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We demonstrate that it is possible to use atomic manipulation techniques to adiabatically tune be-
tween one-dimensional and two-dimensional topological superconductors in magnet–superconductor
hybrid (MSH) structures. This allows one to change the nature of the associated Majorana fermions
between localized bound states and chiral Majorana edge modes, and provides a new approach for
counting the topological invariant of the system – the Chern number – in real space. Moreover,
we show that the topological nature of finite-size MSH structures can be characterized using the
Chern number density which adiabatically connects MSH structures to macroscopic, translationally
invariant topological superconductors characterized by an integer Chern number. These results open
new possibilities for studying the nature of topological superconductivity in MSH structures using
atomic manipulation techniques.

I. INTRODUCTION

The recent observations of Majorana modes in one-
1–5 and two-dimensional 6,7 topological superconductors
hold the promise for topology-based technologies and
topological quantum computation 8. The realization of
these technologies will not only require the ability to
engineer Majorana fermions in nanoscale systems, but
also to manipulate them spatially at the length scale of
a few lattice constants. Magnet–superconductor hybrid
(MSH) systems consisting of magnetic adatoms deposited
on the surface of conventional s-wave superconductors
represent promising candidate systems to achieve these
goals. Indeed, single-atom manipulation techniques were
recently employed to engineer topological superconduc-
tivity in MSH structures, where one-dimensional (1D)
Shiba chains of magnetic Fe adatoms were built atom-
by-atom on a superconducting Re surface using the tip
of a scanning tunneling microscope 5, allowing to visual-
ize the emergence of Majorana bound states. Similarly,
interface engineering has proven crucial in the creation of
two-dimensional (2D) topological superconductivity and
the direct visualization of chiral Majorana edge modes 7

in MSH structures consisting of Shiba islands of magnetic
adatoms on the surface of s-wave superconductors. It is
this ability to engineer real space structures which likely
holds the key to the realization of topological quantum
devices.

The possibility of using atomic manipulation5 and
interface engineering techniques7 to realize Majorana
fermions has raised a series of intriguing questions, whose
answers have the potential to provide unprecedented,
fundamental insight into the nature of topological super-
conductivity. First, is it possible to adiabatically tune
between topological phases in 1D and 2D MSH structures
without undergoing a phase transition? The answer to
this question is of particular interest not only because
topological superconductors in 1D and 2D are in differ-
ent homotopy groups – with homotopy group Z2 in 1D,
and Z in 2D 9,10 – but also because it would potentially

open new possibilities to tune the nature of Majorana
fermions between localized bound states and delocalized
chiral edge modes. Second, can one identify the topo-
logical invariant of 2D topological superconductors – the
Chern number C – in real space? The fact that C is
encoded in real space at the edges of 2D Shiba islands
as the number of chiral Majorana edge modes suggests
that the real-space identification of C might indeed be
possible.

In this article, we will address these questions and
demonstrate the ability – using atomic manipulation
techniques – for adiabatic tuning between chiral Majo-
rana edge modes and localized Majorana bound states in
MSH structures. Specifically, by attaching networks of
Shiba chains to Shiba islands, one can arbitrarily move
Majorana fermions between the edge of the island, and
junctions or end points in the chain networks. Moreover,
we show that it is this ability that opens a new approach
to identifying the Chern number in real space by count-
ing the number of Majorana bound states in the attached
networks. Finally, we demonstrate that the topological
nature of finite-size MSH structures can be character-
ized using the Chern number density which adiabatically
connects MSH structures to macroscopic, translationally
invariant topological superconductors characterized by
an integer Chern number. This demonstrates that even
finite size 2D MSH systems, such as the ones realized
experimentally6,7, can be in a well-defined topological
phase, exhibiting |C| chiral edge modes. Our results
open new possibilities for the study of topological su-
perconductivity in MSH structures using current atomic
manipulation techniques and open new avenues for the
creation of the first Majorana-based quantum devices.

II. THEORETICAL MODEL

To investigate the engineering of Majorana fermions,
we consider MSH structures in which magnetic adatoms
are placed on the surface of a conventional s-wave su-
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perconductor with a Rashba spin-orbit interaction. Such
systems are described by the Hamiltonian

H =
∑
r,r′,σ

(−t− µδr,r′) c†rσcr′σ + ∆
∑
r

c†r↑c
†
r↓ + H.c.

+ iα
∑

r,δ,α,β

c†r,α (δ × σ)
z
αβ cr+δ,β

+ J
∑

R,α,β

SR · c†RασαβcRβ (1)

where c†r,α creates an electron at lattice site r with spin α,
and σ is the vector of spin Pauli matrices. As the experi-
mental realizations of such MSH structures have included
superconducting Pb(110) 2–4 as well as Re(0001) 5,7 sur-
faces, which possess a square or triangular surface lattice
structure, respectively, we consider below both types of
lattices, with −t being the hopping amplitude between
nearest-neighbor sites and µ being the chemical poten-
tial.

Moreover, α denotes the Rashba spin-orbit coupling
arising from the breaking of the inversion symmetry at
the surface 2 with δ being the vector connecting near-
est neighbor sites. Due to the full superconducting gap,
which suppresses Kondo screening, we consider the mag-
netic moments to be static in nature, such that SR is a
classical vector representing the direction of the adatom’s
spin located at R, and J is its exchange coupling with
the conduction electron spin. Unless otherwise stated, we
assume an out-of-plane ferromagnetic alignment of the
adatoms’ magnetic moments. Finally, we find that the
results below are robust over a large range of parameters,
as long as the topological phases are not destroyed.

While the topological phases of macroscopic,
translationally-invariant systems are well character-
ized by the topological invariant – the Chern number –
the topological phases of inhomogeneous11 or finite-size
systems can be characterized by the spatial Chern
number density given by

C(r) =
N2

2πi
Trτ,σ[P [δxP, δyP ]]r,r . (2)

with the Chern number in real space then given by 12,13

C = 1/N2
∑

r C(r). Here, Trτ,σ denotes the partial trace
over spin σ and Nambu space τ ,

δiP =

Q∑
m=−Q

cme
−2πimx̂i/NPe2πimx̂i/N , (3)

and the projector P onto the occupied bands is given
by P =

∑
α=occ. |ψα〉 〈ψα| for a real-space N × N lat-

tice. The cm’s are central finite difference coefficients
for approximating the partial derivatives. The coeffi-
cients for positive m can be calculated by solving the
following linear set of equations for c = (c1, . . . , cQ):

Âc = b, Aij = 2j2i−1, bi = δi,1, i, j ∈ {1, ..., Q}. For
negative m, we have c−m = −cm. We have taken the

FIG. 1. MSH hybrid structure consisting of a Shiba island
of radius R = 15a0 and chain with parameters (µ,∆, α, J) =
(−4t, 1.2t, 0.45t, 2.6t), yielding a topological phase with C =
−1 for the island (black circles denote sites with magnetic
adatoms; a0 is the lattice constant). (a)-(c) LDOS of the
lowest energy Majorana mode with increasing chain length,
corresponding to arrows (1)-(3) in (e). (d) LDOS of the sec-
ond lowest energy Majorana mode, corresponding to arrow
(4) in (e). (e) Evolution of the 4 lowest energy levels with
increasing chain length. Inset: log-plot of the lowest energy
level with increasing chain length, red line represents a linear
fit. (f) Evolution of the 4 lowest energy levels with decreasing
island radius. (g),(h) LDOS of the lowest energy Majorana
mode with decreasing island radius, corresponding to arrows
(5),(6) in (f). The distance between the end of the chain and
the center of the island is kept constant.

largest possible value of Q = N/2. C(r) as defined above
thus represents the real-space analog of the Berry curva-
ture F(k), and was previously introduced to discuss the
topological phases of Chern insulators 14.
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FIG. 2. (a) Linecut of the Chern density C(r) through Shiba islands with different radii R. Spatial plot of C(r) for the MSH
structures in Fig. 1 with chain length (b) L = 0, (c) L = 10a0 and (d) L = 20a0. Parameters are the same as in Fig. 1 with
C = −1.

III. DIMENSIONAL TUNING AND COUNTING
OF MAJORANA MODES

The observation of zero-dimensional (0D) Majorana
modes at the ends of Shiba chains, and chiral 1D Ma-
jorana modes at the edges of Shiba islands have raised
the question of whether atomic manipulation techniques
can be used to tune Majorana modes between these two
limits. To address this question, we consider a system
in which both the 1D chains and 2D islands of mag-
netic adatoms induce topological superconductivity, with
Chern number C = −1 in the latter case. To interpolate
between Shiba chains and islands, we attach an increas-
ingly longer chain of magnetic adatoms to a Shiba island,
as shown in Figs. 1(a)-(c). With no chain present, the
Shiba island possesses a chiral Majorana mode that is
localized at the edge of the island, and forms a dispers-
ing, 1D edge mode that traverses the superconducting
gap. Each chiral edge mode is comprised of two Ma-
jorana fermions, which for the lowest energy mode are
located at small, but finite energy E = ±ε [Fig. 1(e)]
(this non-zero energy, and the discreteness of the modes
arises from the finite size of the island 15). The LDOS
of the lowest energy mode is shown in Fig. 1(a). When
a chain is attached to the island, and its length is in-
creased, spectral weight is transferred from the island’s
lowest energy Majorana edge mode to the end of the
chain [Fig. 1(b)]. When the chain is sufficiently long
[Fig. 1(c)] it possesses a localized Majorana fermion at
its end, while a second Majorana fermion remains de-
localized along the edge of the island. A similar spa-
tial structure of the zero-energy LDOS was also found
in plaquette–nanowire hybrid system16. Note that the
spatially integrated spectral weight of the zero-energy
state is exactly split between the dispersive Majorana
edge fermion and the bound state at the end of the
chain. Concomitant with the increasing separation be-
tween these two Majorana fermions, the energy of the
lowest energy states decreases smoothly and monotoni-
cally [Fig. 1(e)], implying that the system remains in a
topological phase throughout this evolution, i.e., without

undergoing a phase transition. Moreover, as expected for
two Majorana fermions localized at the end of a chain,
the log-plot of their energy shown in the inset of Fig. 1(e)
reveals that it decreases exponentially with increasing
length of the chain. At the same time, the higher energy
Majorana modes remain entirely localized along the edge
of the island, as shown in Fig. 1(d) for the second lowest
energy state. We note that as there is no zero-energy
crossing of the lowest energy states with increasing chain
length, no parity transitions occurs 17. To finally ar-
rive at a purely one-dimensional chain, we next reduce
the radius of the Shiba island, while keeping the distance
between the end of the chain and the center of the is-
land fixed. In Fig. 1(f), we present the evolution of the
four lowest energy states with decreasing island radius,
R [the purely 1D chain corresponds to the right hand
side of Fig. 1(f)]. As expected, we find that the lowest
energy state, corresponding to the Majorana fermions lo-
cated at the end of the chain and around the edge of the
island, remains located near zero energy with decreas-
ing R, while the other states move up in energy. The
corresponding lowest energy LDOS for two values of R
are shown in Figs.1(g),(h), demonstrating that the Ma-
jorana fermions remain located at the ends of the chain
with decreasing R. The smooth evolution of the lowest
energy states shown in Fig. 1(f) demonstrates that the
system can be adiabatically tuned, i.e., without undergo-
ing a phase transition, between the island-chain structure
shown in Fig. 1(c), and a 1D Shiba chain. This implies
that the entire transition from the 2D Shiba island in
Fig. 1(a) [corresponding to the left hand side in Fig. 1(e)]
to the 1D chain [corresponding to the right hand side of
Fig. 1(f)] is adiabatic, without an intermittent topologi-
cal phase transition.

Further evidence for the adiabatic evolution of the sys-
tem comes from considering the Chern number density,
C(r), of the MSH structure. C(r) can be employed
to characterize the topological nature of finite-size (or
disordered11) systems, as it adiabatically connects to
the quantized Chern number of translationally invariant,
macroscopic systems. To demonstrate this, we compare
in Fig. 2(a) the Chern number density along a line cut
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through Shiba islands of different radii, with C(r) of an
infinitely large system. Already for an island with radius
R = 15a0, C(r) in the center of the island is close to that
of the infinitely large system, an agreement which im-
proves with increasing island radius. At the same time,
the existence of chiral edge modes in these island [as
shown in Fig. 1(a)] provide further, independent evidence
for their topological nature. Consistent with this, we find
that a vanishing C(r) inside the island coincides with
the absence of any chiral edge modes, thus reflecting a
topological trivial phase. We can thus conclude that the
Chern number density is a suitable quantity to charac-
terize the topological nature of finite-size Shiba islands.

Having established this, we can now employ C(r) to
further demonstrate that the MSH system shown in
Figs. 1(a)-(c) can be adiabatically tuned between 1D
and 2D without undergoing a phase transition. To this
end, we present in Figs. 2(b)-(d) the Chern number den-
sity for the MSH structure with different chain lengths,
ranging from an island without chain [Fig. 2(b)], to is-
lands with chain lengths L = 10 [Fig. 2(c)] and L = 20
[Fig. 2(d)]. Throughout this evolution, C(r) not only re-
mains close to −1 inside the Shiba island, but the end
of the chains also exhibits some non-zero negative value
for C(r), again demonstrating the adiabatic evolution of
the MSH structure. Thus, the results shown in Figs. 1
and 2 demonstrate that it is not only possible to adiabat-
ically tune between 1D and 2D topological superconduc-
tivity via atomic manipulation (and hence spatially sepa-
rate Majorana fermions without the creation of magnetic
vortices 18), but also to design a single system exhibiting
both localized and dispersive Majorana zero modes.

The above results open a new path to the long sought
goal for identifying the topological invariant — the Chern
number — through measurements, as attaching chains to
a magnetic island via atomic manipulation allows one to
count the Chern number. To demonstrate this, we at-
tach a second chain to the island–chain hybrid system of
Fig. 1(c), and present the resulting lowest energy LDOS
in Fig. 3(a). As expected, we find that by attaching a
second chain, the dispersive Majorana mode moves from
the edge of the Shiba island [see Fig. 1(c)] to the end of
the second chain where it forms a bound state. Thus,
attaching two chains to a Shiba island that is in a topo-
logical phase with C = ±1 relocates the zero-energy Ma-
jorana modes from the edge of the island to the end of
the chains, as shown in Fig. 3(a). Coincidentally, this
result also demonstrates that the localization of Majo-
rana modes at the end of a chain is insensitive to the
particular shape of the chain in its middle. Next, we
consider a Shiba island that is in a topological super-
conducting phase with Chern number C = 2, implying
that the island possesses two degenerate chiral Majorana
edge modes. We note that these two modes are topo-
logically protected from combining into a complex Dirac
fermion15, due to the absence of any coupling between
them. When two chains are attached to such an island
with C = 2, one of the Majorana modes is separated into

FIG. 3. (a) LDOS of the lowest energy Majorana mode
for a Shiba island with C = −1 and two chains of length
L = 30a0 attached (same parameters as in Fig. 1). (b)-(e)
MSH structure with C = 2 and parameters (µ,∆, α, J) =
(−0.5t, 0.7t, 0.45t, 2t). Lowest energy LDOS for a Shiba is-
land with radius R = 15a0 and with (b) two, (c) three, and
(d) four chains of length L = 31a0 attached. (e) The points
where the chains are attached are rotated by 45◦ from (d).

two zero energy Majorana fermions which are located at
each end of the two chains, as shown in Fig. 3(b) [we
note that for this particular set of parameters, the chains
are only in a topological phase when they are oriented
along the diagonal, but not when they are oriented along
the bond directions, which is opposite to the case consid-
ered in Fig. 1]. At the same time, the second Majorana
mode remains localized along the edge of the Shiba is-
land, with large spectral weight concentrated near those
points along the edge where the chains are attached. This
result is qualitatively different from the C = −1 case
where in the presence of two chains, no low-energy Majo-
rana mode remains along the edge of the Shiba island [see
Fig. 3(a)]. When a third chain is attached to the island
[see Fig. 3(c)], the second Majorana mode is spatially
split into two Majorana fermions, one that is located at
the end of the third chain, and one that remains located
along the edge of the island. Only when four chains are
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attached to the island [Fig. 3(d)] we find that four zero-
energy Majorana fermions (arising from the two lowest
energy Majorana modes of the island) are located at the
end of the chains, with no zero-energy mode remaining
along the edge of the island. We note that this result
does not depend on the particular locations where the
chains are attached to the island, as shown in Fig. 3(e),
being a variant of the geometry in Fig. 3(d).

The results shown in Fig. 1(c) and Fig. 3 suggest a
new real space approach to detecting the Chern number
of a two-dimensional topological superconductor through
atomic manipulation: if spectral weight for a zero-energy
state remains located at the edge of the island when N−1
chains are attached, but vanishes for N chains, then the
Chern number of the 2D topological superconductors is
given by |C| = N/2. Our results also imply that by
attaching chains to the island, one can effectively change
the number of Majorana zero modes in the island, and
in particular tune the island to an even or odd number
of zero-energy modes.

To demonstrate that these findings also hold for higher
Chern numbers and different lattice structures, we next
consider a Shiba island in the C = 3 phase located on
a triangular lattice, and present in Figs. 4(a)-(c) the re-
sulting lowest-energy LDOS for an increasing number of
chains. Such an island possesses 3 degenerate Majorana
modes, or 6 Majorana fermions. As expected, we find
that with each added chain, a Majorana fermion is re-
moved from the Shiba island and relocated to the end
of the chain, leading to a decrease in the spectral weight
around the edge of the island, as shown in Figs. 4(a),(b).
When six chains are attached to the island, all low-energy
Majorana modes are removed from the edge of the island
[Fig. 4(c)]. These results again fully support the validity
of the real space approach to counting the Chern number
introduced above, as for N = 6 chains no zero-energy
spectral weight remains around the edge of the island,
implying that it is in the C = N/2 = 3 phase.

Atomic manipulation can be employed to further tune
the location of the Majorana fermions between the end
of the chains and the edge of the island. For example,
connecting the ends of two neighboring chains by another
chain – giving rise to the windmill-like structure shown
in Fig. 4(d) – leads to junctions where an even number
of chains meet (even junctions). Such junctions cannot
sustain the existence of Majorana fermions19, such that
all Majorana fermions are relocated back to the edge of
the Shiba island. On the other hand, connecting the ends
of all chains with the ends of their nearest neighbor chains
[see Fig. 4(e)] gives rise to six junctions where an odd
number of chains meet (odd junctions). Such junctions
can sustain the existence of a Majorana fermion, such
that all Majorana fermions remain located at the end
of the chains, i.e., at the junctions. Finally, connecting
the ends of two opposite chains with the ends of their
two neighboring chains – leading to the TIE fighter-like
structure shown in Fig. 4(f) – produces 4 even and 2 odd
junctions, such that 4 Majorana fermions are relocated to

FIG. 4. Shiba island with radius R = 20a0 on a triangu-
lar lattice with parameters (µ,∆, α, J) = (0.4, 1.2, 0.45, 2.6)t
yielding a topological phase with C = 3. Zero energy LDOS
for the island with (a) one, (b) five and (c) six chains of length
L = 20a0 attached. Zero energy LDOS for the island with (d)
the ends of two neighboring chains connected, giving rise to
a windmill-like structure and junctions with an even number
of chains (even junction), (e) the ends of neighboring chains
connected, giving rise to a spiderweb-like structure and junc-
tions with an odd number of chains (odd junction), and (f)
the ends of two opposite chains connected with the ends of
their two neighboring chains giving rise to a TIE fighter-like
structure with both even and odd junctions.

the edge of the island, and 2 Majorana fermions remain
located at the odd junctions.

To demonstrate that dimensional tuning and real space
counting of Chern numbers can also be achieved in exper-
imentally relevant MSH structures, we consider an MSH
structure, described by a 10-band model, that was re-
cently employed to explain the emergence of topological
superconductivity in Fe islands deposited on a Re(0001)-
O(2x1) surface 7 (for the Hamiltonian describing this sys-
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FIG. 5. Experimentally realized Fe/Re-O(2 × 1) MSH struc-
ture (see Ref. 7) with C = 4. LDOS of zero-energy Majorana
modes with (a) no attached chain, (b) one, (c) seven, and
(d) eight attached chains. Hamiltonian and parameters for
this 10-band model are given in the supplemental material of
Ref. 7 and appendix A.

tem, see the supplemental material of Ref. 7 and ap-
pendix Sec.A). The Fe island considered below possesses
the same form and spatial extent as the experimentally
studied one 7. However, while the experimentally ob-
served island is in a topological phase with C = 20, we
have slightly altered the parameters to tune the island
into a topological phase with a smaller Chern number of
C = 4. In this case, the above counting argument pre-
dicts that only N = 8 chains need to be attached to the
island to remove all zero-energy Majorana fermions from
the edge of the island, rather than the N = 40 chains
required in the C = 20 phase.

As the island is in the C = 4 topological phase, it ex-
hibits four chiral Majorana modes along the edge of the
island, with the corresponding E = 0 LDOS shown in
Fig. 5 (a). As before we find that a single chain of mag-
netic adatoms attached to the island possesses a Majo-
rana bound state that is localized at the end of the chain,
with all other Majorana fermions remaining located along
the edge of the island, as follows from the zero-energy
LDOS shown in Fig. 5(b). For an island with 7 chains
attached [see Fig. 5(c)], substantial spectral weight has
been removed from the edge of the island as 7 Majorana
bound states are now located at the end of the chains,
with only a single chiral Majorana fermion remaining lo-
cated along the edge of the island. We note that as ex-
pected the integrated spectral weight along the edge of
the island is the same as that around each end of the

chains. However, as the spectral weight of the Majorana
fermion is extended over the entire length of the edge, the
peak intensity in the LDOS along the edge is significantly
smaller than that at the end of the chains [see Fig. 5(c)].
Finally, adding an 8th chain to the island relocates the
last Majorana fermion to the end of the chain, leading
to a vanishing zero-energy LDOS at the edge of the is-
land [Fig. 5 (d)]. We therefore conclude that proposed
real space approach to counting the Chern number holds
even for experimentally relevant MSH structures, thus
further supporting its validity.

The above results also suggest how the dimensional
tuning of Majorana fermions between 1D and 2D can
be generalized to MSH structures with Chern numbers
different from C = ±1 which was discussed in Fig. 1.
Specifically, we find that it is possible to use atomic
manipulation techniques to adiabatically tune between a
Shiba island with |C| chiral Majorana modes, and a net-
work of chains that host 2|C| localized Majorana bound
states, as shown in Figs. 3(a), 3(d), 4(c),(e) and 5(d).
Atomic manipulation techniques thus provide a promis-
ing new approach to the quantum engineering of Majo-
rana fermions.

IV. CONCLUSIONS

In conclusion, we have demonstrated that it is possible
to use atomic manipulation techniques to adiabatically
tune MSH structures between 1D and 2D topological su-
perconducting phases. Specifically, we showed that while
two-dimensional chiral topological superconductors (with
Z classification) and one-dimensional topological super-
conductors (with Z2 classification) are in different uni-
versality classes, the system does not undergo a phase
transition if one transforms a 2D Shiba island via a hy-
brid chain-island structure into a 1D chain by adding or
removing adatoms. Moreover, by attaching Shiba chain
networks to Shiba islands, we showed that one can ar-
bitrarily transform chiral Majorana edge modes into lo-
calized Majorana bound states, and vice versa. This, in
turn, opens a new real space approach to counting the
Chern number of topological superconductors. In par-
ticular, when a Shiba island is in a topological phase
with Chern number C, then the spectral weight of the
zero-energy chiral Majorana edge modes completely van-
ishes when 2|C| chains are attached to it, as the Majo-
rana modes are transformed into Majorana bound states
localized at the end of the chains. We have explicitly
demonstrated these results for a series of Chern numbers
(C = 1, 2, 3, 4) and for different lattice geometries, but
also in an experimentally relevant MSH structure that
was recently successfully employed to explain the emer-
gence of chiral Majorana edge modes in Fe/Re-O(2× 1)
MSH system7. Finally, we demonstrated that the topo-
logical nature of MSH structures can be characterized
through the Chern number density, which adiabatically
connects between finite-size MSH structures and transla-
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tionally invariant, macroscopic systems that are charac-
terized by an integer Chern number. We note in closing
that the evolution of topological superconductivity be-
tween 1D and 2D was previously studied by considering a
px+ ipy superconductor whose geometry was tuned from
a rectangle to a narrow strip, quasi one-dimensional sys-
tem of length L and varying width W 20. We find, how-
ever, that such a system undergoes a topological phase
transition when W is varied, such that the 1D and 2D
limits cannot be adiabatically connected. This absence of
adiabatic tuning arises from the different procedure used
in studying the evolution between the 1D and 2D limits,
and not from the difference in the symmetry of the under-
lying superconducting phases, as they are topologically
equivalent.
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Appendix A: Parameters for the Fe/Re-O(2 × 1)
MSH structure

To reduce the Chern number from experimentally rel-
evant case of C = 20 for experimentally realized Fe/Re-
O(2× 1) structure in Ref.7 to C = 4 discussed in Fig. 5,
the following parameters were changed from those given
in the supplemental material of Ref. 7: ∆Re = 33 meV,
µFe = −10.96 meV, λFe = 0.64 meV, αFe = 3.36 meV,
and ∆Fe = 3.28 meV.
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