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Valley, as a new degree of freedom, raises the valleytronics and classical analogs in 

fundamental and applied science. Here, by designing asymmetrical elastic metamaterials 

made of hard and soft materials, we present the valley anisotropy which has not been 

explored in conventional symmetric systems. We demonstrate the creation of valley 

topological insulators by tuning an anisotropic Berry curvature and show topological 

waves relying on operating frequencies. The proposed topological properties can 

contribute to better understanding the valley topology and to creating a new type of 

topological insulators. 

 

�. INTRODUCTION 
Elastic waves possess plenty of degree of freedoms (DOFs), including frequencies, phases 

and polarizations, thus enabling a variety of applications such as target detection, information 

processing, non-destructive evaluation, structural health monitoring, acoustic lens, energy 

focusing and biomedical imaging [1–7]. Recently, topology has been proposed as a new DOF in 

manipulating waves in both photonic and phononic systems. This new tool exhibits remarkable 

impact not only on fundamental science such as condensed matter physics, but also on 

engineering applications, e.g., low loss devices and waveguides [8–12]. In photonics, the 

photonic spin Hall effect has been achieved by taking advantage of spin DOF, which opens up an 

avenue of spin-dependent light transport and one-way spin transport [13–16]. In phononics, 

mechanical patterns and deformations have been employed as mechanisms to enable the elastic 

topological states [11,12,17–24]. 

Recently, valley – the degenerate yet inequivalent energy extrema in momentum space – has 

emerged as a new dimension in manipulating waves in electronics, photonics and 



phononics [8,9,25–31]. In graphene and transition metal dichalcogenides (TMD), the valley Hall 

effect has been studied for the promising applications in information carrier and storage [27,29–

31]. As the concept of valley is introduced into the classic system, the photonic and phononic 

valley crystals have also been proposed, showing valley-dependent energy 

transportation [8,9,25,26,28]. Likewise, various designs of elastic valley metamaterials have 

been reported based largely on the two different types: TMD-inspired hexagonal lattices, and 

triangular lattices with triangle-like scatterers [11,12,25,26,32,33]. However, existing designs of 

valley metamaterials are limited to the inherent spatial inversion symmetry of the physical 

system, in which the typical Berry curvature distribution follows Ωሺെሻ ൌ Ωሺሻ where k is a 

wave vector in the Brillouin zone. The valley metamaterials without spatial inversion symmetry 

have not yet been explored. The introduction of asymmetrical design into valley metamaterials 

may add an additional DOF in manipulating waves for waveguiding and information carrying 

purposes. 

In this manuscript, we report a new concept of valley anisotropy by introducing 

asymmetrical architectures into elastic metamaterials. The proposed elastic valley metamaterials 

are composed of hard spiral scatterers and soft material matrix. The spiral structure ensures the 

system without spatial inversion symmetry. The valley anisotropy is revealed by the exceptional 

Berry curvature of this chiral anisotropic system. We show that the Berry curvature can be tuned 

by adjusting the geometrical parameters of spiral scatterers. By leveraging this enhanced design 

freedom, we demonstrate that our asymmetrical design enables unprecedented topological 

manipulation of transverse elastic waves, allowing bending and stoppage of energy flow. Such 

manipulation of transverse waves can be useful in high-resolution imaging, such as trans-skull 

measurement and treatment in biomedical systems because of their high penetration and contrast 

characteristics in human body [2,4,34]. The elastic valley states, carrying notable features of 

vortices, may also inspire new engineering applications in energy harvesting, vibration filtering, 

and impact mitigation. 

 

�. ELASTIC VALLEY METAMATERIALS DESIGN 
The proposed elastic valley metamaterials are designed in a triangular lattice using the hard 

spirals made of polylactic acid (PLA) as scatterers and the soft hydrogel as the matrix [Figs. 1(a) 

and 1(b)]. Hydrogels are chosen as the soft matrix, which are acoustically similar to water and 



are ideally biocompatible materials [35]. The spiral element is in the low order of symmetry 

falling into the point group Cs that only contains identity and σxy symmetries. This ensures the 

asymmetrical elastic valley metamaterial [36]. As a typical example in the monofilar spiral, the 

Archimedean spiral structure is employed in our design of the unit cell. The mechanical 

properties for spiral PLA are: mass density 1250�kg/m3, Young’s modulus 2.1 GPa and 

Poisson’s ratio 0.36. The geometric parameters of the spiral are defined in Fig. 1(b), in which 

initial spiral radius ai = 1.5 mm, gap distance g = 2.25 mm, thickness of the spiral d = 2 mm, and 

the number of turns n = 2. The mechanical properties of soft hydrogels are: mass density 

1000�kg/m3, Young’s modulus 18 kPa, and Poisson ratio 0.5. The side dimension of the 

hexagon is c = 14 mm.  

 



 
FIG. 1.  (a) Schematics of the elastic valley metamaterial in the triangle lattice. The Archimedean 

spiral-like structure is employed as the hard scatterer shown in purple. The soft hydrogel matrix 

is shown in beige. (b) The unit cell with detailed design parameters. (c) The band structure of the 

first Brillouin zone (purple lines with six corners marked by K1, K2, K3, K4, K5 and K6) with the 

second and the third bands showing the valley characteristic. (d) The band structure along the 

edge of the first Brillouin zone. The blue (red) curve represents the second (third) band. The two 

states in the K1 valley are denoted as p and q states. (e) The displacement field distributions of p 

and q valley states. The insets show the displacement field of the unit cell. (f) The normalized 

pseudospin angular momentum density distributions of p and q valley states. The insets show the 



displacement field of the unit cell. The curved arrows indicate the pseudospin up and pseudospin 

down. 

 

We conduct the finite element analysis of the spiral system under the plane-strain condition 

using Comsol Multiphysics. Figure 1(c) presents the band structure of the first Brillouin zone 

with the second and the third transverse wave bands separated by an omnidirectional band gap. 

In contrast to the Dirac dispersion in lattices with C3v symmetry, the band gap in our spiral 

system is a result of breaking the symmetry between the lattice and the scatterers, which is 

guaranteed by the asymmetric spiral structure in our design. Because of the chiral structure, we 

use six symbols from K1 to K6 to present the corners of the Brillouin zone. We illustrate the two 

bands along the edge of the first Brillouin zone (i.e., from K1 to K6) in Fig. 1(d). We find that the 

both bands between K1 and K2 valleys are different from those between K2 and K3 valleys, and 

between K3 and K4. According to the translational symmetry, there exist two inequivalent valleys, 

and Figs. 1(c) and 1(d) verify the anisotropic band structure in our spiral structure. 

We further investigate the elastic valley states of the spiral structure in the eigen 

displacement field and valley polarizations. We choose p and q of the second and third bands at 

K1 valley as two representing elastic valley states, as marked in Fig. 1(d). Similar to electronic 

valley states as well as the photonic and acoustic valley states, elastic valley states also exhibit a 

notable chirality, as shown in the eigen displacement field of the p and q states in Fig. 1(e). 

Figure 1(f) illustrates the normalized pseudospin angular momentum density of phonons in the p 

and q states, which is defined as ࡿ ൌ ఘఠଶ ൻ࢛หࡿห࢛ൿ, where ߩ is the mass density, ߱ is the angular 

frequency, ࢛  is the eigen displacement field, and ࡿ  is the spin-1 operator [37]. It can be 

simplified to ࡿ ൌ ఘଶఠ כ࢜ሺ݉ܫ ൈ  ሻ, which indicates the rotation of velocity field. The local particle࢜

rotates clockwise or counterclockwise driven by the phase difference. For convenience, we 

define the clockwise and the counterclockwise rotations as pseudospin-down and pseudospin-up 

based on the right-hand rule [see the arrows in Fig. 1(f)].  

The pseudospin angular momentum characterizes the polarizations of phonons, e.g., linear, 

elliptical and circular polarizations. In the analysis of valley polarization, we find the p and q 

states exhibit different polarizations. For example, when we investigate the p state, we find that 

the pseudospin angular momentum density concentrates mainly in the three corners of the 

hexagon, where the normalized pseudospin angular momenta exhibit a negative unity, indicating 



the circular polarizations in the pseudospin-down state [see the left inset in Fig. 1(f)]. In stark 

contrast, the q state exhibits the pseudospin-up state in a different set of corners [right inset of 

Fig. 1(f)]. It is interesting to note that the p state exhibits circular (linear or elliptical) polarization 

at the three corners of hexagon, where the q state exhibits linear or elliptical (circular) 

polarization with the opposite pseudospin angular momentum. This implies that the p and q 

states have opposite chirality, manifesting that our anisotropic system presents valley features. 

We note in passing that the combined landscape of the displacement field distribution and 

the normalized pseudospin angular momentum distribution is different from the existing valley 

states in classic systems. In our system, the amplitudes of both the displacement field and the 

normalized pseudospin angular momentum field reach maximum at the identical corners of the 

hexagon [compare Figs. 1(e) and (f)]. In classical systems, however, the normalized pseudospin 

angular momentum reaches maximum at the position where the field amplitude becomes zero 

(Appendix A for the comparison). The observed anomalous valley states have never been 

reported in the classic systems, which can enrich the intrinsic physics of valley states.  

 

�. BERRY CURVATURE AND VALLEY CHERN NUMBER 
Now we explore the topology of the valley in the observed anisotropic band structure. After 

obtaining the dispersion relation ω = ω(k) and displacement vector field U(k), we characterize 

the topology of valley by calculating the Berry curvature Ωሺሻ ൌ ݅ ൈ ൌ ሻۧ, whereሺݑ||ሻሺݑۦ ሺ߲ೣ, ߲ሻusing the discrete method [38]. For our two-dimensional system, we consider a 

clockwise path around a certain point A (kx, ky) consisting of A1 (kx – δkx/2, ky – δky/2), A2 (kx – 

δkx/2, ky + δky/2), A3 (kx + δkx/2, ky + δky /2) and A4 (kx + δkx/2, ky – δky/2). According to the 

definition and the Stokes’ theorem, we obtain  Ω ݀ଶ ൌ െ   ڄ ݀ , where B is the Berry 

potential of a state defined by ܷ݅ۦ|ܷۧ. Since we consider the continuous Brillouin zone as 

numerous small patches, for each patch δkx × δky, we estimate the Berry curvature as below: ΩሺAሻ ൌ Imሾࢁۦሺܣଵሻ|ࢁሺܣଶሻۧ  ଷሻۧܣሺࢁ|ଶሻܣሺࢁۦ  ସሻۧܣሺࢁ|ଷሻܣሺࢁۦ  ଵሻۧሿδ݇௫ܣሺࢁ|ସሻܣሺࢁۦ ൈ δ݇௬  

where the inner product can be calculated using Comsol Multiphysics. This equation can be 

justified when patches are much smaller than the first Brillouin zone. In our case, δ݇௫ ൌ δ݇௬ ൌ3.74 ݉ିଵ and the side length of the first Brillouin zone is 172.74 ݉ିଵ, hence this method is 



reasonable. Then, we can map the Berry curvature of the Brillion zone, which will be presented 

below for further discussion.  

For an elastic system with the time reversal symmetry, the integration of the Berry 

curvature of the whole Brillouin zone is expected to be zero. Nevertheless, the Berry curvature is 

highly localized at the valleys, and the local integration of the Berry curvature converges to a 

nonzero quantized value. The local integration is referred to as valley Chern number Cv, which is 

defined as , where the integral bounds extend to a local area around the 

valley. In the existing valley physics, Cv is calculated to be ±1/2 in electronic, photonic and 

phononic systems [25,26,39–41]. Usually, the extrema of the Berry curvature are located at the 

corners of Brillouin zone. However, the maximum and the minimum values of the Berry 

curvature in our system are not at the exact corners of Brillouin zone. Figure 2(a) shows the 

Brillouin zone (Black solid lines) and the extrema of the Berry curvature in our system (Red 

dots). The extrema of the Berry curvature are not exactly at the corner of Brillouin zone, and four 

of them are outside the first Brillouin zone. This discrepancy is caused by the mismatch between 

the asymmetrical spiral and the triangular lattice.  

 

 
FIG. 2.  (a) The black solid lines represent the Brillouin zone, while the red dots denote the 

extrema of the Berry curvature. (b) The detailed Berry curvature distribution near the six valleys 

for the second band (upper two rows enclosed by the cyan dotted boxes) and for the third band 

(lower two rows enclosed by the magenta dotted boxes). The color represents the amplitude of 

the Berry curvature (see the colormap), and the black lines are the boundaries of the Brillouin 



zone. Given that the side length of the first Brillouin zone is SBZ, the width of the area is ସ√ଷଵହ  SBZ, 

and the height of the area is ଵହ SBZ.  

 

The detailed Berry curvatures around each K valley are presented in Fig. 2(b). The Berry 

curvature of the second band and the third band are enclosed by the cyan and magenta dotted 

boxes, respectively. The areas enclosed by these boxes represent the integral bound for the valley 

Chern number calculation mentioned above. Interestingly, numerical integration of the Berry 

curvature of our system provides the anomalous Cv about ±0.33 that is not limited to ±0.5. This 

may be caused by the strong spatial inversion symmetry breaking [12,32,42]. Further discussion 

follows next. 

 

�. SLOWNESS CURVAES AND GROUP VELOCITY 

The strong spatial inversion symmetry breaking in our spiral system is reflected on the 

distribution of slowness curves and group velocity, which is related to the Berry curvature by Ωሺሻ ൌ േ ௩మଶሺ||మ௩మାమሻయమ, where ݒ is the group velocity around valley point, m is the strength of 

the spatial inversion breaking, and  ൌ  െ   is the wave vector deviation from the 

corresponding K point [27]. We evaluate the slowness curves and group velocities as a function 

of the wave vectors. Figures 3(a) and 3(b) present the polar plots of the slowness curves of the 

second band and the third band, showing the distribution of slowness magnitude for different 

directions in the first Brillouin zone. The slowness is the inverse of the phase velocity (ݏ ൌ  ଵ௩). 

The slowness curves corresponding to the second and third band are approximately circular at 

small wave vectors. We observe that the slowness curves exhibit the evident anisotropy as wave 

vectors increase. As wave vectors increase, the values of the slowness of the second band and the 

third band rise, which is consistent with the corresponding band structures in Fig. 1(c). As the 

wave vector approaches the edges of the first Brillouin zone, the slopes of the corresponding 

bands decrease. It is noted that the slowness curves are symmetrical around the central point, 

which agrees with the band structures in Figs. 1(c) and (d). 

The calculated group velocity distribution of the second and the third band are presented in 

Fig. 3(c) and Fig. 3(d), respectively. It can be found that the group velocity patterns of both 



bands are quite complex, especially at the corners of the Brillouin zone. The group velocity 

distribution of both bands as a function of wave vectors is symmetrical around the center of the 

Brillouin zone, suggesting the chiral anisotropic structure of the elastic valley metamaterials, 

which is in correspondence to the slowness curves. 

At this point, we clearly observed the anisotropic characteristic of the elastic valleys in our 

system from: (i) the distorted area enclosed by the extrema of the Berry curvature, (ii) the 

different distributions of the Berry curvature around K1, K2, and K3 valleys, and (iii) the 

distribution of slowness and the group velocity. We now move on to the tunability of this Berry 

curvature distribution next.  

 

 
FIG. 3.  (a) The slowness curves of the second band. From the small wave vectors to large wave 

vectors, the slowness rises from 0.12 to 0.28. (b) The slowness curves of the third band. From the 



small wave vectors to large wave vectors, the slowness rises from 0.02 to 0.18. (c) The group 

velocity distribution of the second band. The black solid line indicates the Brillouin zone. (d) 

The group velocity distribution of the third band. The black solid line indicates the Brillouin 

zone. 

 

 

�. TUNABLE BERRY CURVATURE AND VALLEY CHERN NUMBER 
The Berry curvature plays an important role in wave motions, resulting in appealing 

phenomena, such as valley-polarized transport. Thus, it is desirable to have more choices of the 

Berry curvature. We investigate the tunability of the Berry curvature as a function of the key 

geometrical parameters of the Archimedean spiral structure, such as the number of turns (n) and 

the thickness of the spiral (d) [Fig. 1(b)]. We calculate the Berry curvature and valley Chern 

number for n = 1.5 and n = 2 with the increase of d. For simplicity, we only show the Berry 

curvature around K6 valley. The Berry curvatures and valley Chern numbers of the second band 

(enclosed by cyan dotted boxes) and the third band (magenta boxes) are displayed in Fig. 4. We 

observe that as d increases, the magnitude of the Berry curvature becomes small and the 

distribution becomes dispersed. This is reasonable, since the Archimedean spiral approaches a 

circle with the increase of the thickness, thus resulting in the disappearance of the Berry 

curvature in the absence of the broken spatial inversion symmetry. Accordingly, the valley Chern 

number diminishes as displayed below each graph. When d is fixed, the increase of n from 1.5 to 

2 can enhance the absolute value of the valley Chern number.  



 
FIG. 4.  The Berry curvature distributions around K6 point. Berry curvature distributions for the 

second band (upper two rows enclosed by the cyan dotted boxes) and for the third band (lower 

two rows enclosed by the magenta dotted boxes) are shown with different parameters. The color 

represents the amplitude of the Berry curvature (see the colormap), and the black lines are the 

boundaries of the Brillouin zone. Given that the side length of the first Brillouin zone is SBZ, the 

width of the area is  SBZ, and the height of the area is  SBZ.  

 

Figure 5 shows the Berry curvature along K6K1 line at n = 1.5 and 2 (left and right panels) 

for various d values. In the case of the second band (Fig. 5(a)), we observe that the absolute 

value of the Berry curvature decreases as d increases. As the thickness of the Archimedean spiral 

is fixed, the sign of the Berry curvature changes when n changes from 1.5 to 2.0. This was also 

observed in Fig. 4 (compare the color between rows). This sign flip can be translated into the 

topological transition. The same phenomenon can be observed from Fig. 5(b) which shows the 

distributions of the Berry curvature of the third band. From this graph, we can also find the 

extrema of Berry curvature are not at the corner of Brillouin zone (vertical dashed lines in Fig. 5) 

as we mentioned in the last section. 

 



 
FIG. 5.  (a) The Berry curvature of the second band along K6 K1 line as a function of the 

thickness of the Archimedean spiral, d = 1, 2, 3 and 4 [mm], when the number of turns of the 

spiral n = 1.5 and 2. (b) The same for the third band. Note that there is a broken x axis in each 

figure to emphasize the change of the Berry curvature in the K points. 

 

�. ELASTIC TOPOLOGICAL VALLEY EDGE STATES  

RELYING ON FREQUENCY 
A. PROJECTED BAND STRUCTURE AND EIGENMODES 



Based on the tunability of the Berry curvature, the next step is naturally to investigate the 

elastic topological valley edge states, which is regarded as one of the most significant 

manifestations of valley-polarized behaviors. According to the result in the previous section, we 

can tune the value of the Berry curvature around valleys by adjusting n and d [mm]. We use the 

symbol (n1, d1 | n2, d2) to denote the combination of the two different configurations of elastic 

valley metamaterials. We choose the combination of (1.5, 3) and (2, 2) for the investigation of 

elastic topological valley edge states due to their overlapped frequency range and opposite Berry 

curvatures. As shown in Fig. 6(a), the projected band along the kx direction is calculated using 

the sandwich supercell (2, 2 | 1.5, 3 | 2, 2).  

Because the armchair interface is along the kx direction, the x-projection of two valleys with 

opposite topological charges will usually cancel out each other at kx = 0, resulting in the non-

topological interface. It is evident that there are three bands independent of the bulk shown in 

gray. Here, the red line represents the edge states located at the interface between (2, 2) and (1.5, 

3), while the blue lines represent the edge states located at the interface between (1.5, 3) and (2, 

2). We note that the first band (lower blue line in Fig. 6(a)) is more similar to the bulk mode, 

while others are not, since this branch flattens out (i.e., becomes non-dispersive) as the absolute 

value of kx increases and also, the mode shape in the case of small amplitude of kx resembles a 

bulk state of the spiral as shown in Fig. 6(b). On the other hand, the second blue line represents 

the edge state, which can be verified by its eigen modes [see the modes corresponding to yellow 

and blue dots in Fig. 6(b)]. 

The projected band structure along the ky direction is displayed in right panel of Fig. 6(a). 

The domain wall along the ky direction is zigzag. The y-projection of two valleys onto the 

domain wall is ݇௬ ൌ ଶగଷ√ଷ  and ݇௬ ൌ െ ଶగଷ√ଷ , respectively. Because the difference of valley-

projected Chern number is nonzero as shown in the distributions of topological charges in the 

insets of Fig. 6(a), the topological edge states are expected to appear along the zigzag interface 

within the bandgap as a result of the bulk-edge correspondence. Simulation results clearly show 

two bands within the band gap, where the red line represents the topological edge states located 

at the interface between (2, 2) and (1.5, 3), while the blue line represents the topological edge 

states located at the interface between (1.5, 3) and (2, 2). 

We also check the eigenmode of the edge states along the armchair and zigzag interface, 

respectively. Here we show the eigen displacement fields of several k for comparison. For the 



projected band structure along kx direction, we choose kx = 0.26, where the eigen modes are 

represented by red, olive, yellow circles, and kx = 0.6, where the eigen modes are represented by 

green, cyan and blue circles. As displayed in Fig. 6(b), the displacement field is mainly 

concentrated on the interface between two different elastic metamaterials. The intensity of eigen 

mode represented by the red circle is weaker than others. Besides, the vibration is mainly 

concentrated on the spiral rather than on the matrix in the eigen mode represented by the cyan 

circle. For the projected band structure along ky direction, we choose ky = 0.3, where the eigen 

modes are represented by magenta, orange circles, and ky = 0.6, where the eigen modes are 

represented by black, teal circles. As displayed in Fig. 6(b), the displacement field is also 

concentrated on the interface between two different elastic metamaterials. When the ky 

approaches the origin, as shown in the eigen mode represented by the magenta and orange circles, 

the intensities of the edge modes at the interface are weaker than others. 

 



 
FIG. 6.  (a) The projected band structures along the kx (left panel) and ky (right panel) directions. 

Several markers with different colors are shown in the topological band. For the projected band 

structure along the kx direction, markers are placed on each topological band at kx = 0.26 and kx 

= 0.6. For the projected band structure along the ky direction, markers are placed on each 

topological band at ky = 0.3 and ky = 0.6. The schematics of supercell setup are displayed as the 



inset where green blocks are (2, 2) and orange block are (1.5, 3). The topological charges 

distributions and the area enclosed by the extrema of Berry curvatures are shown in the inset. (b) 

The eigen displacement fields corresponding to the markers indicated. The setup of sandwich 

supercell is shown by the notation we mention in the main text. 
 
B. TOPOLOGICAL VALLEY EDGE STATES 

As discussed above, different interfaces can support distinctive edge states. Some literatures 

have demonstrated the wave propagation along the domain wall characterized by 90° 

bends [12,43]. However, the results show the coupling behavior between armchair and zigzag 

interfaces varying case by case. Therefore, it is necessary to investigate the propagation of edge 

states along 90° bend in our system. Here, we create a two-part elastic metamaterial (see the 

insets of Fig. 7(b)-(d) where green and red blocks represent (2, 2) and (1.5, 3) configurations, 

respectively), thereby forming four 90° channels. First, we calculate the transmission coefficient 

within the bandgap region from 155 Hz to 160 Hz by using the ratio of input and output 

displacement [Fig. 7(a)]. The input and output are extracted by the displacement at the beginning 

of the armchair interface and at the bottom of the zigzag interface, respectively. Note that the 

frequency of the edge states within the bandgap along kx direction [red lines in Fig. 6(a)] is from 

155 Hz to 159 Hz, which can be divided into two regions shown in yellow and purple according 

to the value of transmission coefficient. Usually, armchair interfaces do not support the 

topological edge states and the valley states appear near kx = 0. However, in our elastic 

metamaterial, the Berry curvature distribution is deviated from the corners of the Brillouin zone, 

resulting in the nonoverlapping of positive and negative topological charges of two valleys (see 

the inset of Fig. 6(a)). Besides, the magnitudes of topological charges are different as a result of 

the different valley Chern number (see Fig. 4). It will extend the region that exists valley states 

and reduce the intervalley scattering due to the disappearance of tiny gap that usually appears at 

kx = 0. Therefore, when the frequency is low, the valley state along armchair interface cannot 

couple with the one along zigzag interface, and the transmission becomes low. However, when 

the frequency is high, they can couple well so that the transmission becomes high. When the 

frequency increases to 159 Hz and above, the transmission is low since the bandgap for edge 

states appears. 



We then demonstrate a frequency selector using this novel property in our system. Figures 

7(b)-(d) show the schematics of the numerical setup (insets) and the simulation results. In Fig. 

7(b), when the vibration source with 156 Hz [marked in magenta line in Figs. 6(a), 6(b) and 7(a)] 

is set at the beginning of the interface between (2, 2) and (1.5, 3), we know that the edge modes 

shown in the red line in Fig. 6(a) can be excited based on the projected band structure along the 

kx and ky directions. The elastic waves will transport along the interface in the x-direction. 

However, when the direction is changed to the ky direction, the edge mode cannot support the 

energy transfer along the vertical interface.  

However, when the excitation frequency is high, such as 157.6 Hz [marked in cyan line in 

Figs. 6(a), 6(b) and 7(a)], the transport of the elastic waves is distinct from the former case. As 

displayed in Fig. 7(c), when the elastic waves arrive at the intersection, they will not go forward 

but will propagate downward into another interface. The reason is evident. Edge modes in 

different interfaces belong to different valleys, and they cannot couple with each other. Thus, the 

excited edge modes cannot propagate forward after the intersection point. However, the 

downward edge mode and the excited mode are projected by the same valley. Therefore, when 

the elastic waves arrive at the intersection, they will neither go forward nor bisect into another 

interface, but go downward [22].   



 
FIG. 7.  (a) The transmission coefficient as a function of the frequency within the band gap. The 

yellow and purple represent the region with edge states. The pink region is the band gap between 

edge states and bulk states. The dashed lines with different colors represent the frequencies we 

choose to demonstrate the elastic wave propagation. (b) The transport of elastic waves along the 

interface. At the frequency of 156 Hz, which is shown in magenta dashed line in Fig. 6(a) and (b), 

elastic waves can travel along the kx direction but cannot travel through the bend. (c) At the 

frequency of 157.6 Hz, which is shown in cyan dashed line in Fig. 6(a) and (b), elastic waves can 

travel along the path and through the bend. (d) At the frequency of 159.6 Hz, which is shown in 

orange dashed line in Fig. 6(a) and (b), elastic waves cannot propagate. The insets of (a), (b) and 

(c) show the schematics of the numerical setup, where the green blocks represent (1.5, 3) 

metamaterials and the orange blocks represent (2, 2) metamaterials.  



 

When we continue to increase the frequency, the displacement field with excitation 

frequency 159.6 Hz is shown in Fig. 7(d). Because of the band gap, elastic waves are trapped at 

the beginning of the interface. This property that edge states transport depending on frequency 

may have potential applications in signal processing and frequency selector. However, the 

applicability of our system can be limited by a narrow bandgap observed in our two-dimensional 

model based on the plane strain condition. To obtain a larger bandgap, optimization of the 

material or extending the model to three-dimensional architectures may be required. 

 

 

�. CONCLUSIONS 
 

The valley anisotropy is introduced by designing asymmetrical elastic metamaterials made 

of spiral structure and soft material. By numerical calculations, we reveal the unique anisotropic 

valley properties in our system, stemming from the deviated Berry curvature. The adjustment of 

the geometrical parameters in the spirals allows an extreme tunability of the Berry curvature. We 

exploit this to demonstrate the formation of valley topological states and topological band 

structures unprecedented in conventional topological platforms. Lastly, we show a special 

topologically protected transport of elastic waves in this platform of anisotropic elastic 

metamaterial. 

The observed anomalous valley states enrich the intrinsic physics of the valley states. The 

deviated Berry curvature in the proposed elastic system may inspire similar explorations in other 

systems, such as electronic and photonic systems. The discussed elastic waves with valley 

anisotropic characteristics are transverse waves, which can exhibit superb penetration into soft 

media. Thus, the hydrogel-based transverse wave manipulator can be glued to a variety of media 

including hard and soft, leading to potential biomedical applications, e.g., elastography. 
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APPENDIX A: COMPARISON BETWEEN TRADITIONAL ACOUSTIC 

VALLEY METAMATERIALS AND OUR METAMATERIALS 
Here, we show the distinctive landscape of valley vortex states of our system in comparison 

to that of conventional valley metamaterials. To this end, we use one of the most widely studied 

acoustic valley systems [see the inset of Fig. 8(a)], consisting of equilateral triangular rods 

arranged in a triangular lattice in water [28,44,45]. The equilateral triangular rod is made of steel 

with ߩ ൌ 7670 kg/m3, ܿ ൌ 6010 m/s, ܿ௦ ൌ 3230 m/s, and the acoustic parameters for water are ߩ ൌ 1000 kg/m3, ܿ ൌ 1490 m/s. The lattice constant is 14√3 mm, and the side of equilateral 

triangular rod is 20 mm. When the symmetries between the lattice and scatterer match, the Dirac 

cone is expected to appear at the K point. In order to open the Dirac cone, we need to break the 

spatial inversion symmetry by rotating the steel rod. Here the rotation angle is 10° as shown in 

the inset of Fig. 8(a). 

Figure 8(a) shows the band structure of this acoustic metamaterial. The Brillouin zone and 

the high symmetrical points are shown in the inset. Clearly, there is a band gap around 30 kHz, 

and the band structure shows two extrema at the K point, which are denoted as p and q states 

respectively. To show the valley features, we investigate the eigen pressure field and pseudospin 

angular momentum density distribution similar to what we have done in our main text. As 

displayed in Figs. 8(b) and (c), when the eigen pressure fields reach maximum in the corners of 

hexagon in both p state and q state, the pseudospin angular momentum densities tend to be zero. 

We also notice that the p state is in the pseudospin up state and the local particle velocity rotates 

counterclockwise, while the q state is the opposite. In sharp contrast, in our system as shown in 

Figs. 1(e) and (f), when the eigen fields reach maximum in the corners of the hexagon in both p 

and q states, the amplitudes of pseudospin angular momentum densities also tend to be 

maximum. 



 
FIG. 8.  (a) The band structure along Γ-M-K-Γ of the acoustic valley metamaterial for 

comparison. The blue, red and gray curves represent the first, second and third bands, 

respectively. (b) The amplitude distributions of pressure fields of the p and q states. (c) The 

normalized pseudospin angular momentum density of the p and q states. 
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