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We present a computational technique to calculate time and momentum resolved non-equilibrium
spectral density of correlated systems using a tunneling approach akin scanning tunneling spec-
troscopy. The important difference is that our probe is extended, basically a copy of the sample,
allowing one to extract the momentum information of the excitations. We illustrate the method
by measuring the spectrum of a Mott-insulating extended Hubbard chain after a sudden quench
with the aid of time-dependent density matrix renormalization group (tDMRG) calculations. We
demonstrate that the system realizes a non-thermal state that is an admixture of spin and charge
density wave states, with corresponding signatures that are recognizable as in-gap sub-bands. In
particular, we identify a band of excitons and one of stable anti-bound states at high energies that
gains enhanced visibility after the pump. We do not appreciate noticeable relaxation within the
time-scales considered, which is attributed to the lack of decay channels due to spin-charge sepa-
ration. These ideas can be readily applied to study transient dynamics and spectral signatures of

correlation-driven non-equilibrium processes.

I. INTRODUCTION

With the advent of new powerful light sources, exper-
imentalists can shake the excitations of a system and
probe states present in the spectrum that are not ac-
cessible via finite-temperature measurements. By means
of ultrafast light pulses, electrons can be excited above
any intrinsic energy scale, and the competition between
different degrees of freedom can be manipulated.!™®. The
resulting non-thermal states after photoexcitation often
contain coexisting orders that are not usually present in
the ground or thermal states®5. This new knob can be
used to stabilize “hidden” phases that reside at higher
energies, such as superconductivity’, and to induce or
disrupt charge, magnetic, or orbital order®?>8 12,

Time-resolved femtosecond photoemission spec-
troscopy has been one of the most a used techniques
to monitor in real time and with atomic resolution the
ultrafast quasiparticle dynamics in correlated-electron
materials'> 1%, The experimental protocol™'” starts
with an intense pulse of radiation that ‘pumps’ the
system into a highly excited non-equilibrium state.
After a variable time delay, the system is subject to
a weak probe pulse of higher energy photons, ejecting
photoelectrons which are detected with energy (and
angle) resolution. By means of this powerful tool, one
can peek into the different decay mechanisms taking
place, and experimentally unveil the complex and rich
interplay between charge, spin, orbital and vibrational
degrees of freedom.

Notwithstanding, theoretically reproducing time- and
angle-resolved photoemission spectra is computationally
challenging and expensive. It can be numerically carried
out only in small systems, as it requires the full knowl-
edge of the eigenstates and the calculation of a two-time
correlator'®1?. In the equilibrium steady state, approxi-
mations can be made by using the single-particle Green’s
function, but all information about transient and the ac-

FIG. 1: (a) Proposed tunneling setup: a sample chain is con-
nected to a probe chain via a tunneling barrier. The probe
chain is set at a target gate voltage V. (b) Particles tun-
nel for a short period of time to the probe chain, where their
momentum distribution n(k) is measured.

tual decay mechanisms during the relaxation process is
lost. In a non-thermal state far from equilibrium, the
imaginary part of the equilibrium retarded Green’s func-
tion G(w) is not guaranteed to be positive and does not
yield meaningful information about the orbital occupa-
tion (it is not a density of states).

We hereby propose a different approach to investigate
these quantities using a tunneling technique. We fo-
cus on a geometry that was first suggested in Ref.20,
and later realized experimentally in Refs.21,22 for con-
ducting momentum-resolved tunneling spectroscopies on
one-dimensional (1D) systems. Unlike scanning tun-
neling spectroscopy, where the probe yields only local
information?®, an extended one-dimensional wire can
provide momentum resolution. Electrons can tunnel
from the sample into the one-dimensional non-interacting
lead that is placed parallel to it. Since this occurs in the
transverse direction, momentum conservation along the
probe direction is ensured. A gate voltage V; is applied
to the probe wire and energy conservation implies that
only electrons with energy w = V; can tunnel. Momen-
tum resolution is achieved through the application of a
magnetic field perpendicular to the plane of the sample
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FIG. 2: Spectral function for a tight-binding chain obtained from the momentum distribution function nq(k) of a parallel probing
chain after being in contact with the physical system for a time ¢prope. Each momentum k is obtained exactly by solving the
two-level problem described above. Panels (a),(b),(c) correspond to ¢prope = 3,7,9 in units of 1/J. Curves (d),(e),(f) show a
cut in frequency along the k = 7 line for the same times as in (a),(b) and (c).

and probe wires. A similar scheme was recently pro-
posed for performing momentum-resolved spectroscopies
on cold atomic systems: instead of a voltage, an RF field
or the shaking of the lattice can yield transitions at a tar-
get frequency?*?°. In this variation, as particles tunnel
to the second channel, momentum is mapped via time of
flight.

In section IT we describe in detail the implementation
and illustrate with simple examples. In section IIT we
present results for an interacting system —the extended
Hubbard model- after a quench, and we close with a
summary and discussion.

II. METHOD

We propose to computationally carry out a hybrid
method combining ideas from the aforementioned setups:
after the system has been photoexcited, we allow for elec-
trons to tunnel into an empty parallel wire which has
been set at a given gate voltage, as shown in Fig.1(a).

A second “probe” chain is included as

L
Hprobe = Vg Z dldz = Vg Z dzdka (2)
i=1 k

Only electrons at a particular energy V,; can tunnel, and
we can then access the occupation of each state with mo-
mentum resolution by simply calculating the momentum
distribution function of the probe wire.

A. Non-interacting fermions

We illustrate this idea with the simple example of non-
interacting fermions, whose Hamiltonian reads

L-1
Hy=-J Z (CICi+1 + h.c.) = Zwkc,tck, (1)
k

i=1,0
where cj and ¢; are the usual creation and annihilation
fermion operators (we ignore the spin index for now) and
wr = —2Jcosk. We take the inter-atomic distance as
unity and we express all energies in units of the hopping
parameter J (the symbol “¢” will be reserved to represent
time, which will be expressed in units of 1/.J).
where we distinguish the operators d' and d acting on the
probe. Notice that there is no hopping nor interactions
along the probe chain: it consists of isolated empty or-



bitals with a gate voltage (or chemical potential) V. At
time ¢ = 0 the system is in the ground state of the phys-
ical chain at a fixed given density, while the probe chain
is empty (this is ensured by initially setting V; to a very
large positive value). Then, both chains are connected
by means of a tunneling term:

Hiyunnel = J' EL: (dfei+ne) = z}; (afer +1c.).

i=1

(3)
Putting together Egs.(1),(2) and (3), the full problem be-
comes the sum of L independent tunneling terms, which
can be readily solved. For simplicity, we look at an eigen-
state at temperature 7" = 0, in which a single particle
orbital with momentum k is either empty or occupied.
The single particle states are |n(k),nq(k)) = |1,0); 0, 1)
where 1 and 0 represent the occupancy of the physical or-
bital or the probe orbital with momentum k. The Hamil-
tonian for the two level system is :

| Wk —J/
H_[J/ Vg}

with ground state energies

2
Ba(k) = Yot 4 \/<V9 _‘”’“) +J2,

2 2

Starting from a initial state |1,0), the probability that
a fermion is transferred to the corresponding empty
probe state k at time t is simply ng(t) = [(t|0,1)]? =
142sin? (BBt with A = JW/(J + W)W =
wr — E4. This function oscillates in time with a period
T =mn/J for V, = wy. In order to maximize the “visibil-
ity” one needs to measure the density of the probe state
k at time tmax = 7/2J'. As a function of V,, the proba-
bility is peaked at V, = wy (with smaller satellite peaks),
and its width gets narrower as J' — 0, or tyax — 00, as
shown in Fig.2. This is nothing else but Fermi’s golden
rule and a manifestation of the uncertainty principle: to
obtain sharper resolution in energy, one needs to choose
a small coupling J’ and measure at very long times.

t t
(ng) = J/Q/ dtl/ R (N (R ()
0 0

B. General formulation away from equilibrium

We now consider the full many-body Hamiltonian H
and a generic initial state pg = p ® |[0)(0]. The den-
sity matrix p represents the state of the many-body sys-
tem: p =3 . ay an|n’)(n|, where the states |n) are the
eigenstates of H. We point out that this is a general sce-
nario, in which the system may have been driven away
from equilibrium by an external perturbation or a quench
and H is the final Hamiltonian; the equilibrium case is
simply recovered by taking a diagonal density matrix.
We assume that the measurement process starts suddenly
some time after the perturbation, which for simplicity of
notation we label as ¢ = 0, and the system evolves there-
after under the action of a time-independent Hamiltonian
(i.e.,any time-dependence in the Hamiltonian is “frozen”
at time ¢t = 0). Following closely the discussion in Ref.24
we find that in second order of perturbation, the occu-
pation of the state k of the probe system is given as (we
ignore the spin index for now):

(na(k, 1)) :/otdtl /Otdtg(Vk(tl)nd(k)Vk(tQ», )

where Vj, = —J’ (dLCk + h.c.). The averages are with re-

spect to the initial state (---) = Tr(- - - pg) and we work in
the interaction picture O(t) = e!(H+Vana)tQe—i(H+Vynat)t
(from now on we ignore the subindex k for convenience).
Since the probe orbital is initially empty, the only term
surviving in this expression is:

<’I’Ld> = J/Q /Ot dtl /Ot dt2<cT(t1)d(tl)nddT(tg)c(t2)>.(5)

Moreover, noticing that the initial state is a prod-

uct state, we can readily evaluate the contri-
bution of the probe orbital to this expression:
Trprobe (d(t1)nadt (t2)[0)(0]) = e?Valt2=t1)  Explicitly,

Eq.(5) becomes:

t t
_ Jl2 / dtl / dtgeiVQ (ta—t1) § a;,anei(E"/tl_E"tz) <n/|CT6iH(t2—t1)C|n>
0 0

n,n’

t t
_ J12 / dtl / dt2eng (ta—t1) Z Z a:lanei(En/fEm)tlei(E,,,LfE,,L)tz <TL/|CT ‘m> <m|c|n>
0 0

n,n’ m

m

t t
J/2 Z (/ dtl Z a;’;le—i(Em—En/ +Vg)t1 <n’|cT|m>> X </ dtg Z anei(Em—En—i-Vg)tg <m|c|n>>
0 —~ 0 ~
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with wpm = En(N) — E, (N —1), N being the number of
particles. Hence, the resulting occupation will be peaked
at the gate voltages corresponding to the allowable tran-
sitions, (m(N — 1)|ckx|n(N)) , weighed by the initial oc-
cupation of the eigenstates. We notice that the argu-
ment in the integral is just the lesser Green’s function
G<(t1,t2) = (c(t1)c(t2)) and this equation is identical
to the one derived in Ref.18 to describe a time-resolved
photoemission experiment.

For large t, the quantity n4(k,t) converges to a sum
of Dirac deltas and yields an expression proportional to
the system’s spectral function. Clearly, at long times
the electron will be reflected and tunnel back to the sys-
tem so, in reality, to improve the energy resolution one
needs to pick J’ small. In general, we take as a rule
of thumb ¢y, = m/2J' in all cases. We point out that
a time-dependent tunneling term could also be consid-
ered, which translates into the introduction of an enve-
lope function, as done in Ref.18.

III. RESULTS

We now demonstrate an application of this scheme
to explore competing orders and excitations in one-
dimensional correlated materials. It is known that in
1D systems, the band edge singularity could give rise to
a high-differential optical gain, with potential applica-
tions such as light-emitting diodes, lasers, sensors, and
molecular switches2633. There is great deal of interest
in the optical properties of 1D materials in the presence
of correlations, when a gap arises as a result of electronic
interactions. Moreover, the emergence of excitonic ex-
citations, has been subject of attention of a number of
theoretical>*“8and experimental®:>° works.

The minimal model to study correlated polymers is the
so-called “U — V” extended Hubbard model:

L—1
=03 (cj(,ciﬂg + h.c.) +

i=1,0

UZL: (niT - ;) (m-L - ;) v

i=1

L-1
+ VZ (ni— 1)(ni+1 —1)

H

_|_

Here, c;ro creates an electron of spin ¢ on the i*" site along
a chain of length L. The on-site and nearest-neighbor
Coulomb repulsion are parametrized by U and V, re-
spectively.

The physics of one-dimensional strongly correlated
fermionic systems can generally be described in terms of
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FIG. 3: Momentum resolved spectrum of the 1D extended
Hubbard model at half-filling at (a) zero temperature, where
negative(positive) frequencies correspond to occupied(empty)

states, and (b) T'= 2.5J, obtained with the tDMRG method
for a chain of length L = 40, and interaction U = 20,V = 5.

Luttinger liquid theory. In a Luttinger liquid (LL)%153,

the natural excitations are collective density fluctuations,
that carry either spin (“spinons”), or charge (“holons”).
This leads to the spin-charge separation picture, in which
a fermion injected into the system breaks down into exci-
tations, each with a characteristic energy scale and veloc-
ity (one for the charge, one for the spin). Spin-charge sep-
aration acts as a constraint for the dynamics of the sys-
tem, that cannot relax to a thermal state after a quench
or non-equilibrium situation. The lack of thermalization
implies that it might be possible to ‘trap’ the system in
an excited state for very long times.

As a proof of concept we conduct a numerical experi-
ment using the time-dependent density matrix renormal-
ization group method (tDMRG)?* 7 on chains of length
L = 32 and with parameters U = 20 and V' = 5. This
choice may seem exaggerated, but is justified: it will pro-
vide us with a large Mott gap A ~ U — V, and allow us
to resolve any features that may appear inside the gap
with more detail and well separated from the bands. The
ground state of the system at half-filling is a Mott insula-
tor with dominant power-law decaying quasi-long-range
antiferromagnetic order, or SDW phase®® 6!, The optical
conductivity and Raman spectrum reveal the existence of
sharp excitonic peaks with a weak continuous band of free
excitations of width ~ 8.J347384041  However, these op-
tical excitations are not present in the spectrum, shown
in Fig.3(a) as a reference, also obtained using tDMRG
with m = 600 states. The lower and upper Hubbard
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FIG. 4: Momentum resolved tunneling spectrum of the 1D
extended Hubbard model at half-filling after a sudden quench
in the interactions from Uy = 2,Vp = 0 to U = 20,V = 5,
obtained with the tDMRG method for a chain of length L =
32 a time (a) twait = 0 and (b) twait = 5 after the quench, and
a probe time tprobe = 7.9

bands are well separated from each other by a wide Mott
gap, and no remarkable features are observed, besides the
characteristic holon and spinon dispersions.

To avoid considerations concerning pulse shape, fre-
quency, and length, we simplify the discussion to the case
of a quench, in which the system is prepared in the Mott
insulating ground state of a system of N = L electrons
with Uy = 2, V5 = 0, and the interactions are suddenly
changed to U = 20,V = 5. As a consequence, the fi-
nal state will be a superposition of eigenstates that will
exhibit a large number free holes and doublons, as well
as excitons, occupying broad range of energies. In Fig.4
we show results obtained using tunneling spectroscopy
right after the quench. The probe is connected to the
chain at time ¢y, after the quench, and we plot the mo-
mentum distribution function of the probe chain at time
twait +lprobe @s a function of momentum and gate voltage:

L
ndo’ Z RG=D dT dlo’>

Notice that we use open boundary conditions through-
out, which translates into some uncertainty in momen-
tum. We scanned V; in steps of 0.2, implying 175 inde-
pendent tDMRG simulations for each value of ty.;;. We
took J' = 0.2 and used m = 200 DMRG states, which
yields a truncation error of the order of 10~% in the worse
cases.

As shown in Fig.4, besides some sharper and better de-
fined features, we are not able to resolve a noticeable dif-
ference between the measurements right after the quench
and at tyat = 5. This is also reflected in the integrated
weight over momenta, displayed in Fig.5: panel (a) illus-
trates how the visibility improves as a function of ¢,;obe

e
= a_,) tl)l(ﬂ){‘
= 0.03-(
T — 10 10 — 70
=
i — 20 5.0 — 79
= 0.02f | ) ’ :
E-.’ | A 30 — 6.0
ool P \ fvﬂ
= |
— 2 1 e e
0.00°} .
0.04

0.02p=

Integrated weight

1 1
0'0—020 -15 -10 -5 0 5 10 15

FIG. 5: (a) Integrated spectral weight as a function of Vj
for twait = 0 and different probe times, demonstrating the
resolution improvement. (b) Same as (a) but for twaix = 0
and 5, at the final tprobe = 7.9.

(see animations in the supplementary material®?), while
in (b) we compare the two waiting times. In this case,
we are able to resolve some minor differences that stem
from the relaxation of excitations within the lower Hub-
bard band, indicating the lack of available channels for
non-radiative decay or recombination. It is possible that
these excitations cannot decay due to the energy mis-
match between the bandwidth W and the interactions,
or thermalization occurs in timescales that far exceed the
simulation time. This bottleneck exists already in higher
dimensions®66_ If the bandwidth is small, the number
of available decay channels gets suppressed. However, in
our case the in-gap states are not too far from each other,
nor from the lower Hubbard band. In higher dimensions
it was observed that the spin excitations are highly rel-
evant for thermalization. It is possible that spin-charge
separation, which is more dramatic at large values of U,
and the flat spinon dispersion for large values of U do
not allow for a wide range of energy and momenta for
scattering.

The spectrum is very well resolved and displays many
non-trivial features that are not present neither in the
zero temperature spectrum nor the optical conductivity.
In order to account for these results, we first assume the
possibility that the system is in a thermal state. We
have calculated the spectra for a wide range of tempera-
ture scales and have found that the final state after the
quench does not correspond to a thermal distribution.
For illustration, we display finite-temperature tDMRGS7
results at T = 2.5J in Fig.3(b). The first remarkable
and most obvious feature of the spectrum is recogniz-
able in the lower Hubbard band, which displays a dis-
persion rather resembling a tight-binding band of spin-
less fermions than the usual characteristics of fraction-
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FIG. 6: (a) Same as Fig.4 obtained with exact diagonalization
for a chain with L = 4 and 4 probe sites. Horizontal color
bars represent different transition frequencies, as explained in
the text. (b) Histogram showing the contribution of different
eigenstates to the resulting distribution after the quench. (c)
Local density of double occupied sites for each eigenstate.

alized excitations seen in panel (a). This is actually ex-
pected, since in this regime the spin is completely inco-
herent (We refer the reader to Refs.68-76 for a discussion
of the finite-temperature spectra of 1D correlated sys-
tems). Moreover, we distinguish a distribution of spec-
tral weight inside the gap due to the correlated nature of
the problem”®, a phenomenon that has been experimen-
tally observed in the photoemission spectrum of the sin-
gle chain Mott insulators SraCuO>”" and Nag g V20575.
On the other hand, the tunneling spectrum displays a
quite large spectral weight inside the gap and in the up-
per Hubbard band, implying that if we had to assign
a temperature to the system after the quench, it would
have to be larger than the Mott gap. However, unlike
the finite temperature case, the spinon and holon bands
remain coherent.

In order to make sense of the unexpected features
in the tunneling results, we carry out a similar simu-
lation using exact diagonalization on a chain with L = 4
sites with a parallel chain as a probe. The complex-
ity of the problem is similar to that of a 2 x 4 Hub-
bard ladder with 4 electrons. Even though it is a small
system and is likely very affected by boundary effects,
it provides valuable intuition to interpret the tDMRG
results. Following a similar protocol, we first resolve
the tunneling spectrum, shown in Fig.6(a). Since we
have access to all eigenstates and eigenvalues, we cal-
culate all possible single particle excitation energies as
Wnm = E,(N =L —-1,5%=1)-E,(N = L,5% = 0),
some of which are shown in the plot with different colors.

The final state is predominantly a superposition of the
ground state —which has dominant SDW correlations—
and two excited states, labelled |m = 3) and |m = 5)
in Fig.6(b), that display CDW correlations, as shown in
panel Fig.6(c). This enhancement of the charge order
was previously observed in Ref.79 under the action of a
driving field. We focus on the dominant features of the
spectrum, namely, the flat bands at energy w ~ —5 and
w ~ —15, and the in-gap spectral weight at energies be-
tween w = 5 and w = 7. The first one corresponds to
breaking a holon-doublon pair on top of |m = 3), while
the in-gap weight corresponds to excitations on top of
|m = 5). The flat band at high energies below the Fermi
level is an excitation on top of the ground state that ac-
quires an enhanced spectral weight after the pump. This
high energy feature has been overlooked in prior stud-
ies of the model due to its very weak spectral signatures
at zero-temperature, and indicates the presence of stable
anti-bound states outside of the continuum.

IV. CONCLUSIONS

To summarize, we have introduced a computational
tunneling approach that allows one to access the time
and momentum resolved spectrum of strongly correlated
systems away from equilibrium, which previously could
only be obtained from small systems with exact diagonal-
ization. The formulation is general and does not depend
on how the system is driven out of equilibrium. We have
applied the method to study the dynamics of Mott in-
sulating Hubbard chains after a quench and have been
able to identify features in the spectrum corresponding
to an admixture of SDW and CDW states, with a band
of doublon-holon excitons and high-energy anti-bound
states. This extremely powerful technique can be readily
extended to arbitrary models under a variety of scenar-
ios, giving access to transient dynamics and the ability
to identify correlation-driven non-equilibrium processes
behind pump-driven phase transitions and exciton decay
and recombination.
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