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Thermodynamic properties of the interacting homogeneous electron gas are calculated using a
finite-temperature cumulant Green’s function approach over a broad range of densities and temper-
atures up to the warm dense matter regime T ∼ TF , where TF is the Fermi degenearcy temperature.
These properties can be separated into independent particle and exchange-correlation contributions,
and our focus here is on the latter. Our approach is based on the Galitskii-Migdal-Koltun and elec-
tron number sum-rules from the finite temperature many-body Green’s function formalism, together
with an extension of the cumulant Green’s function to finite-temperature. Previously this approach
yielded exchange-correlation energies and potentials in good agreement with quantum Monte-Carlo
calculations. Here the method is extended for various thermodynamic quantities including the chem-
ical potential, total energy, Helmholtz free-energy, electronic equation of state, specific heat, and
isothermal compressibility, which optionally include spin-dependence. We find that the exchange-
correlation contributions are weakly varying at low temperature but exhibit significant temperature
dependence in the WDM regime, as well as a cross-over from exchange- to correlation-dominated
behavior. In contrast to the T = 0+ limit, we also find that renormalization effects are largely but
not completely suppressed at finite temperature. Comparisons with other approaches at various
levels of approximation are also discussed.

I. INTRODUCTION

Finite temperature (FT) effects in electronic systems
are of both fundamental and practical importance. Phys-
ical properties depend strongly on whether the tempera-
ture T is large or small compared to the Fermi temper-
ature TF ≈ 1.84/r2s, which is typically a few eV/kB at
normal electron densities n = N/V . Here kB is Boltz-
mann’s constant and rs = (4πn/3)−1/3 is the Wigner-
Seitz density parameter. [Throughout this work we use
Hartree atomic units me = e = h̄ = (4πǫ0)

−1 = kB = 1,
i.e., energies and temperatures in Hartrees and distances
in Bohr, unless otherwise specified. We also suppress ar-
guments of temperature and density unless needed for
clarity.] At very low temperatures T << TF , electrons
are nearly degenerate and Fermi liquid behavior is ap-
plicable. Recently, however, there has been consider-
able interest in the warm-dense-matter (WDM) regime
where T is of order TF . This regime is typically encoun-
tered in applications ranging from XFEL sources to laser-
shocked systems, inertial confinement fusion and plane-
tary interiors.1–3 In WDM, condensed matter becomes
partly ionized and exchange effects are significantly re-
duced. Matter also becomes luminous due to black-body
radiation. Thus the nature of exchange and correlation
at finite T becomes an important consideration, posing
a daunting finite-temperature many-body problem.

Calculations of thermodynamic properties of weakly
correlated electronic systems can be obtained from
various methods, including quantum Monte Carlo
(QMC),4–7,9 finite-temperature DFT,10–12 and many
body perturbation theory (MBPT).13–18 Currently QMC
is considered to be the most accurate first principles
method. However this approach can be computation-
ally intensive and is not routinely available for many ma-

terials. Instead, practical calculations are often based
on the FT generalization of DFT. Although in principle,
FT DFT is exact, its use in practice depends on the ac-
curacy of FT exchange-correlation functionals.19–21 Such
functionals are typically constructed from fits to QMC
calculations for the interacting homogeneous electron gas
(HEG).4–7,9,22,23 Nevertheless both QMC and DFT have
various limitations. For example, there is a paucity of
accurate QMC data at very low T << TF , and cur-
rently available FT exchange-correlation functionals have
limited accuracy outside the range of available data and
for derived quantities like the specific heat.20 Moreover,
these approaches are not designed to address various ex-
cited state properties such as optical spectra and inelastic
losses at elevated temperatures.25,26 Thus it is desirable
to develop alternative approaches. Thermal effects from
phonons and other excitations are also generally impor-
tant in condensed matter,13–15,27,28 but their contribu-
tions to the thermodynamics are essentially additive and
are not discussed here.

In an effort to address these limitations, we follow an
approach within MBPT based on the Green’s function
(GF) formalism of Martin and Schwinger (MS)29 with
a finite-temperature retarded cumulant (RC) Green’s
function.30 In this approach thermodynamic proper-
ties are derived in terms of the Galitskii-Migdal-Koltun
(GMK) and electron number sum rules.15,29–31 Our
aim is to extend the approach for thermal properties
of the HEG, for both unpolarized and spin-polarized
cases, over a broad range of temperatures including
the WDM regime. These properties can generally
be separated into independent-particle and exchange-
correlation parts. Since the independent-particle con-
tributions for the HEG are known to high numeri-
cal accuracy,27 we focus here on exchange-correlation



2

contributions.13–15,25,32–34 Although the finite temper-
ature Green’s function theory has been known for
many years, e.g., from the classic works of Martin and
Schwinger (MS)29 and Luttinger and Ward (LW),35

and there have been many studies of low temperature
behavior,36 surprisingly little attention has been devoted
to its application at temperatures of order TF .

16,30 For-
mally, the FT GF approach is based on a Matsubara
representation of the Green’s function which can be ana-
lytically continued to the real axis.13–15 Variational meth-
ods such as those based on the LW functional have also
been developed.37 In the zero-temperature limit, the the-
ory simplifies.35,38 Renormalization effects are suppressed
and Fermi liquid behavior and the quasi-particle approx-
imation become applicable.14,35,38,39 Another of our aims
here is to assess to what extent these simplifications re-
main valid at finite T .
In the remainder of this paper Sec. II. describes the

formalism used; Sec. III. contains results for several ther-
modynamic properties of the unpolarized HEG; and Sec.
IV., those of the spin-polarized HEG. Sec. V. contains a
summary and conclusions.

II. FORMALISM

A. Green’s function and spectral function

Green’s function methods can be formulated in various
ways. Typically the Green’s function G is obtained using
the Dyson equation G = G0 + G0ΣG, where G0 is the
independent particle Green’s function, and Σ is the one-
electron self-energy. This equation is also valid at finite
temperature. In the GW approximation of Hedin, for ex-
ample, the self-energy is calculated to leading order the
screened Coulomb interaction W .40 Thus ΣGW ≡ iGW
and vertex corrections are neglected. The effects of
electron-electron interactions are manifested in the struc-
ture of the single-particle spectral function Ak(ω), which
characterizes the energy distribution of a given single par-
ticle level k in which G is assumed to be diagonal,

Ak(ω) = −
1

π
ImGk(ω). (1)

An attractive alternative to the GW-Dyson equation
approach is the retarded cumulant Green’s function,
which we have recently extended to finite temperature.30

At T = 0 this approach has been applied in a variety of
contexts.41–45 Among its advantages the method is for-
mally exact for the model of an isolated electron cou-
pled to bosons,46 and it generally improves on the GW
approximation,40,47,48 since it implicitly includes vertex
corrections and a better description of satellites. Another
is that the approach permits a physical interpretation of
exchange correlation effects in terms of physical quanti-
ties such as dielectric response.49 In the time domain, the
cumulant GF has a pure exponential representation, and

the spectral function is obtained from its Fourier trans-
form

Gk(t) = −iθ(t)e−iεx
k
teC̃k(t), (2)

Ak(ω) = −
1

π
Im

∫

dω eiωtGk(t). (3)

Here the one-electron energy εxk = ε0k + Σx
k is defined

to include the static exchange energy Σx
k =

∑

q vk−qnq,

where vq = 4π/q2 is the bare Coulomb potential, ε0k =
k2/2, and nk(T ) is the temperature dependent occupa-
tion number defined in Eq. (11) below. Thus the static-
exchange and dynamic correlation contributions are sep-
arable, i.e., Ck(t) = −iΣx

kt + C̃k(t).
49 This formalism is

similar to that for T = 0, except for the substitution of
a finite temperature GW self energy ΣGW

k (T ).
The cumulant formulation of the Green’s function can

be justified by the quasi-boson approximation,40 in which
electron-electron interactions are represented in terms of
electrons coupled to bosonic excitations. A prescription
for the cumulant C̃(t) can be obtained in analogy to that
at T = 0, by expanding both the cumulant and Dyson
Green’s function in terms of the screened Coulomb po-
tential W , and comparing term by term. Carried to all
orders the cumulant GF is formally exact. However, as in
our original development,30 we limit the approximation
for the cumulant here to first order in W . The retarded
cumulant C̃k(t) is then obtained in terms of the retarded
GW self energy ΣGW , i.e.,

C̃k(t) =

∫

dω
γk(ω)

ω2
(e−iωt + iωt− 1), (4)

γk(ω) =
1

π

∣

∣ImΣGW
k (ω + ε0k)

∣

∣ . (5)

These relations are valid at all temperatures, and their
temperature dependence is implicit in that of the self-
energy.30,47 The FT GW self-energy can be determined
at various levels of self-consistency as discussed below.
Once the self-energy is obtained, the cumulant kernel
γk(ω) is given by its imaginary part from Eq. (5). The
kernel γk(ω) reflects the quasi-boson excitation spectrum,
with peaks corresponding to those in the loss function
L(q, ω) = |Im ǫ−1(q, ω)| ∝ |ImΣGW

k (ω+ εk)|, as expected
on physical grounds. Eq. (4) corresponds to the Landau
representation,40,46,50 which, along with the positivity of
γk(ω), ensures a positive definite spectral function. The
form for the cumulant in Eq. (4) yields a quasi-particle
peak of strength Zk = exp(−ak), where Zk is the renor-
malization constant, and ak =

∫

dω γk(ω)/ω
2 is the net

strength of the satellites. The quasi-particle energy is
then εk = ε0k + ∆k, where ∆k = Σx

k +
∫

dω γk(ω)/ω.

The Landau form also implies that both C̃(0) and

(dC̃(t)/dt)|t=0 are zero, so the spectral function is al-
ways normalized to unity with a first moment given by
the unshifted bare one-electron energy εxk.

∫

dω Ak(ω) = 1;

∫

dω ωAk(ω) = εxk. (6)
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B. Finite T GW Self-energy

As outlined above, the retarded cumulant Green’s
function is dependent on the retarded one-particle self-
energy Σk(ω), which can be calculated from MBPT with
the Matsubara Green’s function.15,33 Although more
elaborate approximations are possible, here we use the
FT GW approximation for ΣGW

k (ω) at the G0W 0 level,
i.e., with the non-interacting Green’s function G0 and the
RPA screened interaction W 0 = ǫ−1(q, ω)vq, where the
dielectric function is given by

ǫ(q, ω) = 1 + 2vq

∫

d3k

(2π)3
fk+q − fk

ω − εk+q + εk
. (7)

With these approximations, the self energy corresponds
to that for electrons coupled to bosons, with a form simi-
lar to the Migdal approximation for electrons coupled to
phonons,33

ΣGW (ω;n, T ) =

∫

dω′
d3q

(2π)3
|ImW (q, ω′)| ×

×

[

f(εk−q) + Ñ(ω′)

ω + ω′ − εk−q + iδ
+

1− f(εk−q) + Ñ(ω′)

ω − ω′ − εk−q + iδ

]

. (8)

Here Ñ(ω) = 1/(eβω − 1) is the Bose factor, which
dominates the temperature dependence at high T since
Ñ(ω) → kBT/ω. The RPA expression for W 0 is
analogous to that often used in zero-temperature GW 0

approximations.51 The integral for the imaginary part
ǫ2 of ǫ(q, ω)52,53 in Eq. (7) can be performed analyti-
cally and the real part ǫ1 can then be calculated via
a Kramers-Kronig transform. This yields the FT loss
function L(q, ω) = −Im ǫ−1(q, ω) = ǫ2/(ǫ

2
1 + ǫ22). For the

HEG L(q > 0, ω) exhibits broadened and blue-shifted
plasmon-peaks with increasing T .25,53

C. Electron number and energy sum-rules

As in the formalism of MS,29 our treatment of the
thermodynamics of many-electron systems starts from
the grand potential Ω(µ, T ), as obtained from the grand
canonical partition function Ξ(µ, T ) = exp(−βΩ) =
Tr exp[−β(H−µN)], whereH is full N -electron Hamilto-
nian, µ the chemical potential, and β = 1/kBT . Within
MBPT, Ω(µ, T ) can be expressed in terms of the one-
electron Green’s function.29,35 Thermodynamic proper-
ties are then obtained using sum-rules for the total elec-
tron number and energy,29 together with thermodynamic
identities. Thus all thermodynamic quantities can be de-
rived formally from effective one-electron properties.

First using the relation N = ∂Ω/∂µ the total electron
number N in a system of volume V at fixed electron

density n = N/V in the thermodynamic limit is given by

N(µ, T ) =
∑

k

∫

dω Ak(ω)f(ω), (9)

=
∑

k

nk(µ, T ). (10)

Here f(ω) = 1/[eβ(ω−µ) + 1] is the Fermi factor, µ =
µ(T, n) the chemical potential which is determined self-
consistently by charge conservation N(µ, T ) = N , and

nk(µ, T ) =

∫

dω Ak(ω)f(ω) (11)

is the mean occupation number of state k at finite T .
The temperature and chemical potential dependence in
N(µ, T ) stems from that in the Fermi factors f(µ, T ) and

the the Bose factors Ñ(ω) in the construction of W (ω),
ΣGW (ω), and Ak(ω).
Next, the Galitskii-Migdal-Koltun (GMK) sum rule

is used to obtain the net electronic energy per particle
ε(T ) = E(µ, T )/N for fixed n in the thermodynamic
limit.15,29,31 The total energy E(µ, T ) is given by

E(µ, T ) =
∑

k

∫

dω
1

2
(ω + ε0k)Ak(ω)f(ω). (12)

The GMK sum rule is valid for any Hamiltonian with
only pair interactions. While the GMK sum-rule depends
only on one-particle properties, it is non-variational, and
only exact when the true Green’s function is known.54 A
constraint on the approximation for the spectral function
is given by the identity (∂E/∂µ)T = −T (∂N/∂T )µ.

29

To facilitate the calculations, the sum-rules in Eq. (9)
and (12) can be expressed as one-dimensional Fermi inte-
grals over the one-electron density of states per unit vol-
ume g(ω) of the interacting system, and similarly for the
electron energy density of states per unit volume ξ(ω),

n(µ, T ) =

∫

dω g(ω)f(ω), (13)

u(µ, T ) = nε(µ, T ) =

∫

dω ξ(ω)f(ω), (14)

where

g(ω) =
1

V

∑

k

Ak(ω), (15)

ξ(ω) =
1

V

∑

k

1

2
[ω + ǫ0k)]Ak(ω). (16)

However, the usual Sommerfeld expansion techniques for
approximating these Fermi integrals at low T are gen-
erally inapplicable due to the implicit temperature and
chemical potential dependence of g(ω) and ξ(ω). These
densities of states are compared in Fig. 1 for rs = 4 at
T = 0. Note in particular, that the reduction in g(ω)
compared to g0(ω) in the RC, GW and PP (plasmon
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FIG. 1: (Color online) Density of states g(ε) of the HEG for
rs = 4 and T = 0, normalized by that of the independent-
particle g0(εF ) at the Fermi energy εF . Compared are the
densities of states for the retarded cumulant (RC) approach of
this work (red), the independent particle (IP) method (blue),
the G0W 0 approach used here (green), the plasmon-pole
approximation (PP) of Lundqvist (black),55 and the quasi-
particle approximation (QP) (violet).

pole) approximations is due to the quasi-particle renor-
malization factor Zk and satellites in the spectral func-
tion.
Since the independent particle contributions µ0(n, T )

and ε0(n, T ) are known quantities, the chemical poten-
tial and energy per particle can be decomposed into
independent-particle and exchange-correlation parts,

µ(n, T ) = µ0(n, T ) + µxc(n, T ), (17)

ε(n, T ) = ε0(n, T ) + εxc(n, T ). (18)

The ratio |εxc(n, T )/εF | > |εx/εF | ≈ 0.25rs at low tem-
perature and is only weakly dependent on temperature
below TF , so exchange-correlation effects are always sig-
nificant up to the WDM regime. However, they become
less important for T > TF , where εxc(n, T )/ε

0(n, T ) de-
creases rapidly with increasing T . For the HEG, the
exchange-correlation part of the chemical potential is
equivalent to the DFT exchange-correlation potential
µxc(n, T ) ≡ vxc(n, T ).

11 In our previous development,30

we obtained results for εxc(n, T ) and µxc(n, T ) over a
broad range of temperatures and densities. In this follow-
up we have significantly improved the precision of our cal-
culations. This is particularly important at low T where
the temperature dependence of εxc(n, T ) and µxc(n, T )
is very weak. Fig. 2 shows a comparison of our updated
results with the revised Karasiev et al. parameterization
of QMC data, referred to below as KSDT.20,21 These
comparisons show that the accuracy of our present im-
plementation of the FT RC Green’s function approach is
typically better than 10%, though it becomes worse at
very low densities rs ≈ 10 or higher.9

By definition the correlation energy is the difference
between the total energy and that calculated in the
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FIG. 2: (Color online) Finite-T exchange correlation parts of
the energy per particle (Top) and chemical potential (Bottom)
vs T/TF for the HEG from the cumulant expansion (blue), the
G0W 0 Dyson approximation (green), and for comparison, the
results of fits to QMC calculations (red).20,24 Note that these
quantities scale roughly inversely with rs.

Hartree-Fock independent particle approximation, Ec ≡
Exc−E0

x. Thus the exchange and correlation energies per
particle can also be separated unambiguously, as illus-
trated in Fig. 3. Note that the temperature dependence
of εxc(T ) in Fig. 2 is very weak at low T , so that the
much stronger temperature dependences of the exchange
and correlation parts tend to cancel. Physically this can-
cellation is due to the screening of the Fock exchange
operator, which otherwise would lead to singular behav-
ior in the density of states and specific heat at T = 0+.40

Fig. 3 also shows that the εx(T ) decays rapidly above
TF , so that the WDM regime is dominated by Coulomb
correlation effects, independent of spin.
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D. Other approaches

1. Luttinger-Ward Approach

Analogous sum-rules in the T → 0+ limit were derived
by Luttinger and Ward (LW) by exploiting the station-
ary property of the grand potential Ω with respect to
variations in Σ.14,35 They obtain for the electron count

NLW (µ, T ) =
∑

k

∫

dωDk(ω)f(ω), (19)

where the effective spectral function Dk(ω) is

Dk(ω) =
1

π
Im

∂ lnGk(ω)

∂ω
. (20)

The difference between Ak(ω) and Dk(ω) can be under-
stood from the identity ∂ lnGk/∂ω = −G(1−∂Σk/∂ω).

14

Remarkably, the sum and integral in Eq. (19) over
Gk(ω)∂Σk/∂ω vanishes at T = 0 so that NLW gives a
count equivalent to that for N in Eq. (9). This difference
is also reflected in the behavior of the satellites. The
exact quasi-particle peak in Ak(ω) at εk = ε0k + Σ(k, εk)
has a strength Zk = 1/(1−∂Σk/∂ω), while the remaining
spectral weight is in the satellites. In contrast the quasi-
particle peak at εk in Dk(ω) has strength unity and is
infinitely sharp on the Fermi surface k = kF , while the
satellites have both positive and negative strengths. A
consequence of this equivalence is that that satellites and
quasi-particle renormalization effects cancel completely
in the behavior of N(µ, T ) and in the chemical potential
µ(n, T ) in the limit T = 0+. For this reason LW ar-
gue that their results for thermal properties at T → 0+

are exact and equivalent to those of a pure quasi-particle
approximation.38

-0.14
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-0.1

-0.08

-0.06

-0.04

-0.02

 0

 0.01  0.1  1  10  100

εx

εc

ε

T/TF

FIG. 3: (Color online) Comparison of exchange εx and corre-
lation εc contributions to the the exchange-correlation energy
per particle εxc vs T/TF for the HEG at rs = 4 from the
cumulant Green’s function approach of this work (solid), and
RPIMC data (circles).4

LW also show that renormalization effects cancel in the
specific heat ratio which, as in Fermi liquid theory (FLT),
is defined as cv/c

0
v = m∗ at T → 0+, where the effective

mass m∗ = kF /vF is the only non-universal parameter of
FLT.14,39 In particular, m∗ is defined in terms of quasi-
particle energy dispersion or the quasiparticle density of
states gqp(ω) at the Fermi level

m∗ =
k

dεk/dk

∣

∣

∣

∣

k=kF

=
π2

kF
gqp(µ), (21)

where the Fermi momentum kF = (3π2n)1/3. Although
at T = 0, the Fermi momentum is not changed by many-
body effects according to the Luttinger theorem, the
Fermi surface is smeared by the Fermi function for T > 0
and not well defined. Moreover at T ≈ TF , the chemical
potential lies below the lowest quasi-particle energy. It
is therefore of interest to examine the validity of the LW
results at finite T .

2. Quasiparticle approximation

In order to assess the importance of satellites and
renormalization effects at finite T , it is useful to consider
a pure quasi-particle (QP) approximation without these
effects. In this paper the QP approximation refers to cal-
culations with the spectral function Aqp

k (ω) = δ(ω − εk),
where εk is the real part of the quasiparticle energy
εk = ε0k + Σk(εk). Here Σk(ω) is taken to be the FT
G0W 0 approximation for the retarded GW self-energy
defined above, although the QP energies could be taken
from any approximation for the self-energy. The chemi-
cal potential can then be obtained by inverting the elec-
tron count in Eq. (9) with the QP spectral function
Aqp

k (ω) = δ(ω − εk),

N qp(µ, T ) =
∑

k

f(εk) = V

∫

dω gqp(ω)f(ω). (22)

This alternative formula for N(µ, T ) at T = 0 was also
derived by LW. As a result, calculations of the chemi-
cal potential and other thermodynamic properties of the
HEG greatly simplify, since a full frequency dependent
self-energy is not required. Note that while the QP and
FLT results for the chemical potential are identical at
T = 0, results for other quantities such as the total en-
ergy or specific heat are not the same. In particular FLT
gives an exact result for the specific heat at T=0+ in
terms of the exact quasi-particle energies due to the sta-
tionary properties of the Greens function at T=0.14,38 In
contrast the QP approximation in this work refers to an
explicit approximation for the spectral function, and the
accuracy of results depend on the property being calcu-
lated, and how it is calculated. For example, the QP
approximation within the Galitskii-Migdal-Koltun sum
rule does not give accurate results for the total energy
even at T = 0. Fig. 4 shows a comparison of the chemical
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FIG. 4: (Color online) Exchange-correlation part of the chem-
ical potential vs T/TF at rs = 4, as calculated using the RC
(blue), GW (green), LW (violet), and QP (black) spectral
functions, and compared to the KSDT fit (red).20,24

potential from the QP, RC and GW, and LW spectral
functions, as well as the KSDT fit to QMC data. While
the RC is closest to KSDT over the range studied, the
QP approximation gives results that are bracketed by
GW and RC over a large range of temperatures. How-
ever, the LW approach based on Eq. (19) rapidly loses
accuracy with increasing temperature. The fairly good
agreement between QP and RC shows that satellites and
quasi-particle renormalization effects are largely, though
not completely suppressed at finite T for calculations
of the chemical potential. On the other hand, we find
that using the QP approximation in the GMK sum-rule
for E(µ, T ) is less satisfactory, with errors of order 25%.
Consequently the QP approximation is reasonable only
for some pathways to thermodynamic quantities.

III. THERMODYNAMIC PROPERTIES

A. Chemical potential and energy per particle

Due to the exact separation of independent parti-
cle and exchange-correlation parts, one can regard the
exchange-correlation contributions as those from an in-
dependent thermodynamic system, i.e., an exchange-

correlation hole. Thus the contributions from the in-
dependent particle and exchange-correlation parts are
additive and can be calculated and/or tabulated sepa-
rately. By inverting Eq. (9) for N(µ, T ) we obtain the
Gibbs free energy per particle µ(n, T ) = G/N . Then
subtracting the independent particle contribution, we
obtain µxc(n, T ). Next using this result for µ(n, T ) in
Eq. (12) and subtracting the independent particle part
ε0(n, T ) yields the exchange-correlation energy per par-
ticle εxc(n, T ). These calculations are carried out with
our cumulant Green’s function and the G0W 0 approxi-

mation for the self-energy.30 In this paper, µxc(n, T ) and
εxc(n, T ) have been recalculated with improved precision,
particularly in the low temperature regime, since great
numerical care is needed to avoid the near singular be-
havior of the calculations. Our results, as illustrated in
Fig. 2, are typically accurate to better than about 10%
compared to QMC fits of KSDT. Various thermodynamic
properties can then be derived in terms of µ(n, T ) and/or
ε(n, T ) using thermodynamic identities.

B. Helmholtz free energy and electron pressure

The Helmholtz free energy F = E−TS can be obtained
by numerical integration. First, keeping the electron den-
sity n fixed and using the identity56 ∂[F (n, T )/T ]/∂T =
E(n, T )/T 2, the free energy density per particle f = F/N
is given by a high temperature integration

f(n, T ) =
T

T ′
f(n, T ′)− T

∫ T

T ′

dτ
ε(τ, n)

τ2
, (23)

where T ′ is a suitably high temperature above which the

asymptotic form fxc(T ) → −(3T )−1/2r
−3/2
s is valid.57

Despite the singular factor 1/τ2 in the integrand, if the
zero temperature energy is subtracted, the integral to
obtain f̄(T ) = f(T )−f(0) is well behaved when T → 0+.
The reason is that ε̄(n, T ) ≡ ε(n, T )− ε(0, n) vanishes at
T = 0 due to the linear behavior of the specific heat,
ε̄(n, T ) → (1/2)γ(n)T 2, (T → 0+). Alternatively, one
can obtain f(n, T ) by integrating the chemical potential
over the electron density (or rs) at low density keeping
V and T fixed, using the relation µ = ∂(F/V )/∂n with
n(r) = 3/4πr3,

f(n, T ) = 3r3s

∫ ∞

rs

dr
µ(n(r), T )

r4
. (24)

This formula is the FT generalization of a similar expres-
sion for the ground state energy per particle ε(n, 0) =
f(n, 0).55,58 Results for these two pathways for obtaining
fxc(n, T ) are compared in Fig. 5 for rs = 4. Note that
these results for fxc(n, T ) differ by a small, approximately
constant shift, of about 0.013 Hartree. This discrepancy
suggests that our cumulant Green’s function based on the
G0W 0 self-energy is not fully self-consistent or conserva-
tive. Similarly, as discussed by Holm,59 the lack of partial
or full self-consistency in GW calculations at T = 0 also
leads to nearly constant shifts in the chemical potential
resulting from different formulae. Consequently, some
level of self-consistency, such as the quasiparticle self-
consistent GW (QPSCGW) approximation may be an
improvement for some quantities.36 However, a detailed
treatment of self-consistency in the cumulant expansion
has not yet been developed, and is therefore beyond the
scope of the present work.
Nevertheless, the above discrepancy does not imply

a serious limitation of our current approach. Clearly
the result based on the high-temperature integration of
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FIG. 5: (Color online) Exchange correlation part of the
Helmholtz-free energy calculated via an integration over tem-
perature (green) compared with that calculated via integra-
tion over rs (blue), and the KSDT (red).20,24 The black curve
shows the rs form shifted by a constant 0.013 Hartree.

ε(n, T )/T 2 from the GMK sum rule matches more closely
to QMC results, and is therefore a preferred prescription.
This choice is also justified on physical grounds since the
density integration path depends on the chemical poten-
tial at very low densities where correlation effects are
strongest and the cumulant approach least reliable. As
an alternative prescription, the discrepancy in the density
integration path can be accounted for simply by adding a
shift so that f(n, T ) matches to the ground state energy
per particle at T = 0. As shown in Fig. 5 both of these
prescriptions yield very good agreement with QMC.
Given f(n, T ) and µ(n, T ), the electron pressure can

be obtained from the relation Ω = −pV = (F −G), i.e.,

p(n, T ) = n[µ(n, T )− f(n, T )]. (25)

A decomposition into independent particle and exchange-
correlation parts similar to those for ε and µ applies to
all derived thermodynamic potentials and densities, so

f(n, T ) = f0(n, T ) + fxc(n, T ), (26)

p(n, T ) = p0(n, T ) + pxc(n, T ). (27)

The exchange-correlation contributions to the Helmholtz
free energy per particle fxc, and the electron pressure pxc
for the HEG are shown in Fig. 6. The accuracy of the cal-
culation of pxc is less than that of fxc due to the subtrac-
tion in Eq. (25), and depends on how fxc and µxc are cal-
culated. We note that p0(n, T ) = (2/3)nε0(n, T ) for all
n and T and asymptotes to the classical limit p → nkBT
at high T (see Fig. 7). The exchange-correlation pressure
pxc(n, T ) corresponds to the generalization of the Fermi-
or exchange-pressure due to the Pauli principle. At low
T this contribution is dominated by exchange, and at
high T by correlation contributions. However, in con-
trast to the dominance of the Fermi pressure at T = 0,
the exchange-correlation effects are both small compared
to the independent particle pressure for T >> TF .
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FIG. 6: (Color online) Exchange-correlation contributions to
the Helmholtz-free energy per particle fxc (top) and the elec-
tron pressure pxc (bottom) vs T/TF for the the HEG from the
retarded cumulant Green’s function approach (RC, blue)30,
compared to those from GW (green) and the KSDT fit (red).
Note that the RC generally agrees better than GW with the
KSDT fits.

C. Entropy and Specific Heat

Of long-standing interest in many-body theory is the
behavior of the entropy per particle s = S/N and
constant volume specific heat cv of interacting Fermi-
systems. In the low temperature limit T → 0+, both
s(n, T ) and cv(n, T ) are linear in temperature and equal,
i.e., cv(n, T ) = T∂s(n, T )/∂T = s(n, T ) ≡ γ(n)T . The
ratio cv/c

0
v = γ/γ0 = m∗ then corresponds to the effec-

tive mass m∗ = kF /vF defined in Eq. (21). However,
values of m∗ for the HEG have been notoriously difficult
to pin down definitively.18,60 Likewise there is a currently
a lack of accurate QMC data at very low T which could
help resolve this issue. To our knowledge, however, the
behavior of the specific heat in the WDM regime has not
been extensively investigated.

In an effort to investigate this behavior we first eval-
uate the entropy per particle s(n, T ) using the relation
Ts = ε − f with a high temperature integration for f .
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The exchange correlation part is then obtained by sub-
tracting Ts0, and similarly for cv = T∂s/∂T ,

s(n, T ) = s0(n, T ) + sxc(n, T ), (28)

cv(n, T ) = c0v(n, T ) + cvxc(n, T ). (29)

Results for the exchange-correlation entropy per parti-
cle sxc are shown in Fig. 8. Remarkably entropic effects
on the exchange-correlation contributions are only sub-
stantial at relatively high T of order TF . This behav-
ior reflects the cross-over from exchange- to correlation-
dominated behavior in WDM where spin can be ignored.
Our results for the specific heat are illustrated in Fig. 9.

First (Top), we compare those at T = 0 for cv/c
0
v = m∗

from Eq. (21), to calculations based on Fermi liquid the-
ory as in Eq. (21), the RPA,55,61 and the KSDT parame-
terization. Note that the RC results more closely match
those from the KSDT fits to QMC. However, they are
slightly higher than those of Fermi liquid (FLT) or the
RPA. Next (Bottom), we compare the temperature de-
pendence of cv(T )/c

0
v(T ) to KSDT. Although both curves

exhibit an oscillatory behavior, the minima and maxima
in the RC calculation occur at higher temperatures. The
value of γ at T = 0 also fixes the leading quadratic tem-
perature variation of the energy and the Helmholtz free
energy,

ε(n, T ) = ε(n, 0) + (1/2)γT 2 + · · · , (30)

f(n, T ) = ε(n, 0)− (1/2)γT 2 + · · · . (31)

Similarly the density dependence of γ(n) determines the
leading quadratic behavior of the chemical potential.
From the relation (∂µ/∂T )n = −(∂s/∂n)T , we find

µ = µ(0)−
1

2

dγ(n)

dn
T 2 + · · · . (32)
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FIG. 7: (Color online) Electron pressure p(n, T )/n compared
to the independent particle result for the HEG at rs = 4 from
the RC (blue), IP (green), and from KSDT fits (red). Note
that the effect of exchange and correlation is significant for
T < TF but relatively small for T >> TF .

Nevertheless, this quadratic behavior does not persist at
higher T where the Fermi surface broadens over a width
of order kBT . For example, in the quasi-particle approx-
imation, the low T specific heat corresponds to an av-
erage of the density of states gqp(ω) over this smeared
Fermi surface. From the negative curvature of gqp(ω)
near ω ≈ µ in Fig. 1, one expects a reduction in the
magnitude of cv/c

0
v with increasing T near T = 0, as

observed in the lower part of Fig. 9. These results sug-
gest that the ratio cv(T )/c

0
v(T ) has a minimum at some

temperature below TF . This is roughly consistent with
the variations seen in the KSDT fit to QMC data at low
temperature. However, the ratio is difficult to estimate
with precision numerically, as cv(T ) and c0v(T ) are both
very small at low T .24

D. Isothermal compressibility

Another quantity of interest is the isothermal com-
pressibility κ, which is related to the density fluctuations
in the system and can be obtained from the density de-
pendence of the chemical potential

κ(n, T ) = −
1

∂µ(n, T )/∂n
= 4π

r2s
∂µ/∂rs

. (33)

Results for κ(n, T ) are shown in Fig. 10, where the low
temperature results are seen to be in good agreement
with those from QMC and many-body perturbation the-
ory, including vertex corrections.18

IV. SPIN-POLARIZED ELECTRON GAS

We conclude our derivation of thermodynamic proper-
ties with a brief discussion of spin-dependent contribu-
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FIG. 8: (Color online) Exchange-correlation contributions
sxc(n, T ) to the entropy per particle, scaled by temperature T
at various densities for the HEG from RC (blue), GW (green),
and KSDT (red).
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tions. Spin-polarization is important in many contexts
in condensed matter, especially in magnetism. Here we
assume for simplicity that electrons with different spins
can be treated independently. For example, in the HEG
electrons of each spin σ = ±1/2 are uniformly distributed
with fixed spin-dependent equilibrium number densities
n± where n = (n+ + n−) = N/V is the total num-
ber density. By defining the degree of spin polariza-
tion as χ = (n+ − n−)/n, and n = (4πr3s/3)

−1 where
rs is the Wigner-Seitz density parameter, the finite-
temperature spin dependent interacting electron gas can
be described by three parameters χ, T and rs. We also
define the dimensionless spin-dependent reduced temper-
atures τσ ≡ T/T σ

F , where T σ
F = εσF /kB is the Fermi tem-

perature for the spin-σ electrons in the gas.
The thermodynamics of the spin-dependent system can

then be treated analogously to the unpolarized system,
substituting the spin-dependent quantities respectively.
For example calculations of the spin dependent energy

 0.95
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FIG. 9: (Color online) Top: Specific heat ratio cv/c
0
v vs den-

sity parameter rs and T=0 for the HEG from the GMK sum-
rule using RC (blue) compared with m∗ of Fermi liquid theory
(FLT) (green), the RPA calculation of Lundqvist (black)55

and of Louie et al. (red crosses).61 Bottom: Temperature de-
pendence cv(T )/c

0
v(T ) for rs = 4 from RC (blue) compared

with the KSDT fit (red).
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FIG. 10: (Color online) Isothermal compressibility of the
HEG vs density parameter rs at various temperatures t =
T/TF . For comparison results from QMC and GWΓ-MBPT
at T = 0 are also given.18

per particle εσ(T ) = Eσ(T )/N are again calculated with
the spin-dependent generalization of GMK sum-rule, i.e.,
with a spin-dependent spectral function Akσ(ω) as in Eq.
(1). Likewise, each spin population has a chemical poten-
tial fixed by the spin−dependent densities nσ and Fermi
factors fσ(ε) = 1/[eβ(ε−µσ) + 1]. The spin-dependent
self-energies are again approximated by the GW approx-
imation at the G0W 0 level, but with implicit temperature
and spin dependence in the Fermi- and Bose-factors. The
exchange-correlation parts are also defined analogously,
by subtracting the independent particle contributions.
Results for the energy and chemical potential vs T for
full polarization χ = 1 are shown in Fig. 11.
Similarly, the spin-dependent Helmholtz free-energies

Fσ(T ) can again be calculated by integrating Eσ(T )/T
2

as in Eq. (12). Thus the total Helmholtz F and Gibbs
free energies G can be expressed as as sum over spin-
dependent contributions

F =
∑

σ

Fσ =
∑

σ

Nσfσ(T ) (34)

G =
∑

σ

Gσ =
∑

σ

Nσµσ(T ) (35)

Similarly the pressure can be obtained from the thermo-
dynamic potential Ω = F −G = −VΣσpσ(T ), so

p =
∑

σ

nσ[µσ − fσ]. (36)

Results for fxc and pxc based on high temperature inte-
gration and matched to the limiting forms

fxc(T ) → −(3T )−1/2r−3/2
s +O(T−1), (37)

εxc(T ) → −(1/2)(3T )−1/2r−3/2
s +O(T−1)., (38)

are shown in Fig. 12. These results are independent of
both σ and χ.57
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V. SUMMARY AND CONCLUSIONS

We have presented calculations of a number of ther-
modynamic properties of the interacting HEG including
optional spin-polarization over a wide range of densities
and temperatures up to the warm dense matter regime
T ∼ TF . Our approach is based on the many-body for-
malism of MS with a FT extension of retarded cumu-
lant Green’s function and sum rules for the total electron
number and energy. This approach permits a quantita-
tive analysis of exchange and correlation contributions to
the thermodynamics, and consequently provides an alter-
native source of data for the electron gas. Although the
temperature and density dependence is implicit, the nu-
merical results can be parameterized either to determine
or to improve existing finite-temperature DFT exchange-
correlation functionals.8,20,21 We find that exchange-
correlation effects are slowly varying at low tempera-
ture T < TF , but decrease rapidly in the WDM regime
T ≥ TF where exchange becomes small and Coulomb
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FIG. 12: (Color online) Exchange-correlation parts of the
Helmholtz free energy per particle fxc (Top) and electron
pressure pxc (Bottom), vs τ = T/TF for the spin-polarized
HEG with χ = 1 from the cumulant expansion (blue), GW
(green), and KSDT (red).

correlation dominates. Consequently at “cool” temper-
atures (T << TF ) and normal densities (2 < rs < 6),
conventional approaches such as Fermi liquid theory are
good approximations. More generally, we find that the
FT RC approach with a G0W 0 self-energy is a very good
approximation for a much wider range of temperatures,
including the WDM regime. The RC approach gener-
ally improves on the GW and QP approximations, and
is typically accurate to better than 10% compared to
QMC, though the errors are larger at very low densities
rs ∼ 10.9 Moreoer improvements are possible. It seems
likely, for example, that part of the error is due to the
non-conserving properties of the RC Green’s function.
These errors are reflected by the small discrepancies in
quantities like the Helmholtz free energy calculated using
different thermodynamic identities. This is a well known
limitation of the G0W 0 approach leading to similar dis-
crepancies in the chemical potential,59 which are cured
for the most part by self-consistency. However, these
discrepancies do not pose a serious limitation to our ap-
proach, since either a high-temperature integration or a



11

well defined shift both yield accurate results compared to
QMC. Results for the entropy and specific heat are con-
sistent with the predictions of Fermi liquid theory in the
T → 0+ limit, but deviations are observed at higher tem-
peratures, even well below TF . Although the RC results
for the specific heat ratio cv/c

0
v = m∗ are closer to those

from QMC, especially at high densities, they are some-
what larger than other methods, and there is a need for
more quantitative treatments to resolve the differences.
We also find that satellites and quasi-particle renormal-
ization effects are largely but not completely suppressed
at finite T for some quantities, though not the total en-

ergy. Consequently, the QP approximation with a GW
self-energy can sometimes be fairly good. Although the
calculations presented here are restricted to thermody-
namic properties the HEG, the retarded cumuant method
is more generally applicable, and provides a systematic,
first principles approach for calculations of many physical
properties.
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21 V. V. Karasiev, L. Caldeŕın, and S. B. Trickey, Phys. Rev.
E 93, 063207 (2016).

22 Z. Yan, J. P. Perdew, and S. Kurth, Phys. Rev. B 61,

16430 (2000).
23 K. S. Singwi, M. P. Tosi, R. H. Land, and A. Sjölander,
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