Eqs. 8 and 9, the changes in the spring constant
∆ki and damping coefficient ∆bi can be extracted from
the measured frequency shift and quality factor. The re-
sults are shown in panels 5(c) and (d). We observe that
the spring constant linearly decreases with laser power for
both the first and second eigen modes of the cantilever,
shown in panel 5(c), although the change is more signif-
icant for the second mode. We find that ratio between
the change ∆k1 in the first and second mode for this can-
tilever is constant at ∆k1/∆k2 = α = 8.8527×10−3. The
change in the damping coefficient, on the other hand,
grows with incident laser power, as depicted in panel
5(d). Again, the slope of the second eigen mode is much
steeper than for the first eigen mode in Figure 5(d), yet
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the ratio ∆b1/∆b2 is constant for all laser powers exam-
ined. We find that ∆b1/∆b2 = β = 5.8835 × 10−2 for
the cantilever used in these experiments. In Section V,
we will use the values of α and β to extract information
about ∆k1 and ∆k2 directly from PiFM measurements.

FIG. 5. (a) Relative resonance frequency and (b) relative
quality factor as a function of average laser power at the tip
apex. f0 and Q0 are the values obtained in the absence of laser
light. (c) Extracted change in the cantilever’s spring constant
and (d) extracted change in the damping coefficient. First
eigen mode is indicated by black squares and second eigen
mode by red circles. Solid symbols denote CW irradiation and
open symbols indicate illumination with pulsed laser light.
Solid lines represent linear fits to the combined data (cw and
pulsed) for each eigen mode.

A good estimate of the tip temperature under the dif-
ferent illumination conditions can be obtained by relating
the resonance frequency shift data shown in Figure 5(a)
with the simulations presented in Figure 2. The resulting
change in temperature of the tip as a function of average
laser power is shown in Figure 6 for both eigen modes and
both illumination modes. It can be seen that the temper-
ature rise of the tip is nearly invariant for both illumina-
tion conditions. In addition, the estimated temperature
rise is virtually the same whether determined through
the dynamics of the first or the second eigen mode, as
required. The similarity in the temperature rise deter-
mined from different data sets fosters confidence in the
method pursued, and that the extracted change in tem-
perature represents a meaningful estimate of the actual
temperature. Based on our analysis, the temperature rise
of the tip is ∼ 7.5 K/mW for the gold-coated tip used
here and with 532 nm laser radiation.

V. PHOTO-INDUCED FORCE MICROSCOPY

Having established the response of the retracted
tip/cantilever system to laser heating at the tip, we next

FIG. 6. Estimated temperature rise ∆T as a function of the
incident average laser power. The temperature rise is ob-
tained by relating the measured changes in f/f0 to the cor-
responding simulation results.

examine the effects of the applied thermal load on the
PiFM signal under ambient conditions. A schematic of
the PiFM setup can be found in Ref.5,22. Our goal is to
determine whether laser heating introduces a significant
artifact or whether the effects are too small to affect the
measurements in a significant manner.

FIG. 7. (a) Oscillation amplitude A1 as a function of average
laser power as measured in PiFM. Each data point is the av-
erage value of various measurements in the range from 30 to
150 nm for the tip/sample. (b) Change in the spring constant
∆k2 obtained by measuring A2 and θ2 during the PiFM mea-
surement. (c) Change in the damping coefficient ∆b2. (d)
Retrieved photo-induced force.

Figure 7(a) shows the measured oscillation amplitude
A1 in the PiFM channel, both for direct (black) and side-
band (red) detection, as the laser power on the tip is
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increased. Amplitude measurements are performed with
the tip retracted to a distance of 30-150 nm from the
glass coverslip surface, at 5 nm intervals of the tip-sample
distance. We find that within this range the oscillation
amplitude is insensitive to tip-sample distance. This in-
dicates that the exerted force does not sample the effect
of the glass surface and that the spatial profile of the fo-
cused light field is nearly constant within this range. The
measured A1 shown in Figure 7(a) is the average of the
measurements performed in the 30-150 nm range. It is
seen that the amplitude in the direct detection mode in-
creases linearly with laser power, whereas the amplitude
in the sideband detection mode is near the noise floor
for all measurements. The negligible signal in the side-
band mode indicates that the gradient of the force is very
small. This is expected, as far from the glass surface the
Fint can be ignored and no significant z-dependence of
the force is anticipated. The linear increase measured in
the direct mode follows the expected trend of the scat-
tering force Fscat, which depends linearly on the light
intensity.

Along with the A1 measurements, amplitude and phase
variations in the A2 channel are simultaneously recorded.
With the driving force Fd known, we may use Eqs. (10)
and (11) to compute the intensity dependent ∆k2 and
∆b2. The results are shown in Figures 7(b) and (c).
Similar to the results presented in Figures 5(c) and (d),
which are obtained through direct resonance frequency
shift measurements, we find that the spring constant de-
creases linearly with laser power and the damping coef-
ficient increases linearly with laser power. Note that the
method of obtaining these values is rather different in
Fig. 5 compared to Fig. 7, yet the retrieved ∆k2 and ∆b2
from these measurements are identical to within experi-
mental uncertainty. This observation fosters confidence
that the amplitude and phase measurements in the A1

and A2 channels of the PiFM measurement are sufficient
for retrieving information about the temperature depen-
dent changes to the cantilever resonance.

Using the α and β values obtained in Section IV, we
can now calculate the photo-induced force from Eq. 12.
Figure 7(d) shows the retrieved force measured in the
direct (black) and sideband (red) modes. We see that
the absence of a strong spatial dependence of the force,
and thus the gradient of the force, suppresses the signal
in the sideband mode. In the direct mode, we observe
a linear increase of the force with laser power, indicative
of Fscat. This suggests that the PiFM measurement is
dominated by the scattering force. The question arises
to what extent the measurement is affected by the heat
induced changes to the cantilever’s mechanical resonance.

To address this question, we plot the individual con-
tributions of Eq. 12 in Fig. 8. The total photo-induced
force, reproduced from Fig. 7(d), is indicated by the
open circles. The scattering force Fscat, obtained as the
first term of Eq. 12, is shown as blue triangles. This
contribution changes linearly with the laser power, as is
evident from the linear fit shown in the graph. The laser

power dependence of the second term of Eq. 12, sym-
bolized as Fheat, is plotted as red squares. A fit reveals
that this contribution scales quadractically with the laser
power. This dependence can be rationalized by the fact
that both A1 as well as ∆k1 and ∆b1 depend linearly on
the intensity of the applied laser beam. Since Fheat relies
on the product of A1 with either ∆k1 or ∆b1, the result-
ing laser power dependence is quadratic. However, Fheat

is more than one order of magnitude smaller than Fscat

over the entire range of examined laser powers, suggest-
ing that its effect is minimal under typical experimental
conditions. Finally, the cross term in Eq. 12 is found
to be negligibly small under all conditions, due in part
to the difference in sign between ∆k1 and ∆b1, which
causes their respective terms to counteract. Therefore,
the current analysis reveals that Fopt is dominated by
Fscat and that the effects of heating-induced changes to
the cantilever’s resonance are at least an order of magni-
tude smaller under experimentally relevant conditions.

FIG. 8. Decomposition of the measured force Fopt (open cir-
cles) into the scattering force Fscat (blue triangles) and an ef-
fective force Fheat due to laser heating (red squares). Fscat in-
creases linearly with laser power while Fheat shows a quadratic
dependence.

VI. DISCUSSION

In this work, we have carefully examined the effects of
laser-induced heating of the tip on the cantilever’s me-
chanical properties, along with its implications for PiFM
measurements. We have focused explicitly on the limit
of large tip-sample distances, a situation in which tip-
sample interactions can be ignored. In this limit, heating
related changes to the mechanical properties of the can-
tilever, as a consequence of coupling light to its atomi-
cally sharp tip, can be examined in detail.
The resonance curve shift measurements provide clear

evidence that under experimentally relevant conditions
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the thermal load applied through laser illumination af-
fects the resonance frequency of the cantilever. We find
that the resulting temperature gradient in the cantilever
body effectively softens the beam and thus decreases the
frequency as well as the quality factor of the mechanical
resonance. We observe similar trends for the first and
second mechanical resonances of the cantilever, although
the effects for the second resonance are more pronounced.
For the gold-coated cantilever examined, we find a fre-
quency shift of ∼ 30 Hz for the first mode and a fre-
quency shift of ∼ 0.83 kHz for the second mode when
the λ = 532 nm laser power is raised to 1.5 mW. At
the same time, the Q-factor for the first mode decreases
by 1%, whereas the Q-factor for the second resonance is
reduced by as much as 3%.

The observed effects do not appear to depend on
whether the laser is operating in cw or pulsed mode.
This indicates that the measured heating effect is lin-
ear and thus independent of the peak intensity of the
laser pulses. Using FEM simulations of a cantilever with
identical dimensions as used in the experiments, we have
obtained quantitative insight in how the temperature rise
at the tip produces a shift in the resonance frequency of
the cantilever. By relating the simulations to the reso-
nance curve shift measurements, we have found that the
temperature increase (∆T ) at the tip amounts to ∼ 7.5
K/mW of laser power. This result is remarkably con-
sistent among both cw and pulsed measurements and
independent of whether the heating effect is examined
through the first or second resonance of the cantilever.
The temperature increase of the tip found here is higher
than reported previously for a silicon tip irradiated with
a 800 nm fs laser beam, which yielded a ∆T of ∼ 1.3
K/mW over a range of 0-50 mW average laser power18.
This difference can be attributed to the different tip ge-
ometry, the presence of a gold coating in our measure-
ments, and the different wavelength used.

The applied average power in laser-based scan probe
measurements, including PiFM, typically ranges from
10 µW to several mW. Although the use of gold-coated
tips enhances the optical response of the tip’s apex,
the presence of plasmonic resonances also increases the
amount of energy absorbed by the material from the light
field. In the present study, we have used a gold-coated
tip coupled to 532 nm light. The excitation wavelength is
close to the plasma frequency of gold, and appreciable ab-
sorption of light can be expected under these conditions.
The determined temperature rise of ∼ 7.5 K/mW of laser
power is significant, and cannot be simply ignored in scan
probe measurements without further examination.

We have studied the effect of heating-induced mechan-
ical changes on PiFM measurements in the limit of the
retracted tip. The main observation is that the mea-
sured Fopt is dominated by Fscat and that the effects of

heating are at least an order of magnitude lower. This
implies that under experimental conditions relevant to
PiFM, heating of the tip and the subsequent changes to
the mechanical resonance do not impose a significant per-
turbation to the accuracy of Fscat measurements.
Although these results serve as a helpful reference

when performing PiFM measurements, the current study
does not rule out a negative impact from heating-related
artifacts. First, since the heating-induced contribution
Fheat changes quadratically with laser power relative to
the linear dependence of Fscat, the effects of laser heat-
ing grow more significant at higher laser powers. Second,
these results pertain to the limit of large tip-sample dis-
tances, whereas PiFM measurements are commonly per-
formed to examine forces when the tip is in close proxim-
ity with the sample. The electromagnetic forces between
the induced dipoles in the tip and the sample are gen-
erally orders of magnitude weaker than the Fscat forces
studied here, making them more vulnerable to heating-
induced changes of the cantilever resonances. In addition,
in the tapping mode and in the full contact regime, forces
related to thermal expansion of the sample can be sub-
stantial and come to dominate the PiFM measurement16.

VII. CONCLUSION

This work provides insight into one of the mechanisms
by which heating can affect laser-based scan probe mea-
surements. Illumination of cantilevered tips by tightly
focused laser beams gives rise to a temperature increase
of the cantilever/tip system. The experiments and sim-
ulations in this work provide evidence that tip heating
leads to a temperature gradient in the cantilever body,
which effectively softens the beam, thereby decreasing
the frequency and quality factor of the mechanical res-
onance. Using gold-coated tips and a laser wavelength
of 532 nm, changes in the resonance frequency amount
to 10−2% when the average laser power is raised to 1.5
mW, whereas the Q-factor changes as much as 3% un-
der these conditions. Comparison between experiments
and simulations reveals a temperature increase of ∼ 7.5
K/mW of laser power at the tip. Despite the heating-
induced changes to the cantilever’s mechanical resonance,
the PiFM signal remains relatively unaffected and ac-
curate measurements of the scattering force can be per-
formed, at least in the limit of large tip-sample distances.
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